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Abstract: Maize (Zea mays L.) grain yield and compositional quality are interrelated and are highly
influenced by environmental factors such as temperature, total precipitation, and soil water storage.
Our aim was to develop a regression model to account for this relationship among grain yield and
compositional quality traits across a large geographical region. Three key growth periods were used
to develop algorithms based on the week of emergence, the week of 50% silking, and the week
of maturity that enabled collection and modeling of the effect of weather and climatic variables
across the major maize growing region of the United States. Principal component analysis (PCA),
stepwise linear regression models, and hierarchical clustering analyses were used to evaluate the
multivariate relationship between weather, grain quality, and yield. Two PCAs were found that
could identify superior grain compositional quality as a result of ideal environmental factors as
opposed to low-yielding conditions. Above-average grain protein and oil levels were favored
by less nitrogen leaching during early vegetative growth and higher temperatures at flowering,
while greater oil than protein concentrations resulted from lower temperatures during flowering and
grain fill. Water availability during flowering and grain fill was highly explanatory of grain yield and
compositional quality.

Keywords: maize; grain quality; yield; climate; temperature; precipitation; data mining; principal
component analysis; crop models; corn

1. Introduction

Maize (Zea mays L.) is among the United States’ most valuable economic exports. In 2017,
the United States exported over $10.1 billion in maize alone [1]. Of all grains produced in the U.S.,
corn is the major feed grain and constitutes greater than 95% of feed grain production and use [2].
Given its frequent use as animal feed, exported maize grain quality is of utmost importance to
international buyers. Ideally, feed grain should have a relatively high protein concentration, should be
relatively free of broken kernels and foreign matter, and should have minimal levels of mycotoxins.
In response to the desires of their international stakeholders, the U.S. Grains Council has published a
short annual data summary report since 2011 [3]. However, these reports are typically not available
until a few months after the majority of the U.S. maize crop has been harvested. The ability to
predict maize grain quality prior to harvest would be of benefit to both international buyers and
domestic exporters. Furthermore, grain composition traits are known to be strongly intercorrelated and
responsive to weather conditions [4–6], but those relationships have not been explored on a multi-state
production basis. Rather, many models are state-specific [5,7]. This unique, comprehensive dataset,
when used in conjunction with weather, climatic, and yield databases, provides an opportunity to build
multivariate, multi-state predictive models which consider not just grain yield, but also grain quality.
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Concurrent yield and compositional grain quality improvement has proven difficult in the past.
For the purposes of this study, we define compositional grain quality, or chemical compositional
quality, as maize grain having a superior concentration of protein and/or oil relative to other currently,
commercially produced, grain. Of the three main chemical components of maize grain, namely
starch, protein, and oil, starch is the most prevalent, with a typical range in values between 700
and 750 g/kg in the U.S. corn belt [3]. Maize yield, the trait which has traditionally been given the
utmost priority in U.S. corn production, is most closely related to the starch concentration [8]. Oil is a
valuable nutrient because of its relatively high energy density. Although previous studies, including
the Illinois Long Term Selection Experiments, have examined the potential for creating maize cultivars
with high concentrations of protein and oil, these studies have also shown that maize grain yield
decreases if the protein concentration is increased beyond approximately 110–120 g/kg, with efforts
to increase the grain oil concentration exhibiting a similar limitation [8–10]. Since only 14% of U.S.
maize is exported [3,11], grain composition traits often have been neglected in maize improvement
research [8,12]. The intercorrelated relationship among yield and these grain quality variables suggests
that any predictive models should use multivariate approaches to account for this relationship.

Final yield and grain quality in maize are a result of the interaction of genetic, environmental,
and agronomic management factors. Although the genotype has a large influence on final grain
composition [13], the temperature and available moisture throughout development, but especially
during key physiological growing periods, also plays a role. Specifically, this study focused on the
following three key periods: the three weeks following emergence (early growth), the week before to
two weeks after silking (flowering), and from five weeks after silking until physiological grain maturity
(grain fill). Early plant growth encompasses the time when the photosynthetic potential initiates and
the earshoot (panicle) is forming the ovules of the potential future grain [14]. A second critical growth
stage borders pollination, when temperature or water availability have a great influence on final
numbers of kernels per ear [15–17]. The third critical stage is when the grain is accumulating storage
materials, primarily starch and protein, which are sensitive to weather factors affecting photosynthesis,
including temperature and soil moisture [18–20].

Throughout the growing season, nitrogen (N) is necessary for optimum maize growth,
photosynthesis, grain formation and protein accumulation [21–25], and since maize plants require more N
than soils typically supply, it is common practice to apply nitrogen fertilizer. Nitrogen availability in the
soil, however, is dynamic, and varies due to many factors, including temperature and water status [26,27].

Additionally, due to different growing season lengths, planting dates, harvest dates, etc., these key
growth periods vary in time across the major corn-growing states. In the past, separate predictive
models have been built for each state, irrespective of the fact that seed companies market the same
hybrids in large, multi-state regions [28]. As such, knowledge of these critical growth periods, as a
function of emergence, silking, and maturity, could enable the construction of multi-state predictive
models for grain quality and yield.

The premise of this study is that while grain quality is of utmost importance to international
buyers, quality traits such as protein and oil composition are frequently secondary considerations in
domestic U.S. maize production. Subsequently, more research efforts have been devoted to the
development of predictive models for maize yield than for grain quality, and efforts to predict
grain quality and yield simultaneously are even more rare. However, the increasing willingness
of international buyers to pay a premium for improved grain quality, particularly higher protein
quality, suggests that grain composition should be a greater consideration in U.S. maize production.
The overall goal of this research was to identify general weather conditions during key points in the
maize growing season which influence grain quality. To accomplish this on a multi-state basis, a new
standardization technique was developed to quantitatively define weather conditions during the early
vegetative, flowering, and grain fill stages. Principal component analysis (PCA) was conducted to
understand the multivariate relationship in grain composition variables. These standardized weather
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variables and PCAs, along with yield, were then employed in predictive models to delineate the most
important weather factors that influence grain quality and yield simultaneously.

2. Materials and Methods

2.1. Data Compilation

From 2011 to 2017, a random set of grain elevators which were geographically representative
of the maize grain exported from the United States each year were selected for grain composition
analyses. Each elevator randomly sampled incoming truckloads, noted the location of origin, and sent
1100 g samples to the Illinois Crop Improvement Association’s Identity Preserved Grain Laboratory
(IPG Lab) in Champaign, Illinois, U.S.A. After arriving, samples were dried to a suitable moisture
content, if needed, and analyzed for grain compositional characteristics by near infrared transmission
(NIT) (Infratrec 1241; Foss, Hillerod, Denmark) and reported on a dry basis [29]. Test weight was also
determined as a measure of grain weight per standardized volume [29]. There were 2654 samples
total, comprised of 360, 160, 132, 629, 527, 624, and 222 samples from 2011, 2012, 2013, 2014, 2015, 2016,
and 2017, respectively (Figure S1). Yield data (15.5% moisture) by county of origin was collected from
USDA NASS [30].

Latitude and longitude coordinates for the centroid of each county of sample origin were
calculated using the coordinate data provided in the R maps package [31]. The code for this data
collection step can be found in the Supplementary Materials. The county centroid latitude and
longitude coordinates were submitted to the Nutrient Star TED Framework Tool [32]. This returned
information regarding the soil water storage (SWS), the aridity index (AI), and the typical number
of growing degree days (GDD) accumulated in a region. Briefly, each of these climatic variables are
ordinal in nature. The SWS has 7 classes ranging from 0–50 mm to greater than 300 mm by increasing
intervals of 50 mm. The greater the value for SWS, the greater the soil water storage capacity of the
soil. The AI is a unitless index calculated as a function of the ratio of typical annual precipitation to
evapotranspiration. It has 10 classes ranging from 0–2695 to greater than 12,877, with a smaller value
indicating a more arid environment. Lastly, GDD is the typical annual growing degree days (sum
of daily mean temperature above 0 ◦C) recorded for a region. It has 10 classes ranging from 0–2670
units to greater than 9851 units. The SWS, AI, and GDD were recorded for the county centroid GPS
coordinate. Typically, the TED framework tool returned three sets of SWS, AI, and GDD values per
county centroid. Since each ordinal class consists of a range of values, the median of these values
was recorded for each of these variables (e.g., the first class for SWS, that being 0–50 mm, was given
a median value of 25 mm). The modes of the SWS, AI, and GDD median values were recorded by
county, and these are the values that were used in the linear regression models.

The week of maize emergence, week of silking, and week of maturity for each growing season
were obtained from USDA NASS [30]. These weeks were defined as follows. The week of emergence
was recorded as the week of the year at which a given geographical location [state or Agricultural
Statistics District (ASD) [33] first exceeded 50% corn emergence. Likewise, the week of silking and
week of maturity were recorded as the week of the year in which 50% of the fields sampled in a
geographic area first exceeded 50% silking or full maturity, respectively. For the states of Iowa,
Kansas, Kentucky, Minnesota, Missouri, Nebraska, North Dakota, South Dakota, and Wisconsin,
these dates were recorded by state. The great difference in climatic conditions in the northern versus
southern counties of Illinois and Indiana dictated that these dates be recorded for individual ASDs.
These data were available by ASD for Illinois, but it was necessary to interpolate the emergence, silking,
and maturity dates for Indiana using the following algorithm. Sections of Indiana were broken into
three latitudes: northern (ASDs 10, 20, and 30), central (ASDs 40, 50, and 60), and southern (ASDs 70,
80, and 90) [34]. If ASDs occurred in the same latitude group, they were given the same emergence,
silking, and maturity dates. The northern region of Indiana was assigned values based on the average
of Illinois ASDs 20 and 50. The central region of Indiana was assigned values based on the average
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of Illinois ASDs 50 and 70. Lastly, the southern region of Indiana was assigned values based on the
average of Illinois ASDs 70 and 90. In the case of a non-integer mean for the week of emergence,
silking, or maturity, the mean was truncated (e.g., a mean of 39.5 would be truncated to 39 weeks).
This process was repeated annually for years 2011 through 2017.

Three critical growth intervals were established: early growth, flowering, and grain fill:

EG ∈ [E, E + 3 weeks]

F ∈ [S− 1 week, S + 2 weeks]

GF ∈ [S + 5 weeks, M]

where EG is the set of dates contained within the early growth stage, F is the set of dates contained
within the flowering growth stage, and GF is the set of dates contained within the grain fill growth
stage. In the sets above, E is the week of emergence, S is the week of 50% silking, and M is the week
of maturity, as defined previously. By specifying the three critical growth periods this way, no dates
overlapped between the critical growth periods (e.g., if the week of 50% silking was recorded as the
30th week of the year, F would contain the weather information between the 29th and the 32nd weeks,
and GF would contain the weather information between the 35th week and the week of maturity.

For each county sampled, the total precipitation and the average mean temperature of each of the
three growth intervals as well as the average minimum temperature during grain fill were obtained
from the National Weather Service in Lincoln, IL (NWSLI) through the Midwestern Regional Climate
Center (MRCC) Application Tools Environment (cli-MATE) [35]. In the instance that data were not
available for a particular county, data from a neighboring county, preferably to the east or west and
no closer to a large body of water than the county of question, were used. In the case that data were
recorded for multiple locations within the same county, the median of the locations was used. In the
instance that the county information for a sample was unknown, the median of all the counties in the
same ASD was used to impute the weather data.

2.2. Correlation and Principal Component Analyses

Once the database was assembled, Pearson correlation coefficients between all response and between
all putative explanatory variables were calculated using PROC CORR of SAS (version 9.4; SAS Institute,
Inc. Cary, NC, USA). Since the correlation coefficients among the explanatory variables were very weak
in most cases, stepwise regression analyses were conducted as described below to account for the rare
correlation among explanatory variables. Given the large number of samples, the p-value associated
with the correlation coefficient is nearly meaningless (i.e., the power to detect even slight differences
from r = 0 is extraordinary). Thus, the following thresholds for the absolute value of the correlation
coefficient were used to describe the strength of the relationship between variables:

0.0 < |r|≤ 0.3 indicated a weak relationship

0.3 < |r|≤ 0.7 indicated a moderate relationship

0.7 < |r| ≤ 1.0 indicated a strong relationship

Values of |r| ≥ 0.5 indicated a potential multicollinearity issue may arise between two predictor
variables. This was also used as the threshold for inclusion in the PCA of the response variables.

The PCA of the response variables exhibiting |r| ≥ 0.5 was conducted using PROC PRINCOMP
of SAS (version 9.4). The PCAs were calculated based on the correlation matrix. Only PCAs with
eigenvalues greater than 1 were maintained [36]. The PCA scores were output using the Output
Delivery System (ODS) in SAS. The PCAs were interpreted based upon their vector loadings.
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2.3. Stepwise Linear Regression and Remedial Measures

Separate models were built for PCA1, PCA2, and yield. Each model was an additive multiple
regression model such that:

Yi = β0 +
p−1

∑
k=1

βkXik

where Xik is the kth weather or climatic predictor variable.
A total of p − 1 = 11 possible weather and climatic predictor variables potentially could have been

entered into the model, although one of these predictor variables is a covariate that was identified
through the PCA. This covariate is described in more detail in the results and discussion section.
A general description of all predictor variables is provided in Table 1.

Table 1. Description of weather and climatic predictor variables and their utilization in models.

Xik Acronym General Description Models Where Included

PCA1 PCA2 Yield

Xi1 EGP The total precipitation during the early vegetative
growth stage in inches Y N Y

Xi2 EGT The average daily temperature during the early
vegetative growth stage in ◦F N N N

Xi3 FP The total precipitation during the flowering growth
stage in inches N Y Y

Xi4 FT The average daily temperature during flowering in ◦F Y Y Y

Xi5 GFP The total precipitation during grain fill in inches Y N Y

Xi6 GFT The average daily temperature during grain fill in ◦F Y Y Y

Xi7 GFMT The average minimum daily temperature during grain
fill in ◦F N Y Y

Xi8 SWS Soil water storage, more positive values indicate a
greater soil water storage capacity N Y Y

Xi9 AI
The aridity index, smaller values indicate a more arid
environment as a function of average annual
precipitation and rate of evapotranspiration

Y Y Y

Xi10 GDD The average growing degree days for an area N N N

Xi11 D

A qualitative covariate accounting for the greater
protein content typical of hybrids grown in the
Dakotas. This variable was assigned a value of 0 if the
sample in question came from either ND or SD and a
value of 1 otherwise.

Y Y Y

Stepwise selection methods were used to build all three models in PROC REG. An entry rate
of 0.10 and a retention rate of 0.15 were used. Added variable plots were used in remedial measure
analysis to ensure the addition of interaction terms was not warranted. Assumptions of normality
were validated using QQ-plots produced in the diagnostics output of PROC REG. Assumptions
of homogeneity of variance were validated by examining plots of the semi-studentized residuals
versus the predicted values and versus the individual regressors. In the case that an issue with
homogeneity of variance presented itself, iterative weighted least squares (WLS) regression was used
in order to estimate the regression parameter values. Iterative WLS was continued until additional
iterations converged to the same parameter estimates within 5% for each of the previous parameter
estimates. Extreme outliers were removed based on semi-studentized residual values and leverage
values and thresholds calculated in PROC REG. Extremely influential points, as measured by Cook’s
D, were removed.
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2.4. Cluster Analyses and Imputation Methods

Due to sampling limitations, particularly in the earlier years of the study, not all ASDs were
represented each year. However, as a result of the extremely different growing conditions encountered
from 2011 to 2017, not including all years was initially found to penalize some ASDs more than others.
In particular, ASDs that were able to produce enough grain to be sampled in adverse years, such as the
drought conditions encountered in 2012, were more heavily penalized than ASDs that were not able
to provide samples during such conditions. Thus, it was necessary to impute certain Year-by-ASD
combinations before clustering analyses could be conducted.

Imputation was completed as follows. Each Year-by-ASD combination that was not measured
by the U.S. Grains Council was recorded. A typical county from that ASD that had been sampled in
multiple other years in the U.S. Grains Council dataset was identified. Yield data (wet basis) from
these counties were recorded from USDA NASS [30]. The SWS, AI, and GDD values had already been
recorded for those counties in a different year, and these values were reused for the imputation dataset.
Emergence, silking, and maturity dates were available for all states and ASDs, as previously described,
and these dates were matched to the counties in the imputation set. The precipitation and temperature
data were recorded for these counties as previously described. Then, PCA1 and PCA2 scores were
calculated for each Year-by-ASD combination in the imputation set using the regression parameters
estimated from the stepwise multiple linear regression models.

The observed values from the U.S. Grains Council database and the imputed dataset were
combined. The LSMEAN PCA1, PCA2, and yield values were calculated by first using PROC MEANS
of SAS 9.4 to take the mean values of each of these response values for each Year-by-ASD combination
and then again using PROC MEANS to take the mean of the resulting values by ASD. As an example,

LSMEANPCA1, ASDj =
∑7

i=1 YYeari ,ASDj

7

where YYeari ,ASDj corresponds to the mean PCA1 value in the ith year and the jth ASD.
The LSMEANs were then standardized using PROC STDIZE of SAS (version 9.4).

The standardized values were used to conduct a hierarchical clustering analysis, this being a form of
machine learning which identifies groups based on their level of dissimilarity. The approach used is
a slight modification of the approach presented in Butts-Wilmsmeyer et al. [37]. Briefly, the cluster
analysis was conducted in PROC CLUSTER of SAS using Ward’s Minimum Variance Approach.
When Ward’s method is employed, the number of clusters selected is left to the discretion of the
scientist. The following two guidelines were used. First, the number of clusters selected corresponded
with an R2 value greater than 80%. Second, if a large increase in the between cluster sums of squares
occurred when two clusters were joined, then clustering ceased and the number of clusters used prior
to the large increase in the between cluster sums of squares was selected.

3. Results and Discussion

3.1. Correlation and Principal Component Analysis

A moderate correlation existed between the average flowering temperature and both of the
grain fill temperature variables, the minimum and average temperature during the grain fill period
being strongly correlated (Table 2). The GDD were correlated with the average temperature during
early vegetative growth (r = 0.52), the average temperature during grain fill (r = 0.70), and the
minimum temperature during grain fill (r = 0.69). The presence of correlated predictor variables, while
somewhat infrequent, suggested that multicollinearity issues may arise. The use of PCAs as predictor

variables was considered, but only four of the possible

(
10
2

)
= 45 correlations exhibited values

above the threshold established as an indicator of multicollinearity. As such, it is not surprising that
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an exploratory PCA (results not shown) was only capable of reducing the number of explanatory
variables from ten to seven. Therefore, stepwise linear regression models were used to account for
the occasional intercorrelation between predictor variables, as previously described in the materials
and methods.

The starch concentration was negatively correlated with both the protein and oil concentrations,
with Pearson correlation coefficients of −0.54 and −0.60, respectively. Yield was not correlated with
any of the chemical composition traits above the established threshold, although it was moderately
negatively correlated with the protein concentration (r = −0.43; Table 3).

Correlations between test weight and the chemical composition variables, as well as between
test weight and yield, changed considerably depending on the year (Table S1). Given that these
correlations between test weight and the other response variables were not stable and that only 5.7% of
the samples had test weight values less than 69.9 kg/hL (56 lb/bushel), test weight was not included
in the subsequent analyses.

Table 2. Pearson correlation coefficients between weather and climate predictor variables. Correlations
which surpassed the threshold for multicollinearity concerns (|r| ≥ 0.50) are highlighted in orange.
Other correlations of moderate strength are shown in blue.

EGP † EGT FP FT GFP GFT GFMT SWS GDD AI

0.132 −0.175 −0.110 −0.019 −0.243 −0.193 0.006 −0.025 −0.004 EGP
−0.260 0.169 −0.058 0.221 0.213 −0.086 0.520 0.442 EGT

0.019 0.153 0.150 0.237 −0.060 −0.003 0.099 FP
−0.175 0.496 0.420 0.098 0.373 0.004 FT

0.084 0.203 0.024 0.049 0.207 GFP
0.953 0.029 0.701 0.261 GFT

0.001 0.693 0.346 GFMT
0.011 −0.178 SWS

0.479 GDD
† EGP, early growth precipitation; EGT, early growth temperature; FP, flowering period precipitation; FT, flowering
period daily average temperature; GFP, precipitation during grain fill; GFT, average temperature during grain fill;
GFMT, Average minimum temperature during grain fill; SWS, soil water storage capacity; GDD, average growing
degree days for an area; AI, aridity index.

Table 3. Pearson correlation coefficients between response variables. Correlations that surpassed the
threshold for inclusion in PCA (|r| ≥ 0.50) are highlighted in orange. Other correlations of moderate
strength are shown in blue.

Grain Concentration Test

Protein Starch Oil Weight PCA1 PCA2

Yield −0.431 0.063 0.248 0.176 −0.087 −0.488
Protein −0.544 −0.001 −0.018 NA† NA
Starch −0.599 0.176 NA NA

Oil −0.070 NA NA
Test Weight −0.126 0.034

PCA1 0.000
† NA, Not applicable.

The PCA indicated that greater than 93.6% of the variability in the chemical composition measures
could be explained using two PCAs, both of which had eigenvalues greater than 1. The vector
loadings for these PCAs can be found in Table S2. Generally, PCA1 can be described as a contrast
between the amount of protein and oil in a maize kernel in comparison to the starch concentration.
Furthermore, PCA2 can be described as a contrast between protein and oil concentration. Yield was not
correlated with PCA1, but the correlation between yield and PCA2 was moderate at r = −0.49 (Table 3).
These results suggested that these two PCAs might be capable of distinguishing the difference between
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higher protein concentration as a result better compositional quality versus as a result of reduced
starch deposition and lower yields.

When the starch-to-protein ratio was plotted by state (Figure S2), it was noted that both North
Dakota (ND) and South Dakota (SD) consistently had higher than average protein concentrations than
the other ten states included in the study. To adapt to an inherently shorter growing season than the
majority of the U.S. Corn Belt, the hybrids grown in the Dakotas purportedly were derived with a greater
proportion of flint germplasm [38]. Flint germplasm is characterized by early maturing hybrids which
are more resistant to the molds and adversely cooler temperatures encountered in the northern United
States, and it is also noted for its harder kernels in comparison to dent varieties [39]. Flint germplasm
has a higher ratio of horny to floury endosperm, and a higher protein concentration but less yield than
other germplasm sources, even under identical weather conditions [40–42]. To account for this genetic
difference between hybrids, a covariate was included in all stepwise models such that:

Xi11 =

{
0 if state ∈ D
1 otherwise

where D = {ND, SD}
Average yields, based on collected county information, were calculated for each of the seven

years included in the study (Table 4). Generally, 2014–2017 were high yielding years, with average
yields greater than 10.67 metric tons/hectare (170 bushels/acre) each. The year 2013 can be
characterized as moderate to moderately-high yielding, with an average yield of 10 metric tons/hectare
(159 bushels/acre). The year 2011 was less ideal, with severe flooding across much of the U.S. Corn
Belt during the early growing season and drought during flowering, but yields were still acceptable at
an average of 8.93 metric tons/hectare (142 bushels/acre). The year 2012, which was characterized
by prolonged drought and exceptionally high temperatures during much of the growing season, was
the worst yielding year among the seven years included in the study. The average yield in 2012 was
7.19 metric tons / hectare (114.5 bushels/acre), with some counties recording an average of 0 metric
tons / hectare yield to the USDA [30].

Table 4. Average maize grain chemical composition, PCA, and yield values between 2011 to 2017 for
U.S. Corn Belt samples with and without the Dakota states.

Grain Concentration

Year Protein Starch Oil PCA1 PCA2 Yield

————g/kg———— T/ha

All States Included

2011 87.2 734.7 36.7 −0.40 0.49 8.93
2012 94.4 731.6 37.5 0.42 1.03 7.19
2013 85.8 734.1 38.5 −0.17 0.03 10.00
2014 84.6 735.0 37.6 −0.43 0.07 10.86
2015 81.9 736.9 37.7 −0.75 −0.19 10.86
2016 85.7 724.7 40.4 0.84 −0.32 10.97
2017 86.2 723.2 41.2 1.09 −0.42 10.75

Excluding Dakotas

2011 86.8 734.8 36.8 −0.41 0.43 9.41
2012 94.3 731.6 37.5 0.41 1.01 7.46
2013 85.8 734.1 38.5 −0.17 0.03 10.00
2014 83.8 735.6 37.9 −0.50 −0.05 11.51
2015 81.0 737.4 37.8 −0.82 −0.29 11.00
2016 84.9 725.6 40.2 0.70 −0.36 11.22
2017 85.9 723.6 41.1 1.04 −0.43 11.45
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The years 2011 and 2012 were the two years studied which had the highest grain protein
concentration but reduced yields and grain starch deposition as a result of extremely adverse weather
conditions, especially during flowering [18,20]. The negative relationship between yield and protein
concentration in the adverse weather conditions did not extend to years characterized by moderate
or optimal weather conditions (2013–2017). Quite to the contrary, 2016 and 2017, both high-yielding
years, were also characterized by protein concentrations that were comparable to 2013, a moderate
year in terms of weather and, consequently, yield (Table 4). This observation remained true even after
accounting for the greater number of samples from the Dakotas in 2015–2017 as opposed to 2013 (data
not shown). Furthermore, the grain oil concentration was also relatively high in 2016 and 2017, but it
was at relatively similar levels in 2012, 2014, and 2015.

Collectively, these observations suggest that these two PCAs can be used as indices to distinguish
apparent improved chemical composition quality as a result of reduced yield and lower starch
deposition (unfavorable) from actual improved chemical composition in conjunction with higher
yields (favorable). Arithmetic means of the PCAs showed that positive mean values for PCA1 occurred
in 2012, 2016, and 2017, whereas positive mean values for PCA2 occurred in 2011–2013 (Table 4;
Figure 1). Four outliers from 2011 with extreme PCA2 values were discovered in the scatterplot and
were removed prior to stepwise regression analyses (Figure 1).
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Figure 1. Scatterplot of PCAs by year. Different years are represented by different colors. Four outliers
were identified for removal based on the PCA, these being circled in red in the figure above. Years 2016
and 2017, represented by green and magenta points, respectively, were both high yielding years
characterized by higher protein and oil concentrations. These two years separate from the other
years in the scatterplot, suggesting that these two PCAs could be used to characterize improved
compositional grain quality and yield simultaneously.

3.2. Stepwise Regression with Weather and Climatic Variables

Linear regression models were fit for PCA1, PCA2, and yield. A summary of all variables included
in each of these three models can be found in Table 1. All three models included the covariate that
accounted for the protein-rich germplasm grown in the Dakotas, the AI, the average temperature at
flowering, and the average temperature during grain fill. None of the models included GDD or the
average temperature during early vegetative growth. It stands to reason that GDD would not likely be



Agronomy 2019, 9, 16 10 of 15

included in the regression models due to its collinearity with the average and minimum temperature
during grain fill, these latter variables often being included in the regression model. Given that the
covariate accounting for the Dakotas is somewhat correlated with the other weather and climatic
predictors, it was not interpreted in analyses below [43]. Rather, it is included in the model only to
improve the model’s predictive ability.

3.2.1. PCA1—High Grain Protein and Oil

More positive values of PCA1 were the result of higher protein and oil concentrations as opposed to
starch concentration, irrespective of whether that increase was due to actual grain quality improvement or
a reduced starch concentration and lower yields. More positive values of PCA1 are ideal if attempting to
determine which weather conditions lead to more favorable concentrations of protein and oil. The most
important predictor in explaining PCA1 was the total precipitation during early vegetative growth,
with a partial R2 of 5.1%. The addition of five other predictor variables, namely the average temperature
during flowering, the AI, the total precipitation during grain fill, the covariate accounting for the Dakotas,
and the average temperature during grain fill (in order of addition to the model using stepwise selection),
led to a final model R2 of 12.7%. Given that nothing is known of the specific production management
strategies employed or the specific hybrids used, this is a reasonably accurate model. Wet conditions
during early growth resulted in reduced PCA1 values, most likely due to nitrogen fertilizer leaching
or denitrification and a reduced grain protein concentration [44]. Hot mean temperatures during
flowering and grain fill as well as more arid climates resulted in more positive PCA1 values, likely
due to drought and heat stress reducing photosynthesis, resulting in reduced starch deposition [45–47].
However, PCA1 is a function of both protein and oil, and both of these constituents were found to be at
higher concentrations in the grain during favorable-yielding years. More positive values of PCA1 were
also observed when sufficient water was available during grain fill. Having an optimal balance of N
availability and photoassimilates in a non-water-limiting environment can lead to larger maize kernels
with a concurrent higher level of protein [48].

3.2.2. PCA2—High Grain Protein Over Oil

More positive values of PCA2 are the result of higher grain protein as opposed to oil concentration,
having already accounted for the chemical composition differences captured by PCA1. Thus, PCA2 is
instrumental in describing stressful conditions which influence compositional grain quality. More positive
values of PCA2 are indicative of a higher protein concentration as a result of stressful conditions, either
drought or heat stress, that decrease starch and oil deposition in the grain. Heat stress during grain fill has
been found to decrease kernel oil concentration in semi-dent hybrids [49]. As such, more negative values
of PCA2 are ideal for greater yield and oil, but this measure alone will not capture favorable protein
concentrations without also examining PCA1. The final regression model for PCA2 had a model R2 of
18.9%, which is moderate (multiple correlation coefficient = 0.453). More negative values of PCA2 were
the result of less arid environments where the SWS was also greater. More negative values of PCA2 were
also observed in environments with lower temperatures during flowering and grain fill and with greater
precipitation during flowering. The average minimum temperature during grain fill was also included in
the regression model to improve the predictive ability of the model, but was unnecessary due to the high
degree of multicollinearity between the two temperature variables during grain fill.

3.2.3. Yield

Interestingly, even though nothing is known of the specific production management strategies
used during the growing season of these samples, the regression of yield against the climatic and
weather predictor variables explained 47.7% of the total variability in yield, which is fairly high
(multiple correlation coefficient = 0.69). Nine of the eleven possible predictor variables were included
in the model, the two that were not included being the average temperature during early vegetative
growth and the GDD. In general, yield was higher under growing conditions where ample moisture
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was available during flowering and grain fill, and where drought was less likely to be a limiting factor
due to SWS, AI, or hot temperatures during flowering and grain fill. Too much precipitation early in
the growing season was found to decrease yield, likely due to the loss of nitrogen fertilizer from the soil
environment. The final model was capable of predicting the average county yields to within 0.89 metric
tons/hectare (14 bushels/acre), as a median (Table S3). An alternative measure of model accuracy,
the root mean square error (RMSE), was found to be 1.44 metric tons/hectare (23 bushels/acre) in this
study. By comparison, the USDA WASDE model, a computationally intensive model that makes use of
weather data and satellite imagery to compute multivariate non-linear predictive models for grain
yield, was recently shown to have an RMSE of 1.11 metric tons per hectare (18 bushels/acre) early in
the growing season [5].

Thus, even though the model we show here is computationally simple, it is similar in accuracy to
much more complex models such as the USDA WASDE. Furthermore, it highlights the importance of
minimizing drought stress at flowering and grain fill. Otherwise, both yield and grain quality will
suffer. Our linear models serve as a foundation for more complex models in the future by indicating
(i) maize yield and maize quality are dependent on a shared set of conditions during critical growth
periods, and (ii) these critical growth periods should be given greater weight in complex predictive
models for the multivariate prediction of yield and compositional quality. As a second consideration,
the more complex nonlinear models that are characterized by a higher predictive ability are also
characterized by predictor variables that are all highly intercorrelated, meaning that their parameter
estimates should not be interpreted [43]. Given that one of our goals was to identify which of the
putative critical growth stages are important influencers of grain yield and chemical composition,
it was imperative to build models that were characterized by both low multicollinearity and adequate
predictive ability. The models presented here, particularly those for PCA2 and yield, accomplish
that goal.

3.3. Multivariate Clustering Analysis by ASD

Cluster analysis using Ward’s Minimum Variance Approach indicated that the 76 ASDs used
in this study could be subdivided into 10 clusters based on their standardized average PCA1, PCA2,
and yield values. These clusters are indicated by different colors in Figure 2.
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Figure 2. Multivariate clustering analysis by ASD. The ASDs with the same color fall in the same
cluster and have similar maize yield and compositional quality. A color-spectrum approach was used
to represent the clusters, with purple being high yielding ASDs with lower protein content. Blue is
high yielding with decent compositional quality. The greens and yellows are used to describe ASDs
with moderate yield and compositional quality values. Lastly, the orange and progressively red ASDs
represent areas where protein concentration is higher, but at the expense of yield.
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In Figure 2, a color-spectrum approach was used to visualize the multivariate presentation of yield
and the PCAs, as is described in more detail in Table 5. No one cluster of ASDs was ideal; all had their
advantages and disadvantages (Table 5). While Cluster 1 (purple) and Cluster 2 (blue) undeniably had
the highest yielding averages, the samples from Cluster 2 had somewhat better chemical composition
quality overall but slightly less yield.

Table 5. Means of response variables and number of ASDs included for each cluster of maize grain
quality and quantity relationship to weather from 2011–2017. Blue cells represent more desirable means
and orange cells represent less desirable means for PCA1 (relatively high protein and oil concentrations),
PCA2 (more protein than oil), and yield. Yield is presented in metric tons per hectare with bushels per
acre in parentheses.

Cluster Color ASD † Count PCA1 PCA2 Yield

1 Purple 13 −0.44397 0.09525 11.214
(178.644)

2 Blue 14 0.1441 −0.17026 10.840
(172.674)

3 Green 12 0.19138 0.33464 9.186
(146.339)

4 Dark
Green 7 −0.07588 −0.10005 9.063

(144.381)

5 Yellow 9 −0.73882 0.43401 10.184
(162.237)

6 Orange 8 0.72065 0.59974 8.638
(137.604)

7 Gold 3 1.52549 0.54987 6.980
(111.195)

8 Salmon 6 0.4815 0.82565 6.564
(104.568)

9 Brick
Red 3 1.30486 1.15527 9.190

(146.394)

10 Red 1 −1.78707 0.90478 6.362
(101.340)

† ASD—Agricultural Statistics District.

Overall, ASDs clustered together as one might expect based on similar weather and climatic
conditions. The historically high-yielding regions of Iowa, Illinois, and Southern Minnesota fell into
Clusters 1 and 2, and ASDs from clusters described by moderate values of all three response variables
(green and yellow clusters) falling adjacent to these regions. The ASDs in the Plains States in the west
typically fell into more protein rich clusters, but at the expense of reduced yield and oil concentration.
Given the aridity of these regions and the frequency of drought conditions, this is to be expected.
However, there were three ASDs (NE 30, NE 50, and MO 90) that fell into clusters that were somewhat
different than might be expected given their geographical location and the cluster assignments of the
neighboring ASDs. Upon further examination, it was noted that these three ASDs all lie in regions
where cropland is heavily irrigated (Figure S3). Therefore, it is probable that the improved yields and
chemical composition of the grain sampled from these ASDs is due in at least part to the presence of
irrigation [50]. Other ASDs of interest are KY 20, IN 90, and OH 50. These ASDs fell into Cluster 2,
this cluster typically being reserved for ASDs in the major maize growing regions of Iowa and Illinois.
All three of these ASDs are located in areas with a greater presence of rivers than is typical of most of
the ASDs included in this study [51]. Thus, these observations lead us to conclude that grain yield
and grain chemical composition can be modeled and improved simultaneously, and the key factor
involved is non-limited water conditions during flowering and grain fill.

Based on these results, it is apparent that water availability as a function of total rainfall,
temperature, AI, and SWS is a major predictor of grain compositional quality and yield. Too much
rainfall during early vegetative growth leads to reduced protein concentration and yield, most likely



Agronomy 2019, 9, 16 13 of 15

as a result of nitrogen leaching or denitrification. On the other hand, water availability during the
two critical growth stages of flowering and grain fill is largely responsible for both grain yield and
compositional quality, as indicated by both the multiple regression models and clustering analyses
used in this study. Previous studies have also found that irrigation has a greater impact on maize
yield than temperature over the season [50]. These findings may be used to predict when weather
conditions may hinder yield and/or compositional quality of the grain and could also be used to
build more sophisticated models (e.g., nonlinear multivariate models, spatial error models, etc.) that
have a stronger weight on the weather conditions at the identified critical growth stages. Ultimately,
these findings indicate that both yield and grain compositional quality can be monitored and improved
simultaneously, that improved maize grain chemical composition as a result of favorable environmental
conditions can be distinguished from superficial, apparent improvement as the result of low-yielding
environmental conditions, and that the key limiter to improving grain yield and compositional quality
is access to water.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4395/9/1/16/s1,
Figure S1: Sampling information by ASD, Figure S2: Plot of starch-to-protein ratio by state, Figure S3: Map of
irrigation prevalence in the United States, Table S1: Pearson correlation coefficients between test weight and other
response variables across seven years of study, Table S2: Vector loadings of PCAs, Table S3: Absolute differences
in observed versus predicted, Supplemental Code: R code for latitude and longitude coordinates.
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