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Abstract: Detecting and monitoring changes in soil salinity through remote sensing provides an
opportunity for field assessment in regions where on-site measurements are limited. This research,
conducted in Siwa Oasis, Egypt, aimed to assess the effectiveness of remote sensing techniques in
detecting and monitoring changes in soil salinity. Using Landsat 5 and Landsat 7 satellite images,
the researchers evaluated various soil salinity indices based on 56 on-site ground measurements.
The study aimed to improve the correlation between electrical conductivity (EC) and index values
and explore the relationship between salinity and changes in land cover. Eleven spectral indices
were calculated for nine scenes captured in different months. Different approaches were employed,
including stacking the data, categorizing EC measurements into salinity levels, analyzing data tem-
porally, and conducting spatial correlation analysis. The initial approach revealed a weak correlation,
due to substantial variation in EC values. However, the salinity index SI demonstrated the highest
correlation coefficient of 0.38. In the second scenario, the salinity index 2 S2 index exhibited the
highest correlation of 0.96 for moderate salinity samples. The third scenario showed that the salinity
index 1S1 achieved the highest correlation value of 0.99 for moderately saline areas. In the fourth
scenario, the SI index exhibited the strongest correlation among all four ponds, with correlation
coefficients of 0.23, 0.23, 0.18, and 0.61. Notably, the correlations observed in the second and third
scenarios demonstrated higher correlation coefficients than those of both the first and fourth scenarios.
Additionally, remote sensing methods detected a 48% increase in total vegetated area over 17 years,
showing the potential of remote sensing techniques in salinity monitoring for expanding agriculture
and improving land management.

Keywords: soil salinity; remote sensing; Landsat; spectral indices; correlation; land cover; Siwa; Egypt

1. Introduction

Soil salinization is a prevalent form of land degradation, particularly in arid and semi-
arid environments where evaporation exceeds precipitation [1]. Primary salt-affected soils
globally cover an estimated area of approximately 955 million hectares, while secondary
salinization impacts around 77 million hectares, with 58% of these occurrences observed
in irrigated regions. Almost one-fifth of all irrigated land is affected by salt, and this
percentage continues to rise, despite significant efforts towards land reclamation [2]. Early
detection and monitoring of salinity are critical for implementing effective soil reclamation
and management practices, to reduce or prevent further increases in salt concentrations.
Addressing soil salinity is vital for achieving Sustainable Development Goal 13, which
emphasizes the urgent need to combat climate change and its impacts.

Siwa Oasis, as depicted in Figure 1, has encountered notable drainage problems and
rising groundwater levels over the past few decades. Unregulated irrigation practices
have led to a rise in water inflow to the oasis, resulting in detrimental drainage issues that
endanger the local environment. These trends increase the risk of flooding and may impede
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future agricultural expansion in the oasis. Given its importance as both an agricultural hub
and a tourist destination, the implementation of sustainable water management practices
is crucial for the long-term preservation of Siwa Oasis. The high levels of salt weathering
observed in Siwa Oasis can be attributed to a combination of environmental, geological,
and anthropogenic factors, including the local climate, geological and geomorphological
characteristics, groundwater hydrology, and human activities [3].
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To accurately map and monitor soil salinity, the initial step involves identifying the
areas where salt concentrations are concentrated, while the subsequent step entails detecting
temporal and spatial changes in salt occurrence [4]. Soil salinity can be categorized into
two main types: primary salinity and secondary salinity [5]. The factors contributing to
soil salinization are diverse and context-specific, including natural elements such as soil
composition with high saline content or intrusion of seawater. Understanding the specific
causes of salinity in a particular region is crucial for implementing effective management
and reclamation strategies.

Remote sensing is a powerful method for monitoring salinity across large areas. With
different-resolution satellites, such as the Multi-Spectral Instrument, there are increased
opportunities to monitor the Earth’s surface at high temporal frequencies and for long
periods of time [6]. Remote sensing has been widely employed in numerous studies to
investigate salinity patterns and trends. Satellite-based remote sensing methods offer an
efficient approach to monitoring vast areas while requiring minimal time and financial
resources. Given the availability of numerous vegetation indices, research efforts have
focused on determining the most suitable indices for specific remote sensing applications.
Effectively utilizing remote sensing for vegetation analysis necessitates the careful selection
of indices that align with the intended application [7].

By analyzing the spectral reflectance of salt on the surface and the spectral reflectance
of vegetation negatively impacted by salt, various salinity and vegetation indices have been
developed to quantify the influence of salinity on vegetation in different environmental
settings [8]. A modeling approach was adopted to develop a cellular automation–Markov
model that integrates biophysical and socioeconomic factors to simulate the processes
of land salinization and desalinization [9]. To comprehensively understand the drivers
and dynamics of soil salinity at multiple scales, the integration of in situ measurements,
physically based modeling, and remote sensing analysis has proven valuable. This inte-
grated approach enables the analysis of soil, water, and vegetation attributes, in addition
to utilizing Landsat images for monitoring changes in vegetation cover, soil salinity, and
waterlogging over time [10].

The process of extracting features and generating maps from raw remote sensing data
involves significant transformations. Various techniques, such as spectral unmixing, maxi-
mum likelihood classification, fuzzy classification, band rationing, principal component
analysis, and correlation equations, have been developed for this purpose [2].

The primary goal of this research is to formulate a methodology capable of efficiently
overseeing and resolving soil salinity concerns across a wide range of environmental
conditions, soil types, and land cover types without being limited to specific ranges of
electrical conductivity (EC) or environmental conditions over an extended period, all while
maintaining a low cost. This objective was accomplished by conducting a comparative
analysis of eleven spectral indices using four different approaches. The study relies on
freely available satellite imagery from Landsat 5, 7, and 8.

The comparison of multiple soil salinity and vegetation indices using different methods
can enhance agriculture and water practices. It enables more informed decision-making
regarding irrigation management, soil amendment strategies, and targeted interventions
to mitigate the negative impacts of soil salinity on crop productivity. Additionally, it aids
in the identification of areas prone to salinity issues, facilitating the implementation of
appropriate measures for sustainable water use and land management. By analyzing
various indices and approaches, one can establish a strong framework for analysis and
lessen dependency on a single index or method. This contributes to a more accurate
assessment of soil salinity conditions by reducing the possibility of biases or restrictions
related to specific indices.
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2. Materials and Methods
2.1. Study Area Characteristics

Situated in Egypt’s Western Desert near the Libyan border, Siwa Oasis (29.203171◦ N,
25.519545◦ E) encompasses an area of approximately 1100 km2. It is bordered by the Great
Sand Sea to the south, heights over 100 m to the north, and the Qattara depressions to the
east. The region’s main economic activity revolves around agriculture, which has a notable
reputation for producing high-quality dates and olives. Siwa Oasis is also renowned for its
ancient historical cities, pharaonic and Roman monuments, and therapeutic sand baths.
The terrain features hills ranging from 100 to 200 m above sea level, while a significant
portion of the land lies at a minimum depth of 18.5 m below sea level [11]. In the central
part of the oasis, a series of shallow lakes and salt pans occupy low-lying areas, sustained
by groundwater sources.

In arid and semi-arid regions like Egypt, where the average annual precipitation is
19.68 mm and water demand is increasing, soil salinization poses a significant challenge [12].
Siwa Oasis has an arid climate, as shown in Figure 2, with extremely scarce precipitation.
The region has average annual temperatures ranging from cryogenic to hyperthermal, rarely
dropping below freezing point or exceeding 41 ◦C. The hottest months exhibit average
highs and lows of 38 ◦C and 21 ◦C, while the coolest months average highs and lows of
18 ◦C and 7 ◦C, respectively. There is very little precipitation, with the highest likelihood of
light rainfall occurring in the winter months. Dry climates and low precipitation prevent
the flushing of excessive salts from the soil. As evaporation rates increase, it leads to the
accumulation of salts in close proximity to the soil surface. Poor drainage or waterlogging
prevents salts from being washed away due to a lack of water transportation.
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Figure 2. Siwa Oasis Climate and Temperature: World Climate and Temperature (n.d.) [12].

The soil of Siwa Oasis consists primarily of sandy textures, including medium-depth
sand, deep sand, and saline sand deposits known as Kurchev. In accordance with the Amer-
ican Soil Taxonomy, the soils in the study area have been classified into several categories,
including Typic Torripsamments, Calcic Aquisalids, Typic Haplosalids, Gypsic Haplosalids,
Typic Aquisalids, Typic, Lithic, and Duric Haplocalcids, and Typic Psammaquents [13]. The
average soil depth is 2 m, with calcium carbonate content ranging from 4 to 35%. According
to land classification studies, the majority of Siwa Oasis lands are saline, saline–alkaline,
or alkaline sandy or lime soils. Due to scarce precipitation, Siwa Oasis primarily relies on
groundwater. The earlier studies identified two groundwater sources: the Nubian Sand-
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stone Aquifer System (NSAS) and shallow unconfined aquifers. The NSAS lies 600–1200 m
deep, with 500–600-m-thick freshwater-bearing layers. The average static water level is
80 m below the surface, and vertical flow is enabled between the NSAS and the overlying
cracked sandstone layer by differences in hydraulic pressure [14]. The aquifer’s water has
280–600 mg/L of salinity. An impermeable 100-m clay layer separates the NSAS from
the overlying cracked sandstone layer. The hydraulic pressure difference enables vertical
flow from the NSAS through the clay into the cracked sandstone. The cracked sandstone
layer is divided into 200-m- and 500-m-deep sublayers, with the deeper sublayer carrying
higher-salinity (2500–3500 mg/L) water. The shallow, unconfined aquifers, recharged
by precipitation, have up to 4000 mg/L salinity, and the sustainable management of the
aquifers is critical as the sole water source for Siwa Oasis’s population. Leakage from
geological deposits and penetration into groundwater can contaminate the soil with salts.
Irrigation with salt-rich water, which can increase the salt content in the soil, causes high
salt concentrations in the soil and subsequent water stress in plants, reducing the water
potential gradient between the soil and roots and hindering nutrient absorption.

2.2. Technical Approach and Data Processing

The objective of this study is to examine the effectiveness of different remote sensing
indices in order to reduce reliance on in situ measurements for soil salinity monitoring
to assess salinity levels in various settings. Primary salinity refers to naturally occurring
levels of salt in soils, whereas secondary salinity is attributed to human activities [5]. By
utilizing multiple indices and different approaches, a more comprehensive assessment of
soil salinity and vegetation dynamics can be achieved. This allows for a more nuanced
understanding of the spatial and temporal variations in salinity levels and their impact
on vegetation health. In this study, as shown in Figure 3, eleven different soil salinity and
vegetation indices calculated from freely available Landsat 5 and Landsat 7 imagery for
nine scenes, captured in different months from August to December 2003, were compared
using four distinct approaches. Comparing multiple indices and methods provides a robust
analysis framework, reducing the reliance on a single index or approach. This helps to
mitigate potential biases or limitations associated with individual indices, ensuring a more
reliable evaluation of soil salinity conditions. Through rigorous analysis and comparison,
we aimed to discern the strengths and limitations of each index and identify the most
effective indices for delineating soil salinity patterns in the context of the Siwa Oasis
environment. We also aimed to develop a methodology for monitoring and addressing soil
salinity issues that are applicable and derived from Landsat satellite images for predicting
soil salinity in both bare and cultivated lands within the study area, across a wide range
of environmental conditions, soil types, and land cover types, without being limited to
specific ranges of electrical conductivity (EC) or environmental conditions. The use of
multiple indices and methods increases the likelihood of obtaining accurate and consistent
results. It helps to minimize errors and uncertainties in assessing soil salinity and vegetation
conditions, leading to more reliable information for decision-making in agriculture and
water management.

2.2.1. Field Monitoring

The methodology employed in this study encompasses two primary components: in
situ data acquisition and remote sensing data collection and processing. The field study
focused on analyzing soil and water conditions around four ponds, namely Bahi El-Dein,
Siwa, Aghormi, and Al-Zaitoun. Bahi El-Dein Pond is located in the southern region of
Siwa Oasis; this pond is renowned for its scenic splendor. It boasts a sizable volume and a
picturesque appearance, because palm trees encircle it. Siwa Pond is one of the most notable
and well-known ponds in the area. It is located in the center of Siwa Oasis. Travelers often
choose it as a resort because of its serene ambience and pristine waterways. Siwa Oasis’
northeastern region is home to the Aghormi Pond. Despite being comparatively smaller
than the other ponds, it nevertheless has appeal. Residents and tourists alike frequently
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visit the pond because they like its tranquil atmosphere. Lastly, Al-Zaitoun Pond is located
in Siwa Oasis’ western region. Due to its abundance of vegetation, especially olive trees, it
is known as “Al-Zaitoun”, which translates to “olive” in Arabic. The pond offers a welcome
respite from the dry surroundings.
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To estimate changes in soil salinity, the Drainage Research Institute conducted a field
study using the electromagnetic induction device EM-38, which measured soil salinity at
30 cm intervals up to a depth of 1.5 m. A total of around 110 soil samples were gathered
from different locations to determine the true soil salinity levels through laboratory analysis.
These measurements were then compared to the salinity readings obtained from the EM-38
device, which was also used at the same locations. Out of the 78 soil samples tested for
salinity in the lab, 56 samples were selected for this study to estimate field salinity levels.
The locations of the soil samples are indicated in Figure 4.
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Figure 4. A topographic map shows the distribution of the ground samples.

The Drainage Research Institute estimated soil salinity values at depths of 0–30, 30–60,
60–90, 90–120, and 120–150 cm. Additionally, a monitoring network consisting of 95 wells
was established, and 10 measuring rulers were installed to track groundwater levels and
salinity surrounding the main ponds of Siwa Oasis. These wells had an average depth of
2 m and were monitored on a weekly basis for water level and quality.

This monitoring was intended to assess changes in pond, groundwater, and soil
conditions, as well as the effectiveness of drainage systems. The sample results were
used for this study, allowing estimation of field salinity levels. There are generally four
categories used to classify the severity of the problem. These categories are based on both
the soil salt content and the capacity of plants to tolerate salt and include severe salinization,
moderate salinization, slight salinization, and non-salinization [15]. According to the Food
and Agriculture Organization of the United Nations (FAO) EC global categorization, the
EC (ds/m) values ranged from non-saline, i.e., 0.56, to severely saline, i.e., 193, according
to the world categorization of salinity, as shown in Table 1.

Table 1. World soil salinity categorization degrees.

No. EC Degree EC dS/m [16] FAO dS/m

1 None <0.15 0–2
2 Slightly 1.5–3 2–4
3 Moderately 3–6 4–8
4 Highly 6–10 8–16

2.2.2. Remote Sensing

There are two approaches to detecting soil salinity from remote sensing data. The first
approach involves analyzing the spectral reflectance of bare soil, specifically looking for
salt efflorescence and crust, using salinity indices. The second approach involves analyzing
the spectral reflectance of vegetation on affected soils using vegetation indices [17–20].
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The long operational lifetimes of Landsat have enabled the quantifying and monitoring
of dynamics on the earth’s surface over the past three decades. Landsat 5 Thematic Mapper
TM and Landsat 7 Enhanced Thematic Mapper ETM+ images were used in this study.
Landsat 5 and Landsat 7 are both multi-spectral satellite systems that capture data in
several spectral bands. However, there are some differences in the bands captured by each
system. Landsat 5 captures data in seven spectral bands, while Landsat 7 captures data
in eight spectral bands. Based on ground observations and radiometric measurements, it
has been determined that the quantity and mineralogy of salts, as well as soil moisture,
color, and roughness, are the primary factors that impact salt reflectance [2]. By detecting
reflectance and emission changes across these bands, Landsat 5 and Landsat 7 monitor
shifts in land use, urbanization, vegetation cover, agriculture, water resources, and other
factors on Earth’s surface. Salt crusts, ranging in thickness from less than 1 mm to 1 m,
are puffy structures containing both soil aggregates and salt crystals (ranging in size from
0.5–5 mm) that originate from salty clays and, sometimes, from salt crusts that affect the
reflectance [21].

Geometric distortions in satellite images can lead to an inaccurate representation of
features on the ground, which can affect subsequent analysis and interpretation of the
data. However, the accuracy of satellite images can be compromised by atmospheric
interference such as haze, aerosols, and clouds, which can distort the radiometric values
of the image. Calibration and radiometric correction techniques are applied to satellite
imagery to normalize the data and remove atmospheric effects. These corrections help
ensure that the reflectance values captured by the satellite sensor are more accurate and
consistent across different images and dates. Using the Semi-Automatic Classification
Plugin for Quantum Geographic Information System (QGIS) Landsat 5 and Landsat 7,
imagery bands were corrected before calculating any indices to monitor soil salinity. The
atmospheric correction is critical to remove interference from gases and particles and obtain
surface reflectance values more representative of vegetation and soils, [22,23]. Geometric
correction is necessary to account for sensor and satellite positions and the varyingly
angled reflectance of solar radiation off the Earth’s surface [24]. Without these corrections,
vegetation indices would reflect variability in sun/satellite geometry and atmospheric
conditions more than the salinity status of vegetation or soils. Several techniques have
been developed for the geometric and atmospheric correction of Landsat images [23]. After
converting Landsat Digital Numbers (DNs) to reflectance spectral indices, they should
be calculated and interpreted for sensing the salinity status of vegetation and soil [25].
The transformation of Landsat DNs to reflectance values involves several steps, including
atmospheric correction, conversion from DN to radiance, and conversion from radiance to
reflectance. The equations used to apply these transformations are as follows:

Atmospheric correction:
Radiance = DN—offset, where DN is the digital number, and the offset is the value

provided in the metadata file.
The equation (Equation (1)) for the conversion from radiance to reflectance is as

follows [26]:

ρλ =
π× Lλ× d2

ESUNλ× cos(θs)
(1)

where ρλ is the spectral reflectance, Lλ is the spectral radiance, d is the sun-Earth distance
in astronomical units, ESUNλ is the mean solar exo-atmospheric irradiance, and θs is the
solar zenith angle. The values of ESUNλ and θs are also provided in the metadata file.

The correction for atmospheric transmittance and path radiance (Equation (2)) is as
follows [26]:

ρλ_corr =
(ρλ− (τλ× ρpath))

(1 − τλ)
(2)

where ρλ_corr is the corrected spectral reflectance, τλ is the atmospheric transmittance, and
ρpath is the path radiance.
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In the Semi-Automatic Classification Plugin (SCP), the transformation of Landsat DNs
to reflectance values is automated through a series of tools that apply these equations to
each band of the Landsat image. Calibration and radiometric correction techniques are
applied to satellite imagery to normalize the data and remove atmospheric effects. These
corrections help ensure that the reflectance values captured by the satellite sensor are more
accurate and consistent across different images and dates.

2.2.3. Derivation of Salinity Monitoring Indices

A set of eleven multispectral indices has been developed for monitoring salinity, as
presented in Table 2. There is a strong relationship between soil spectral reflectance and
soil characteristics such as salinity [8]. The indices used in this study are as follows:

1. Salinity Index 1 (S1): S1 is calculated as the ratio between the reflectance in the blue
(B) band and the reflectance in the red (R) band. It provides information about the
salinity levels in soil, based on the relationship between these two bands [27].

2. Salinity Index 2 (S2): S2 is derived by taking the normalized difference between the
reflectance in the blue (B) and red (R) bands, divided by the sum of their reflectance
values. This index is useful for assessing soil salinity variations based on the spectral
differences between these two bands [27].

3. Salinity Index 3 (S3): S3 is obtained by multiplying the reflectance values in the green
(G) and red (R) bands and then dividing by the reflectance value in the blue (B) band.
It offers insights into soil salinity conditions by leveraging the relationship between
these three spectral bands [27].

4. Salinity Index 6 (S6): S6 is calculated by multiplying the reflectance in the red (R) band
and the near-infrared (NIR) band and then dividing by the reflectance in the green (G)
band. It helps in evaluating soil salinity based on the spectral characteristics of these
three bands [28].

5. Salinity Index 3 (SI3): SI3 is determined by taking the square root of the sum of the
squares of the reflectance values in the green (G) and red (R) bands. It provides an
indicator of soil salinity by considering the combined effect of these two bands [29].

6. Salinity Index 1 (SI1): SI1 is obtained by taking the square root of the product of the
reflectance values in the green (G) and red (R) bands. It offers insights into soil salinity
by considering the interaction between these two spectral bands [30].

7. Salinity Index (SI): SI is calculated by taking the square root of the product of the
reflectance values in the blue (B) and red (R) bands. It provides information about
soil salinity conditions by considering the relationship between these two spectral
bands [30].

8. EVI (Enhanced Vegetation Index): EVI is an index that enhances the sensitivity to
vegetation changes by correcting for atmospheric and soil influences. It provides a
more accurate measure of vegetation health and density [31].

9. RVI (Ratio Vegetation Index): RVI calculates the ratio between the reflectance in
the red band and the reflectance in the green band. It is primarily used to estimate
vegetation vigor and density [32].

10. SAVI (Soil-Adjusted Vegetation Index): SAVI incorporates a soil adjustment factor
to account for soil background effects. It is advantageous for accurately assessing
vegetation health in areas with high soil brightness [33].

11. NDVI (Normalized Difference Vegetation Index): NDVI measures the difference
between near-infrared and red reflectance, indicating the presence and vigor of veg-
etation. It is widely used to monitor vegetation health, density, and changes over
time [34].
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Table 2. Eleven salinity indices were derived for this study.

No. Index Type Index Equation

1 Salinity Index 1 S1 B/R
2 Salinity Index 2 S2 (B − R)/(B + R)
3 Salinity Index 3 S3 (G × R)/B
4 Salinity Index 6 S6 (R × NIR)/G
5 Salinity Index 3 SI3

√
((Gˆ2 + Rˆ2))

6 Salinity Index 1 SI1
√

(G × R)
7 Salinity Index SI

√
(B × R)

8 Enhanced Vegetation Index EVI 2.5 (NIR − R)/(NIR + 6R − 7.5B + 1)
9 Ratio Vegetation Index RVI NIR/R

10 Soil Adjusted Vegetation SAVI (NIR − R)/(NIR + R + L) × (1 + L)

11 Normalized Differential
Vegetation Index NDVI (NIR − R)/(NIR + R)

(B, G, R and NIR): the extracted reflectance values in the blue, green, red, and near-infrared bands. L = 0.5 constant
for Landsat images [26].

These indices were specifically designed to maximize the sensitivity of vegetation
indices to salinity stress while minimizing the influence of other environmental factors
on individual spectral bands, such as moisture. For each band in every image, the digital
numbers were converted to radiance and then reflectance using the spectral conversion
parameter (SCP) method. Subsequently, the indices were calculated for the nine scenes
captured during different months from August to December, using either the ArcGIS raster
calculator or model builder. Each index captures specific aspects of vegetation health and
salinity response by leveraging distinct combinations of spectral bands. Through rigorous
analysis and comparison, we aimed to discern the strengths and limitations of each index
and identify the most effective indices for delineating soil salinity patterns in the context of
the Siwa Oasis environment.

Various spectral indices, such as the normalized difference vegetation index (NDVI),
enhanced vegetation index (EVI), and soil-adjusted vegetation index (SAVI), have been
developed to quantify specific characteristics of vegetation cover. These indices exploit
the distinct spectral properties of vegetation, enabling differentiation from other land
cover types. In our analysis, these indices were employed in all four scenarios. Each
index was computed, and their respective strengths and limitations were assessed. The
primary objective is to determine the most suitable approach and the most effective index
for capturing soil salinity patterns in the environmental conditions of Siwa Oasis.

3. Results
3.1. Exploring the Relationship between Electrical Conductivity (EC) and Spectral Indices:
Initial Analysis

In this phase of the study, we analyze the spectral properties of soil depending on
the salinity, specifically the visible and near-infrared regions provided by the Landsat
data. In the first step of the analysis, the corresponding values of the ground points were
extracted from the calculated indices. These values were then stacked for every index,
encompassing all the values from all the images. The correlation equation was then applied
to the EC corresponding values and the calculated indices’ values. Table 3 shows the
correlation between some of the ground-measured electrical conductivity (EC) values and
values extracted from the eleven spectral indices for each point across the time series of
Landsat images, in descending order from the highest to the lowest. The highest correlation
coefficient was found for the SI index, at 0.38. Linear R2 and polynomial R2 values of 0.14
and 0.15, respectively, were calculated between the EC values and each vegetation index
value across the time series of images. The SI and SI1 indices had the highest correlation,
respectively, and the NDVI and S2 indices showed the lowest correlation with EC. Figure 5
displays the first four highest correlation and regression values relating to EC and salinity
indices for the first approach. However, after extracting the tested linear regression and
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polynomial regression for each index, respectively, the results showed weak correlation
values in this approach due to the high difference in the salinity values.

Table 3. The first approach relationships between the applied indices and the EC.

No. Index Correlation Value R2 Linear R2 Polynomial

1 SI 0.38 0.14 0.15
2 SI1 0.37 0.14 0.14
3 SI3 0.37 0.14 0.14
4 S3 0.37 0.13 0.14
5 S6 0.33 0.11 0.11
6 SAVI −0.24 0.06 0.08
7 RVI −0.24 0.06 0.08
8 EVI −0.25 0.06 0.08
9 S1 −0.25 0.06 0.08

10 NDVI −0.27 0.07 0.09
11 S2 −0.28 0. 08 0.1
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Figure 5. Linear and polynomial regression model equations with some of the highest correlations
for EC and salinity indices using the first approach.

Upon conducting linear regression and polynomial regression analyses for each index,
it was observed that this approach yielded weak correlation values. This can be attributed
to the significant variation in salinity values, which ranged from 0.56 to 100, excluding
EC values exceeding 100, as they had a noticeable impact on the results. To mitigate the
impact of salinity values exceeding 100 on the regression results, we excluded the salinity
values that exceeded 100 from the dataset before conducting the regression analysis. By
removing these extreme values, the analysis would focus on the range of salinity values
that are more representative and less likely to have a disproportionate influence on the
results. This analysis aimed to determine which indices are most strongly correlated
with ground EC values, indicating their potential effectiveness for estimating soil salinity
without any complex analysis or ranging. However, the results showed low correlations
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and regressions, likely due to the significant variability in salinity ranges. Without applying
any classification between the values, the usage of the indices will not have a high value or
significant use.

Figure 6 shows the resulting relations of the first approach between the correlation,
regression values, and the eleven indices’ values extracted from the calculations.
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Figure 6. Correlation and regression analysis of EC and salinity indices using the first approach.

3.2. Quantifying the Relationship between Salinity Levels and Spectral Indices

To explore a better relationship, the second analysis scenario categorized EC–vegetation
index correlations based on different salinity levels. The ground EC measurements were
classified into seven different salinity categories: none, slightly saline, moderately saline,
high, and three different degrees of severe. Table 4 illustrates the correlation values calcu-
lated for the second approach, wherein the correlation coefficient was calculated between
EC values and each index for each salinity category.

Table 4. The second approach relationships between the applied indices and the EC.

No. EC Degree Index Correlation Value R2 Linear R2 Polynomial

1 None S6 0.55 0.30 0.39
2 Slightly S2 0.67 0.45 0.47
3 Moderate S2 0.96 0.89 0.91
4 Highly S2 0.56 0.31 0.33
5 Severe 1 NDVI 0.33 0.11 0.17
6 Severe 2 S6 0.5 0.24 0.26
7 Severe 3 S2 0.62 0.39 0.89

This analysis is designed to determine which indices show the strongest correlations
with EC at different salinity levels, indicating their potential suitability for distinguishing
between salinity levels. This finding revealed a modest relationship between vegetation
indices and EC values, but a more significant relationship between soil salinity indices
and bare soil. This is consistent with the findings of [35,36]. Figure 7 shows the highest
correlation was S2 = 0.96, with R2 linear = 0.89 and R2 polynomial = 0.91 for moderate saline
samples. As we added more details about the classification and separated the samples, the
results improved gradually.
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Figure 7. Regression model equations with the highest correlation for EC and salinity indices using
the second approach.

The findings presented in Figure 8 demonstrate that the second approach yielded
improved correlation and regression values as the range of electrical conductivity (EC) was
expanded. Specifically, the performance of the eleven indices examined in the study was
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enhanced across all salinity ranges. This approach investigated the relationship between
vegetation indices and electrical conductivity (EC) values for soil samples with varying
degrees of salinity. The results indicated that non-saline samples had a fair correlation with
the indices, with S6 showing the highest correlation value. In slightly saline samples, the
correlation improved, with S2 exhibiting the highest correlation value. For moderately
saline samples, all the salinity indices showed a good relationship with EC, but S2 had the
highest correlation value. However, for highly saline samples, the correlation was weaker
than that observed for moderately saline samples, and S2 continued to exhibit the highest
correlation value. These findings suggest that the correlation between EC and vegetation
indices weakens as salinity levels increase.
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Figure 8. Correlation and regression analysis of EC and salinity indices using the second approach.

3.3. Temporal Analysis of Salinity Indices: Exploring Relationships over Time

In the third analysis scenario, we conducted a comprehensive investigation of the
relationship between electrical conductivity (EC) and various indices. This analysis was
performed separately for each index, taking into account individual images and different
salinity levels. To obtain the indices, we calculated them for each image based on the
corresponding salinity degree. This allowed us to establish specific relationships for each
scene, treating them as separate areas of interest. Subsequently, we employed a skills model
to evaluate the behavior of each index in relation to the varying salinity degrees. This
evaluation enabled us to assess how the indices responded to different levels of salinity
and identify any patterns or trends. By accumulating the matched indices, we were able
to analyze the collective behavior and gain insights into their overall performance and
suitability for salinity assessment. Correlation coefficients were determined separately for
each index and for different salinity levels, as presented in Table 5.

Table 5. The third approach relationships between the applied indices and the EC.

No. EC Degree Index

Correlation Number of
Correlated

Images

R2

Highest
Value

Lowest
Value Linear Polynomial

1 None S6 0.72 0.42 8/9 0.31 0.41
2 Slightly S2 0.74 0.65 8/9 0.45 0.46
3 Moderate S1 0.99 0.99 8/9 0.88 0.93
4 Highly S2 0.69 0.49 7/9 0.32 0.34
5 Severe 1 SAVI 0.46 0.27 8/9 0.13 0.19
6 Severe 2 S2 0.32 0.16 5/9 0.07 0.09
7 Severe 3 S1 0.62 0.29 4/9 0.23 0.28
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This allowed us to establish specific relationships for each scene based on temporal
analysis. Subsequently, we employed a skills model to evaluate the behavior of each index
with varying salinity degrees. Figure 9 displays the correlation and regression models
for each index, with the highest correlation found for moderate saline samples S1 (0.99),
R2 linear (0.88), and R2 polynomial (0.93) for eight out of the nine images. The graph
demonstrates how the correlation values change depending on the picture/time and index.
The objective of this analysis was to examine the relationship between EC salinity levels and
the fluctuations observed in each index across multiple satellite image scenes, representing
different seasons and temporal changes. The aim was to differentiate between the changes
occurring in vegetated areas and bare lands over time, as the studies of [2,37,38] revealed.
Considering that the study area exhibits a mixed vegetation pattern that poses challenges in
distinguishing between the two, the approach provided valuable insights into the potential
of each index (highest and lowest) to detect changes in salinity or distinguish between
different salinity levels. This approach is particularly useful for conducting time series
analysis aimed at identifying temporal changes in salinity levels within a given scene.
Hence, the scene is considered the primary unit of analysis, and the inclusion of time-based
analysis can provide valuable information regarding the temporal changes in salinity levels.

Conducting a temporal analysis involves comparing images captured at different
times to identify changes in land cover and spectral values. By analyzing the temporal
patterns, it is possible to distinguish between changes caused by vegetation growth and
those caused by other factors, such as seasonality or land cover variations. The highly
dynamic nature of surface salinity processes necessitates a dynamic and temporally sensi-
tive approach to detecting soil salinity. The use of multi-temporal remote sensing imagery
is a particularly suitable method for monitoring changes in salinity levels, particularly
in irrigated areas. This approach enables a comprehensive and longitudinal assessment
of the evolving salinity conditions of the soil, which is imperative for understanding the
complex interactions between irrigation practices and soil salinity. Given the significant
impact of water management practices on soil salinity levels, the use of multi-temporal
remote sensing imagery provides a valuable tool for researchers and practitioners seeking
to monitor and manage soil salinity in irrigated areas [17].

The inclusion of the image-/time-based classification in Figure 10 highlights the signif-
icance of time-based analysis in understanding the relationships between EC and salinity
indices in the third methodology. In summary, this analysis involved a meticulous exami-
nation of the correlations between EC and indices. We considered the indices separately
for each image and salinity level, created scene-specific relationships, and evaluated their
behavior using a skills model. This approach allowed us to explore the relationship be-
tween salinity and indices, providing valuable insights into their applicability for salinity
assessment.
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Figure 9. Regression model equations with the highest correlation for EC and salinity indices using
the third approach.
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3.4. Assessing Spatial Correlation and Salinity Indices: Investigating the Influence of Spatial
Distribution and Land Cover Change on Salinity Indices

In the fourth scenario, we conducted a spatial correlation analysis on the electrical
conductivity (EC) values by grouping sample points for each pond and calculating the
corresponding index values. Sample locations, as presented in Table 6, were used to
perform correlation and regression analyses. The results, illustrated in Figure 11, revealed
that the salinity index (SI) had the strongest correlation with EC values among the four
ponds (Bahi, Siwa, Aghormi, and Zaitoun), with correlation coefficients of 0.23, 0.23, 0.18,
and 0.61, respectively. This finding suggests that the SI index is useful for evaluating
salinity levels in aquatic environments. This approach is suitable for analyzing various
morphological locations and elevations, especially those with distinct site characteristics.

Table 6. The fourth approach relationships between the applied indices and the EC.

No. Pond
Elevation DEM
(m) Below Sea

Level (BSL)

EC ds/m

Index Correlation
R2

Lowest
Value

Highest
Value Linear Polynomial

1 Bahi −17 12 55 SI 0.23 0.05 0.08
2 Siwa −15 4.89 193 SI 0.23 0.05 0.09
3 Aghormi −19 0.95 32.5 SI 0.18 0.03 0.11
4 Zaitoun −18 0.56 44 SI 0.61 0.37 0.69
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Figure 11. Regression model equations with the highest correlation for EC and salinity indices using
the fourth approach.

Furthermore, our analysis of pond elevations demonstrated a positive correlation
between elevation and salinity levels. The highest concentrations of saline soil samples
were observed in the Bahi and Siwa pond areas with shallower water depths. Thus, the
SI index can be a good tool for monitoring and managing the salinity levels in areas with
varying morphological characteristics and elevations.
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The findings of our fourth analysis approach involve establishing a relationship be-
tween salinity indices, spatial distribution, and the digital elevation model (DEM), which
is visually presented in Figure 12. The analysis revealed that the areas surrounding the
shallower ponds exhibited the highest levels of soil salinity.
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Figure 12. Correlation and regression analysis of EC and salinity indices using the fourth approach.

By considering a wide range of indices and methods, the comparison becomes ap-
plicable across diverse environmental conditions and land cover types. This enables the
assessment of soil salinity in various agricultural settings, regardless of specific electrical
conductivity ranges or environmental contexts. Various anthropogenic activities can result
in secondary salinization. Over-irrigation of crops is one of these activities, which can
cause a rise in the water table, bringing salt to the surface and causing salinization [39].
Deforestation can also contribute to salinization by interfering with the water cycle and
altering soil moisture and salinity. Land clearing can enhance soil erosion and organic
matter loss, increasing the likelihood of salinization. Water can build up in poor drainage
systems, causing soil salinization. Mining activities, through releasing salt into the land
and streams, can also contribute to salinization. In conclusion, anthropogenic activities
can lead to secondary salinization via a variety of pathways. Due to the uncontrolled flow
of irrigation water from wells that the Siwa Oasis’s residents dug to use the water for
continuous irrigation, the environment is endangered due to the rise in groundwater near
the surface.

The general administration of Matrouh Drainage Projects constructed main combined
drains to collect wastewater from primary and secondary drains in the Siwa Oasis. Instead
of allowing the wastewater to flow directly to the ponds, a mechanical lifting method using
pumps was implemented to transport the water. This change had a positive impact on the
drainage system and led to a noticeable increase in the agricultural area of the Oasis after
previously flooded areas became suitable for cultivation. The sustainability of the Oasis
residents also increased as a result.

Environmental variables such as vegetation cover and soil index are crucial for moni-
toring soil salinization, and their accuracy must be carefully evaluated [40]. Subsequently,
an analysis was conducted to investigate the relationship between the distribution of soil
salinity, pond elevation, land cover, and land use. Estimation of land cover change based
on uncorrected images can present unrealistic change rates, which are two to three times
higher than those obtained with corrected images. This is due to variations in sensor
sensitivity and atmospheric conditions that can influence the accuracy of change detection.
To improve the accuracy of change detection, the use of corrected images is critical for
obtaining reliable estimates of land cover change over time [41]. Figure 13 demonstrates the



Agronomy 2024, 14, 723 19 of 24

sample density for each class, along with the various ranges of salinity that were considered
during the analysis using the Inverse Distance Weighting interpolation IDW algorithm.
Figure 14 shows that the majority of the salinity samples were concentrated in cultivated
areas (see also Table 7).
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Table 7. Land cover classification of collected samples after change in 2020.

No Class % of Samples EC ds/m
Min Max

1 Agriculture 60% 0.56 49.2
2 Urban 38% 1.47 35.5

3 Wet lands
(Sabakh) 2% 44.5 193
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Management interventions implemented thereafter led to a significant reduction in
excess water by about 94.7% from 1998 to 2012, resulting in a 24% decrease in the total
area of lakes. The closure of hand-dug wells resulted in an 11% decrease in groundwater
withdrawal from 1998 to 2006. Groundwater withdrawal decreased by 33% from 2008 to
2012, leading to a 24% reduction in lake area over 10 years (2000–2010) [42]. The change
in land cover detection from 2003 to 2020, as shown in Figure 15, occurred after the
government replaced old dug wells with newly designed wells and implemented proper
management.
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This part of the study aimed to investigate the impact of continuous monitoring of
soil salinity and land cover changes in Siwa’s area over 17 years. By considering the
cultivated soil’s vegetation performance as an indirect indicator of soil salinity, we can infer
potential soil salinity levels [15]. The underlying assumption is that a substantial amount
of vegetation signifies successful crop growth and lower levels of detrimental salts in the
soil. Using remote sensing techniques, changes were detected regarding land cover, and it
was found that the total vegetated area increased from 59.8 sq. km in 2003 to 89 sq. km in
2020, representing a 48% increase, as shown in Figure 16. Moreover, it may not be suitable
for images with complex land cover patterns or mixed pixels. By applying a supervised
classification method and band combinations, we found that the cultivated areas had
expanded by 19.70 sq. km, as barren lands were reclaimed and converted into cultivable
ones. Moreover, the wetlands had shrunk by 8.27 sq. km, as they were transformed into
cultivated areas. The results suggest that effective salinity monitoring can contribute to the
expansion of cultivated areas and the improvement in land use practices. Collaborating
with the irrigation and agriculture authorities in Siwa can help address irrigation shortages
and meet agriculture requirements.

Agronomy 2024, 14, x FOR PEER REVIEW 22 of 25 
 

 

This part of the study aimed to investigate the impact of continuous monitoring of 
soil salinity and land cover changes in Siwa’s area over 17 years. By considering the culti-
vated soil’s vegetation performance as an indirect indicator of soil salinity, we can infer 
potential soil salinity levels [15]. The underlying assumption is that a substantial amount 
of vegetation signifies successful crop growth and lower levels of detrimental salts in the 
soil. Using remote sensing techniques, changes were detected regarding land cover, and 
it was found that the total vegetated area increased from 59.8 sq. km in 2003 to 89 sq. km 
in 2020, representing a 48% increase, as shown in Figure 16. Moreover, it may not be suit-
able for images with complex land cover patterns or mixed pixels. By applying a super-
vised classification method and band combinations, we found that the cultivated areas 
had expanded by 19.70 sq. km, as barren lands were reclaimed and converted into culti-
vable ones. Moreover, the wetlands had shrunk by 8.27 sq. km, as they were transformed 
into cultivated areas. The results suggest that effective salinity monitoring can contribute 
to the expansion of cultivated areas and the improvement in land use practices. Collabo-
rating with the irrigation and agriculture authorities in Siwa can help address irrigation 
shortages and meet agriculture requirements. 

 
Figure 16. Change detection area analysis from 2003 to 2020 in Siwa Oasis. 

Based on the analysis, it can be concluded that the effective management of water 
resources and continuous monitoring of salinity levels can increase the cultivated area, 
improve water usage, and enhance water distribution. Ensuring that the timing and pre-
dictability of the water supply are adequate is crucial for effective water management, 
often more so than the mere adequacy of supply [43]. From a systemic or social perspec-
tive, promoting equity in water distribution is essential to prevent certain users from re-
ceiving an excess of water at the expense of others. Additionally, optimizing water usage 
by providing an adequate but not excessive supply and minimizing losses is equally im-
portant. By working together, stakeholders can develop effective solutions that balance 
the needs of different users and promote sustainable water management practices. 

4. Conclusions 
This study evaluated the performance of eleven soil salinity indices using remote 

sensing techniques in Siwa Oasis, Egypt. The results provided valuable insights for select-
ing suitable indices for monitoring and managing soil salinity in the Siwa Oasis and in 
similar environments. In the current research, we demonstrated the values from the Land-
sat images and exhibited the correlation analysis based on the extracted indices values for 
the 56 sample locations. In the first scenario of the analysis, the highest correlation coeffi-
cient was SI = 0.38, with linear R2 = 0.14 and polynomial R2 = 0.15 observed. In the second 

0 10 20 30 40 50 60 70
Barren land - Barren land

Barren land - Sabakh 2
Barren land - Water Body

Sabakh - Sabakh 1
Sabakh - Vegetation
Sabakh 1 - Sabakh 1

Sabakh 1 - Vegetation
Sabakh 2 - Sabakh

Sabakh 2 - Sabakh3
Sabakh 3 - Barren land

Sabakh 3 - Sabakh 2
Sabakh 3 - Water Body
Water Body - Sabakh 1

Water Body - Vegetation

Area change (sq.Km)

Ch
an

ge
 d

et
ec

tio
n 

an
al

ys
is 

(2
00

3–
20

20
)

Figure 16. Change detection area analysis from 2003 to 2020 in Siwa Oasis.

Based on the analysis, it can be concluded that the effective management of water
resources and continuous monitoring of salinity levels can increase the cultivated area,
improve water usage, and enhance water distribution. Ensuring that the timing and
predictability of the water supply are adequate is crucial for effective water management,
often more so than the mere adequacy of supply [43]. From a systemic or social perspective,
promoting equity in water distribution is essential to prevent certain users from receiving an
excess of water at the expense of others. Additionally, optimizing water usage by providing
an adequate but not excessive supply and minimizing losses is equally important. By
working together, stakeholders can develop effective solutions that balance the needs of
different users and promote sustainable water management practices.

4. Conclusions

This study evaluated the performance of eleven soil salinity indices using remote
sensing techniques in Siwa Oasis, Egypt. The results provided valuable insights for selecting
suitable indices for monitoring and managing soil salinity in the Siwa Oasis and in similar
environments. In the current research, we demonstrated the values from the Landsat
images and exhibited the correlation analysis based on the extracted indices values for the
56 sample locations. In the first scenario of the analysis, the highest correlation coefficient
was SI = 0.38, with linear R2 = 0.14 and polynomial R2 = 0.15 observed. In the second
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scenario, we generated a relation based on EC degrees and calculated indices. Of the
eleven indices, three showed the highest correlation for S2, S6, and SAVI. Among these,
the S2, with 0.96 and 0.56 correlation coefficients, were better for moderate and highly
saline samples. In the third scenario, the correlation between EC and vegetation index
was calculated for each index and on a per-image basis. Of these indices, four exhibited
the highest correlation for S1, S2, S6, and SAVI, respectively. The S6 demonstrated the
highest correlation with 0.72 for non-saline; for slightly saline, S2 had a 0.74 correlation
coefficient; and, for moderately saline, S1 had a 0.99 correlation. In the fourth scenario, we
calculated the correlation between EC and index values based on location. The SI index
had the highest correlation for all four ponds. The lowest EC values were in the lands near
Zaitoun and Aghormi, where the ponds had the lowest elevation, while the highest values
were monitored near Siwa and Bahi El-Dein, where the ponds had the shallowest elevation.
The concluded relationship between salinity monitoring and land cover changes over a
17-year period was determined. The total vegetated area increased by 48% from 2003 to
2020, indicating the effectiveness of salinity monitoring for expanding cultivated areas.

This study demonstrated the feasibility of using remote sensing indices and satellite
imagery for detecting and monitoring soil salinity changes to monitor vegetation dynamics.
The findings provided insights into the correlation between EC and indices values, as well
as the influence of land cover type and pond elevation on salinity variations. However, the
analysis did not account for how EC–index correlations may differ with vegetation type or
other conditions that vary over time, but the more we change the method of the analysis,
the better results we achieve. More comprehensive analysis is needed to assess the utility
of individual indices for monitoring temporal salinity changes and distinguishing salinity
levels across diverse, dynamically changing conditions.
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