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Abstract: Maize (Zea mays L.) is one of the most crucial crops for global food security worldwide.
For this reason, many efforts have been undertaken to address the efficient utilization of germplasm
collections. In this study, 322 inbred lines were used to link genotypic variations (53,403 haplotype
blocks (HBs) and 290,973 single nucleotide polymorphisms (SNPs)) to corresponding differences
in flowering-related traits in two locations in Southern Brazil. Additionally, network-assisted gene
prioritization (NAGP) was applied in order to better understand the genetic basis of flowering-related
traits in tropical maize. According to the results, the linkage disequilibrium (LD) decayed rapidly
within 3 kb, with a cut-off value of r2 = 0.11. Total values of 45 and 44 marker-trait associations
(SNPs and HBs, respectively) were identified. Another important finding was the identification of
HBs, explaining more than 10% of the total variation. NAGP identified 44, 22, and 34 genes that are
related to female/male flowering time and anthesis-silking interval, respectively. The co-functional
network approach identified four genes directly related to female flowering time (p < 0.0001):
GRMZM2G013398, GRMZM2G021614, GRMZM2G152689, and GRMZM2G117057. NAGP provided
new insights into the genetic architecture and mechanisms underlying flowering-related traits in
tropical maize.
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1. Introduction

Maize (Zea mays L.) plays an important role in the human diet and accounts for a large proportion
of the global cereal demand. Together with rice and wheat, these three cereals account for more than
40% and 35% of the world’s calorie and protein supply, respectively [1,2]. Maize is among the few
crops grown on almost every continent and has diverse uses, including food, animal feed, and ethanol
production [3]. The United States, China, and Brazil are the top three largest maize-producing countries
in the world, representing more than 70% of total maize production [4].

Since maize is one of the most important crops for global food security, several efforts have been
undertaken addressing the efficient utilization of germplasm materials. In fact, the development of
maize germplasm collections has been beneficial to capture and maintain the high levels of genetic
diversity that exist locally and globally [5–9]. These efforts have allowed the methodical exploration
of the genetic architecture of complex traits in maize, which benefit from the high diversity [8].
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Liu [10], for instance, performed a genome-wide association study (GWAS; a standard forward genetic
technique) using a population comprised of a global core collection of maize inbred lines, and found
several candidate genes associated with starch synthesis, of which one gene (Glucose-1-phosphate
adenylyltransferase) is known as an important regulator of kernel starch content. Li et al. [11] identified
several genetic variants associated with maize flowering time using an extremely large multigenetic
background population (>8000 maize lines). The associated single nucleotide polymorphisms (SNPs)
detected in this large panel exhibited high accuracy for predicting flowering time.

In an effort to overcome certain limitations present in forward and reverse genetic techniques, for
example lacking in functional clues of trait-associated candidate genes derived from forward genetics
studies and in silico strategies for candidate gene selection in targeted mutagenesis in reverse genetics
approaches, Lee et al. [12] recently presented a network-assisted gene prioritization system (MaizeNet),
which facilitates genetic analysis through supporting candidate genes based on network neighbors
with known traits or functions, and aids in identifying potential candidate genes that are highly likely
to be causal to the phenotype of interest. This network-based resource provides new insights into the
genetic architecture and mechanisms underlying complex traits in maize and promises to accelerate
the discovery of trait-associated genes for crop improvement. In this study, an integrated approach
using GWAS (based on 53,403 haplotype blocks (HBs) and 290,973 SNPs) and network-assisted gene
prioritization was applied in order to better understand the genetic basis of flowering-related traits in
tropical maize. To this end, marker-trait association analyses were performed using a multigenetic
background population comprising 322 inbred lines of field corn, popcorn, and sweet corn.

2. Materials and Methods

2.1. Trial Conditions and Phenotyping

A total of 322 inbred lines of tropical maize were used in this genome-wide association study,
which were derived from three genetic backgrounds collected in Brazil: Field corn (178), popcorn (128),
and sweet corn (16). This maize panel was evaluated during the growing season of 2017–2018 in two
locations (Cambira and Sabaudia) situated in Southern Brazil, Parana State. The experimental design
was an alpha-lattice with 24 incomplete blocks and 3 replications per line. Female and male flowering
time (FF and MF, respectively) were measured in each line as the number of days from sowing to
anther extrusion from the tassel glumes (MF) or to visible silks (FF). Additionally, the anthesis-silking
interval (ASI) was calculated as the difference between MF and FF.

2.2. Population Structure, Linkage Disequilibrium (LD), and Haplotype Blocks

Genomic DNA was isolated from young leaves of five plants from each inbred line of tropical
maize (319 in Cambira and 293 in Sabaudia), approximately 30 days after germination. The DNA
extraction was carried out by Cetyl trimethyl ammonium bromide (CTAB) according to the protocol
established by Chen and Ronald [13]. The quality of DNA was evaluated and quantified using
1% agarose gel and Nanodrop, respectively. The DNA samples were sent to the University of
Wisconsin-Madison—Biotechnology Center for SNP discovery via genotyping by sequencing (GBS),
which is described in Elshire et al. [14] and Glaubitz et al. [15]. The raw database was filtered considering
a minor allele frequency (MAF) > 0.05, resulting in a genotype file of 291,633 high-quality SNPs. The LD
kNNi imputation (linkage disequilibrium k-nearest neighbor imputation) was performed to impute
missing data in the dataset [16]. Finally, SNPs with a MAF < 0.01 and a proportion of missing data
per location >90% were eliminated from the imputed dataset [17]. Subsequently, 290,973 SNPs were
retained after filtering for MAF and missing data.

The population structure was inferred using the model-based Bayesian clustering approach
implemented in the program InStruct [18]. For each K value (where K is the number of genetically
differentiated groups, K = 1–6), 10 runs were performed separately, each with 100,000 Monte Carlo
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Markov Chain replicates and a burn-in period of 10,000 iterations. The optimal K value was determined
with the highest ∆K method [19] and the lowest deviance information criterion (DIC).

The extent of LD was estimated using the correlation coefficients of the allelic frequencies (r2)
considering all the possible combinations of the alleles. The critical r2 value was calculated according
to the method used by Breseghello and Sorells [20].

The HBs were constructed for each chromosome according to the confidence interval algorithm
developed by Gabriel [21], implemented in the software Haploview v.4.2 [22]. This method considers
the 95% confidence intervals of the disequilibrium coefficient (D’) values and builds a haplotype block
if the LD is classified as a “strong LD” type (D′ higher than 0.98 and lower interval limit of >0.7).
Finally, HBs were later transformed into multiallelic markers, considering the allelic combinations
within each block to be independent alleles [5,23].

2.3. SNP- and Haplotype-Based GWAS

The HB- and SNP-based association analyses were performed using a mixed linear model (MLM) in
TASSEL 3.0 and TASSEL 5.2, respectively [24], which considers the effects of the population structure (Q)
and genetic relationships or matrix kinship (K) among inbred lines. The kinship matrix was calculated
based on identity by state (IBS) [25] in TASSEL. The Adjusted-Entry Means of the general linear model
(experimental design) were used as the adjusted phenotypes according to Contreras-Soto et al. [26] and
Arriagada et al. [27]. Correlations between each pair of traits were calculated using a Bayesian bi-trait
model [28–30]. The statistical analysis was performed using the R package MCMCglmm (version 3.6.1;
https://www.r-project.org) [31].

2.4. Prioritization of GWAS Candidate Genes and Inference of Co-Functional Networks for Flowering Traits
in Maize

The candidate genes were chosen from the genes around the significant loci (SNP or haplotype
blocks) identified by GWAS. To this end, a window (or threshold) of twice the distance indicated by the
LD analysis was established, placing the marker in the center of the window. The gene prioritization
was performed using MaizeNet [12] based on the connections of the candidate genes to the genes
in one estimated network with previously associated genes with flowering-time in Zea mays. New
candidate genes were then ranked by closeness to the “guide genes” (derived from estimated network
in MaizeNet) measured for each candidate gene (derived from GWAS) as the sum of network edge
scores from that gene to the guide genes [12]. The estimated co-functional network was carried out
through the association of genes (candidate genes and genes identified in prioritization of MaizeNet)
with subnetworks enriched by gene ontology annotations related to the biological processes (GOBP) of
flowering in MaizeNet. Finally, the given genes are related to the flowering-time if the subnetworks of
MaizeNet significantly associated with these genes, and if are also enriched for on the relevant GOBP
term for flowering.

3. Results and Discussion

3.1. Genetic Structure

The Bayesian clustering analysis (InStruct) of the population structure indicated that the 322 inbred
lines from the Brazilian germplasm represent two main genetic clusters (k = 2; Figure S1A), inferred
from both the lowest DIC value and the second-order change rate of the probability function with
respect to Q (∆Q) [19]. Cluster I contained 221 lines (68.6%), over 80% (177/221) of which were
genotypes of field corn, while all sweet corn lines (16) were within this cluster. On the other hand,
cluster II consisted of 101 lines, over 99% (100/101) of which were genotypes of popcorn (Figure S1).
Similar results were obtained by the PCA method for this association mapping panel, as shown in
Figure S1B. The first component explained 12.1% of the total variation and most of the inbred lines were
separated in the same genetically differentiated groups (Figure S1B). These results are in accordance
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with the previous findings of Maldonado et al. [5] and Coan et al. [6], in which tropical maize inbred
lines were grouped into two genetically differentiated clusters, separating field corn and popcorn lines.

3.2. Linkage Disequilibrium

The genome-wide LD decay pattern is shown in Table 1 and Figure S2. The LD statistic r2 showed
a clear nonlinear trend with physical distance. According to these results, the LD decayed rapidly
within 3 kb, with a cut-off value of r2 = 0.11. The average LD on all chromosomes (Chr) was r2 = 0.09.
On the other hand, 0.63% of the total pairs of linked SNPs were in a complete LD (r2 = 1), and 4.4%
had an r2 value >0.5 (strong LD). The LD of Chr 3 and 7 decayed faster than the other chromosomes,
with ~2.2 kb for a cut-off value of r2 = 0.11. Past studies have found that this LD pattern (i.e., rapid
decay with increasing physical distance) is typical in tropical maize germplasms [6,9,32]. The LD decay
pattern in this study was similar to the findings of Yan et al. [33] and Coan et al. [6], who reported that
the LD pattern (in tropical maize germplasms) decreases rapidly in the range of 0.1–10 kb.

Table 1. Summary of information on linkage disequilibrium (LD) and haplotype blocks (HBs)
determined in inbred lines of tropical maize. Chr corresponds to the chromosome number; N◦SNP

indicates the number of single nucleotide polymorphisms (SNPs) detected on each chromosome; N◦HB

is the number of haplotype blocks; SizeHB and Max(kb) correspond to the maximum number of SNPs
forming a haplotype block and the maximum size (in kb) for a haplotype block, respectively.

Chr LD N◦SNP
Position (pb)

First-Last SNP

Cambira Sabaudia

N◦HB SizeHB Max(kb) N◦HB SizeHB Max(kb)

1 2.87 39,148 38,222–275,861,066 7180 32 498 7087 32 497
2 2.68 37,341 40,724–244,417,305 6874 35 500 6730 36 500
3 2.21 34,889 191,169–235,520,333 6370 35 487 6256 33 491
4 6.55 26,908 217,040–246,840,261 4790 42 500 4693 42 499
5 2.61 35,691 12,711–223,658,670 6584 33 493 6472 32 500
6 3.75 23,441 169,964–173,881,702 4368 53 466 4317 53 466
7 2.23 24,958 180,204–182,128,999 4683 28 500 4546 28 500
8 4.1 25,537 204,228–181,043,617 4703 50 498 4577 50 498
9 2.94 22,404 61,292–159,668,042 4091 35 500 3991 36 500

10 2.85 20,656 128,669–150,847,940 3760 52 498 3698 51 498

Mean 2.94 29,097 - 5340 40 494 5238 39 495

3.3. Haplotype Blocks

Total values of 53,403 and 52,377 HBs were identified in all chromosomes for Cambira and
Sabaudia, respectively (Table 1), over 47%, 20%, and 33% of which contained two, three, and four (or
more) SNPs, respectively (Figure S3). These HBs were constructed considering 319 and 293 inbred lines
in Cambira and Sabaudia (respectively), and 290,973 SNPs distributed on all chromosomes (Table 1).
An average of ~20,000 SNPs per chromosome satisfied the criteria of the 95% confidence interval
proposed by Gabriel et al. [21]. Particularly, the largest number of HBs in both locations was determined
by combinations of SNPs located on Chr 1, while the smaller amount was constructed by SNPs located
on Chr 10 (Table 1). In this study, several genomic regions were detected in strong disequilibrium,
up to ~0.1 Mb. Therefore, as these regions have a strong LD, it is possible to suggest that they will
be inherited together across generations. Moreover, about 2.3% of the HBs formed in both locations
had an extension over 0.1 Mb, with a D’ value between 0.7 and 0.98 [21]. Analysis of the LD pattern
enabled the identification and characterization of several HBs (or strongly linked genomic regions),
because there is a strong LD among the SNPs that compose it. This indicates that recombination events
within these HBs are unlikely, thus, these HBs should inherit together across generations.
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3.4. Genome-Wide Association Study and Network-Assisted Gene Prioritization

Total values of 45 and 44 associations (SNPs and HBs, respectively) were identified for the studied
traits, which are distributed in all chromosomes of maize (Table 2 and Table S1). Four SNPs were
jointly associated with the FF and MF traits. In Cambira, four haplotype blocks—two loci on Chr 8 (bin
8.03) and two on Chr 9 (bin 9.06)—were jointly associated with FF and MF. In turn, Chr 3 presented two
genomic regions associated with FF in Cambira (one SNP and one HB) and three in Sabaudia (one SNP
and two HBs), while various SNPs (five) and HBs (three) were associated with some the three traits on
Chr 9 (bin 9.06). Interestingly, all associations were environment-specific, confirming the existence
of a significant and complex genetic-by-environment interaction. The results from Bayesian bi-trait
analyses showed a high correlation between FF and MF, which was significantly different from zero in
both locations (r = 0.94 and 0.92), justifying the fact that FF and MF share significant loci. In accordance
with our findings, Xu et al. [34] found a very high amount of quantitative trait loci (QTL) significant
on bins 1.03, 8.05, and 9.06 for photoperiod sensitivity and flowering time (traits highly correlated in
maize; [35]), while Chardon et al. [36], through a meta-analysis, detected hot-spot QTL regions for
flowering time on bins 8.03 and 8.05. On the other hand, 64 QTLs related to maize flowering time were
identified by Liu et al. [37], which were distributed on chromosomal bins 1.01, 1.03, 1.1, 2.02, 3.02,
3.04, 4.05, 6.06, 7.02, 7.03, 7.04, 8.03, 8.05, 9.01, and 9.07. Like these previous studies, this study also
identified significant marker-trait associations on bins 1.01, 1.03, 1.1, 2.02, 3.02, 3.04, 4.05, 6.06, 7.02, 7.03,
7.04, 8.03, 8.05, 9.01, and 9.07. This result suggests that these regions should contain important genes
controlling the flowering time in maize. In addition, chromosomes 8 and 9 had the main associations
for all three traits, which is consistent with studies that considered other environments and genetic
materials [34,36–38].

Table 2. Summary of the associations detected by a genome-wide association study (GWAS), based on
in haplotype blocks and SNP for the traits of female/male flowering time (FF and MF, respectively) and
anthesis–silking interval (ASI) measured in inbred lines of tropical maize.

Marker Trait
Cambira Sabaudia

NM Chr(NM) PV% NM Chr(NM) PV%

SNP
FF 10 2(2), 3(1), 6(1), 7(4),

8(1), and 9(1) 5.6–6.3 7 2(1), 3(1), 5(3), and
6(2) 6.5–10.1

MF 5 2(2), 8(1), and 9(2) 5.7–6.4 6 3(3), 5(1), and 6(2) 6.5–8.5

ASI 8 1(2), 3(1), 5(1), 6(1),
7(1), and 8(2) 5.6–6.0 9 1(2), 3(2), 8(3), 9(1),

and 10(1) 6.5–9.9

Haplotype
Blocks

FF 11 1(1), 3(1), 5(1), 6(2),
7(1), 8(3), and 9(2) 5.6–17.0 3 3(2) and 9(1) 6.3–8.6

MF 7 2(1), 4(1), 7(1), 8(2),
and 9(2) 4.6–13.0 12 1(2), 4(4), 5(1), 7(3),

8(1), and 9(1) 5.0–6.9

ASI 4 1(1), 3(1), 8(1), and
10(1) 5.6–7.8 7 2(2), 5(1), 7(2), 8(1),

and 9(1) 5.1–9.5

PV%: Percentage of the phenotype variation explained by the marker; NM: Number of significant
marker-trait associations.

In Cambira, the proportion of the phenotypic variance (PV%) explained by SNP markers was
~6%, while haplotype blocks explained 6–17%, 5–13%, and 6–8% of the phenotypic variation of FF,
MF, and ASI, respectively (Table 2 and Table S1). On the other hand, in Sabaudia, the PV% explained
by SNPs was similar to that detected by HBs. In Sabaudia, the PV% values were moderate (either
SNPs or HBs), which varied between 5 and 10%, while in Cambira, HBs showed higher PV% values
(>10%) in comparison with SNPs. Moreover, the HB HChr9B2943 (in Cambira) was jointly associated
with FF and MF, accounting for 17% and 13% of the total variation of FF and MF, respectively (Table 2
and Table S1). Several studies reported PV% values of flowering time smaller than 10% [34,37,39,40].
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In fact, numerous QTLs with small effects would be contributing to genetic variation in flowering time
across diverse maize germplasms [34,37,41]. In accordance with this, 93% (41/44) of the significant HB
and all SNP associations did not explain more than 10% of the total variation. Importantly, three HBs
had PV% values higher than 10%, indicating the potential effectiveness of haplotypes over individual
SNP analysis, an aspect emphasized by Maldonado et al. [5] and Contreras-Soto et al. [26]. Twenty-five
of the 45 SNPs detected by GWAS (i.e., 56%) were found to be part of a haplotype block, which in turn
were significantly associated with a given trait. Moreover, 14 HBs contained at least 1 significant SNP,
and 9 HBs contained 2 or 3 SNPs significantly associated with some trait. On the other hand, 68%
(30/44) of the HBs detected did not contain any associated SNPs, which suggests that haplotype blocks
are useful for discovering genomic regions that are not detected by SNP markers. On the other hand,
the use of haplotype blocks in GWAS reduces the number of multiple tests, compared with SNP-based
association analysis [5]. Moreover, the use of haplotype blocks as multiallelic markers might improve
marker-trait association analyses, compensating the biallelic limitation of SNP markers [5,26].

Based on the physical position of the maize reference genome (http://www.maizegdb.org//),
51 candidate genes were identified neighboring the significant SNPs and HBs (Table S1), of which
11 were present in more than one trait (FF and MF) (Table S1). The network-assisted gene prioritization
performed by MaizeNet [12] identified 100 additional genes based on biological processes of flowering
and reproduction. Forty-four, 22, and 34 genes that were identified by MaizeNet are related to
FF, MF, and ASI, respectively (Table S1). Co-functional networks determined by MaizeNet [12] are
shown in Figure 1 and Figure S4. The co-functional networks identified the following genes directly
related to FF—GRMZM2G013398, GRMZM2G021614, GRMZM2G152689, and GRMZM2G117057—with
statistical significance of p < 0.0001 (Figure 1). On the other hand, the co-functional networks of MF
presented significances of 2.2 × 10−11 and 2.3 × 10−5 using HBs and SNPs, respectively. The gene
GRMZM2G013398 has an ortholog in Arabidopsis thaliana that encodes CONSTANS-LIKE 9 (COL9),
which has light-controlled functions and is crucial to inducing the day-length specific expression of
the FLOWERING LOCUS T (FT) gene in leaves [42]. FT protein is the main component of florigen
that strongly influences the timing of flowering [43]. Notably, the CONSTANS protein strongly
influences the performance of maize flowering time in response to photoperiod, directly inducing
the transcription of FT genes in Arabidopsis [42,43]. On the other hand, the genes GRMZM2G021614,
GRMZM2G152689, and GRMZM2G117057 encode phosphatidylethanolamine-binding proteins (pebp9,
pebp10, and pebp11, respectively), which play important roles in floral transition in angiosperms [44].
Moreover, Kikuchi et al. [45] and Wickland and Hanzawa [46] showed that the presence and structure
of these genes, together with their roles in the regulation of flowering, are well conserved among
cereal plants.Agronomy 2019, 9, x FOR PEER REVIEW 7 of 10 
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4. Conclusions

In the present study, we identified several loci (SNPs and haplotype blocks) with variable
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control of flowering time in maize. The GWAS based on haplotype blocks was beneficial to identify loci
with major effects in comparison to SNP-based GWAS. The co-functional network approach identified
four genes that strongly influence the timing of flowering in tropical maize. In general, network-assisted
gene prioritization provides new insights into the genetic architecture and mechanisms underlying
flowering-related traits in tropical maize.
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