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Abstract: The relationship between agriculture and food is very close. It is impossible to produce
adequate crops for global food security without proper farm management. Farming practices repre-
sent direct and indirect controlling factors in terms of global food security. Farming management
practices influence agro-food production from seed germination through to the post-harvest treat-
ments. Nano-farming utilizes nanotechnologies for agricultural food production. This review covers
four key components of nano-farming: nano-mushroom production, protein-based nanoparticles,
nano-nutrients, and nanofibers. This provides a comprehensive overview of the potential applica-
tions of nanotechnology in agriculture. The role of these components will be discussed in relation to
the challenges faced and solutions required to achieve sustainable agricultural production. Edible
mushrooms are important to food security because they are a nutritious food source and can produce
nanoparticles that can be used in the production of other food sources. Protein-based nanoparticles
have considerable potential in the delivery of bioactives as carriers and other applications. Nano-
nutrients (mainly nano-selenium, nano-tellurium and carbon nanodots) have crucial impacts on the
nutrient status of plant-based foods. Carbon nanodots and other carbon-based nanomaterials have
the potential to influence agricultural crops positively. There are promising applications of nanofibers
in food packaging, safety and processing. However, further research is needed to understand the
impacts and potential risks of nanomaterials in the food production system.

Keywords: agri-food production; carbon nanodots; food packaging; food safety; nano-farming;
nano-selenium; nano-tellurium

1. Introduction

Due to the world’s growing population (more than 8.09 billion people), long-term
global food security is a serious concern [1]. Such security requires a 70% increase in
global food production by 2050 to meet projected population growth [2]. Global agri-
food production faces many problems associated with intensive farming under climate
change, including soil degradation [3,4], decreased water quality [5], and biodiversity
loss [6,7]. Agriculture is humanity’s main source of food [8]. Therefore, there is an urgent
need for the conservation of the natural resources agriculture relies on, including soil and
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water [9]. Therefore, sustainable agriculture is a crucial approach to achieve global food
security. Several strategies have been proposed to achieve sustainable agriculture, including
genetic engineering of agricultural crops [10,11], use of nanotechnology [12–14], meeting
the sustainable development goals [15], application of bacteriophages [16], nano-enabled
precision farming [12,17], and nano-enabled seed treatments [18,19].

Several reports have been published on the benefits of nanotechnology for sustainable
agriculture, such as controlling agro-processes [20], enhancing food quality and safety [21],
reducing agro-inputs [22], effective agrochemical delivery [23,24], detecting abiotic/biotic
stresses in plants [25,26], mitigating abiotic/biotic stresses in plants [17,27], and enhancing
the uptake of nutrients from soil [28,29]. Therefore, nano-enabled technology has great
potential for promoting sustainable agriculture by revolutionizing agro-practices, leading
to reduced losses and increasing the efficiency of inputs [22]. Many agricultural nano-
formulations are considered “new-age materials”, with a wide variety of nano-insecticides,
nano-herbicides, nano-fungicides, and nano-fertilizers available [22].

Nano-farming can be defined as the application of nanomaterials during and post-
farming to produce food products, or as the application of nanotechnology for agri-food
production [21,30–32]. Research on nano-farming systems has focused on food production
through cropping systems [33,34] and animal production systems [35,36]. This includes
mushrooms [37,38], vegetables [39], row crops [40], cattle production [41], fisheries [42],
and aquaculture like seaweed farming [43], among others. Traditional farming depends on
the use of conventional agrochemicals, including fertilizers and pesticides, which have a
lot of negative consequences for human and ecosystem health [44,45]. These traditional
agro-practices contribute to problems including climate change, declining soil fertility,
excessive reliance on chemical fertilizers and pesticides, and soil pollution [30]. Thus, there
is a need to modify agriculture in a way that will avoid these problems. Nano-agriculture
has shown promise for protecting soil and environmental health [46].

Reviews are crucial for keeping researchers and scientists up to date on pressing issues
by providing information on and critiques of cutting-edge scientific breakthroughs. There-
fore, this review discusses nano-food farming, focusing on selected sectors of nano-farming,
including edible mushrooms, proteins, nano-agrochemicals (mainly nano-nutrients), and
nanofibers. Nano-applications relevant to these sectors will be highlighted, along with
their challenges and unknowns.

2. Toward Nano-Food Production

The Nano-Food Lab was established at Debrecen University in Hungary in 2008. The
primary mission of this Lab is to investigate the use of nanotechnology in agricultural
production and to commercialize the research results as new products. This strategy has
produced many patents and publications in areas including nano-selenium, nano-tellurium,
mushroom applications, nanofiber for biotechnology, and carbon-based nanomaterials
(more details have been published by Sári et al. [34]). The nano-selenium production
was biologically developed from dairy products. This technology was patented [47,48]
and demonstrated as a commercial product that has been applied to applications such as
nano-biofortification for human health [49], crop production under stress [50–52], and as
a nano-bio fungicide agent [53]. The edible mushroom research has included mushroom
farming systems and benefits [37], the role of mushroom as antimicrobial agents [54], the
production of mushrooms for food and energy [55], nutritional and medicinal attributes
of mushrooms [55], producing nanoparticles using mushrooms [56], and green biotech-
nology related to mushrooms [55]. Black foods, mainly banana and garlic, have received
considerable attention at the Nano-Food Lab. Black foods can be found in both natural and
processed forms, being present in our daily life for several years without being noticed.
In addition, the chemistry underlying the black color of black foods has not yet been
fully understood. More than 130 black foods are reported in the current review, which
belong to 3 main groups and 12 sub-groups. In the studied black foods, melanins and
anthocyanins are the primary pigments, along with other pigments such as chlorophylls,
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carotenoids, and tannins. The health potential of black foods is also discussed. Due to
their high concentration of phytochemical and phenolic compounds, black-colored foods
are beneficial in terms of preventing diseases and boosting the immune system. As a
promising natural pigment and antioxidant compound source, black foods could be used
as functional foods. Several questions on black foods are still open and need more in-
vestigation, especially the mechanisms by which the black color is formed in fruits and
vegetables [57]. The biotechnological applications of nanofibers have been studied in our
Lab and published about in relation to the agricultural sector [58] as well as the water and
energy sectors [59]. The successful applications of nanofibers could be noticed in sectors
such as producing clean water, sustainable energy, and safe food. The biotechnological
applications of nanofibers may also include the production of fresh water and wastewater
treatment, producing, converting, and storing energy, and different activities in the food
sector. Furthermore, microbial applications of nanofibers in the biomedicine sector, and
the most important biotechnological approaches, mainly plant tissue culture, are under
processing for publication. Applying nanofibers in the field of plant tissue culture is a
promising approach because these nanofibers can prevent any microbial contamination
under in vitro conditions, but the loss of media by evaporation is the main challenge in this
application. Last but not least, the microbial production of a selenium–tellurium nanoalloy
for medicinal application was achieved by Muthu et al. [60]. The main guideline in all
these previous works was to use sustainable, green, nano-biotechnology to produce safe
and healthy foods. Different applications of nanotechnology in agri-food production are
presented in Figure 1, as well as some suggested farming systems, challenges, and solutions
focused on types of mushroom farming. To overcome the main problems facing these
farming systems, integrated farming practices and sustainable management are needed.
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3. Global Food Crisis and Sustainable Agriculture

Agriculture is a major source of raw materials, foods, fuels, fibers, and other ecosys-
tem services that are important for human survival [62]. However, the growing global
population represents a stress on the agriculture sector, along with increasingly difficult
challenges, including protecting the environment and mitigating climate change [61]. The
FAO reported that about 828 million people suffered from hunger globally in 2021 due
to an inadequate and non-healthy diet [63]. Several practices have attempted to address
food production needs through the use of chemically based pesticides, herbicides, and
fertilizers, but these have documented negative effects on agricultural biodiversity and
natural ecosystems [61]. Key facts regarding global farming are shown in Figure 2 and
important food products and their mode of production according to [64,65] are shown in
Figure 3. Global farming has been a driving force behind climate change due to greenhouse
gas emissions from agri-food systems during the last twenty years, as shown in Figure 2.
Over the same period, the agricultural land area decreased by 86 million ha globally.
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Many crops were important global commodities in 2021, including sugar cane, maize,
paddy rice, wheat, oil palm fruits, potato and other crops, with production (in million tons)
of 1859; 1210; 787; 770; 416; 376; and 4069; respectively [65]. Global mineral fertilizer use
reached 108, 46, and 40 million tons for N, P2O5, K2O fertilizers, respectively, in 2021 [56],
with a trend of increasing fertilizer use over time [66]. The same trend of increasing use
was also observed for the global application use of pesticides, which went from 2.178 to
3.535 million tons from 2000 to 2021 [56]. The harmful use of pesticides in agriculture
over time has also led to the deterioration of both human health [44] and the broader
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environment, mainly non-target species in soil, air, and water [64]. Several efforts have
been made to avoid these problems by moving toward the sustainable application of
agrochemicals (pesticides), such as nano-formulation-based pesticides [67], green and
microbial pesticides [68], and bio-pesticides [69]. The same trend exists for mineral fertiliz-
ers, where significant progress has been made toward sustainable fertilizer management
through smart fertilizers [40], biogenic nano-fertilizers [29], nanocomposite-based smart
fertilizers [70], and nano-biofertilizers [71].
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Integrated farming practices are a critical tool for achieving sustainable farming and
should be adopted. These practices may include no-tillage farming [72], crop rotations [73,74],
and crop–livestock mixed systems [75], among others [76]. Sustainable farming cannot
exist using only a single approach, as integrated and systematic technologies are needed
to overcome the negative effects of single practices and avoid unhealthy and imbalanced
effects on agro-ecosystems [61]. The new approaches are crucial for addressing the global
food crisis through the application of proper nano- and/or bio-technologies along with
integrated farming practices such as irrigation, fertilization, soil tillage, pre- and post-
harvest, and pest management. The global food crisis has several dimensions, including
economic [77], water security [78], global pandemics [79–81], and food loss and waste
issues [82].

4. Nano-Food Farming: An Overview

The production of food utilizing nanotechnologies can be called nano-farming, and
the applications are very diverse. The significant applications of nanotechnology in the
food industry may involve three main groups: food security, food packaging, and food
processing (Figure 4). Four crucial groups related to agri-food have been selected for
detailed discussed in this review. The first group is edible mushrooms, the second group
is protein-based nanoparticles, the third group is nano-nutrients, and the last group is
nanofibers. The use of nanotechnology in agri-food production can be noticed in several
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sectors, such as nano-/biosensors for detecting pathogens [83], nano-management of agro-
wastes [84,85], nano-enhancement of the shelf-life of agri-products [86], nano-identification
and tracking of agri-foods [87], nano-agrochemicals for crop improvement [88], nanofibers
for wastewater treatment [58,89], nano- or bio-remediation of soil and water [90], and nano-
carriers to provide targeted delivery of treatments [91]. For example, the most common
nanomaterial-based sensors include magnetic NPs, gold NPs, silica NPs, carbon nanotubes,
peptide nanotubes, and quantum dots, which are used to detect different pathogens and
their toxins [92].
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5. Protein-Based Nanoparticles
5.1. Protein-Based Nitrogen Nanoparticles

In an era where the quest for sustainable agriculture has never been more urgent,
nanotechnology is emerging as a promising tool for more efficient and sustainable prac-
tices [93,94]. Nanomaterials (NMs) have distinctive properties, including a high surface
area, reactivity, agglomeration, and penetration capability, along with a small size and
structures that are useful [95]. Nanomaterials are able to provide controlled release of
agrochemicals and site-targeted delivery of various macromolecules. This improves plant
growth through efficient nutrient utilization, development, and protection via plant disease
resistance [95] and reduced environmental losses [96]. Nitrogen (N) is the most common
limiting element in agricultural production [97]. However, the nitrogen use efficiency
of crops is very low (30–40%) because of losses via surface runoff, leaching, ammonia
(NH3) volatilization, N oxide (N2O, NO, NOx) emissions and long-term incorporation
of mineral nitrogen into soil organic matter by soil microorganisms [74,98,99]. Therefore,
NMs, with their unique properties, can regulate nitrogen transformations and reduce losses
by adsorbing available nitrogen or changing the physical and chemical properties of the
soil [74].

Among the N fertilizers, urea is a rich source of nitrogen and the most widely used
globally [93]. Nano-N forms such as nano-hydroxyapatite, cellulose polymer nanocompos-
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ite [100], urea incorporated with cellulose-based hydrogel [101], and urea-doped nanofertil-
izer [93] have been used to reduce urea’s high solubility and slow the release of the mineral
nitrogen. More details on these NMs and other combinations, along with their ability to
slow N release and enhance plant N uptake, were discussed by Abhiram et al. [96]. In
the case of organic farming, the chemical and physical methods of NP synthesis cannot
be used. However, the valorization of waste products and their transformation into NPs
could be a practical solution, along with the biological synthesis of NPs [102]. Chitosan
NPs extracted from shrimp wastes are considered an eco-friendly nano-N source that
increases the wheat grain yield and most of its components as well as nitrogen and potas-
sium concentrations [103]. Similarly, the foliar application of nano-NPK produced from
agro-wastes at a 25% concentration significantly promoted the growth, yield, and harvest
of pepper compared to the control and chemical fertilizer-treated plants in a study by
Abdel-Aziz et al. [104].

Organic farming is generally regarded as one prototype to enhance the sustainability of
modern agriculture and decrease its environmental impacts. Cereal/legume intercropping
is one strategy for eco-functional intensification in organic farming because the legumes in
this system reduce the application of chemical N fertilizer and improve the uptake and fix-
ation of nitrogen [105]. Abou El-Enin et al. [97] studied the ability of nano-chitosan-loaded
nitrogen to enhance the utilization of mineral N applied to a maize–soybean intercropped
system. Based on the gross productivity of maize (grains) and soybean (seeds), total rev-
enue, and net profit, fertilizing maize plants with 216 kg nitrogen ha−1 (the intermediate
N fertilizer treatment in the experiment) plus nano-chitosan-loaded N in an intercropped
rotation was more beneficial than utilizing the intercropped or mono-cropped systems
with mineral N fertilization only [97]. Additionally, the nano-chitosan-loaded nitrogen
composite reduced the need for nitrogen fertilizer application by approximately 25% of
the recommended rate, which lowered the possibility of environmental N pollution [97].
In another study, the intercropping of cowpea with maize and fertilizing with 75% of the
recommended dose of mineral N along with 25% nano-urea increased the productivity
of maize by 17.03 and 14.11%, and the total fresh forage of cowpea by 32.11 and 38.94%,
compared with mineral fertilization in the first and second seasons, respectively [106].
Promising results were found regarding the effectiveness of nano-fertilizers, particularly
nano-nitrogen, over conventional fertilizers in organic farming. In particular, the applica-
tion of a combination of organic manure and nanofertilizers resulted in higher yields of
wheat, sesame, pearl millet, and mustard by 5.35, 24.24, 4.2, and 8.4%, respectively, and
better plant growth performances when compared to fields under conventional chemical
fertilizer practice [107].

Despite nano-encapsulation being more efficient and being considered more environ-
mentally friendly and safer compared with pesticides, there are concerns about the survival
of microorganisms and the possible disruption of the legume–rhizobium symbiotic system
under nano-applications [108]. There are examples of instances when the toxicity and
bioaccumulation of nanoparticles led to setbacks [95], which makes toxicological studies
necessary [104]. In addition, to expand the availability of nanoparticles, particularly N-NPs,
in the agricultural market, future research should be designed to find more accessible and
applicable manufacturing methods [97].

A promising role for protein-based nanoparticles (PBNs) in modern farming is the
application of soybean PBNs as nano-carriers for the encapsulation of bioactive sub-
stances [109]. These bioactives can be transformed by many nano-forms, including nanopar-
ticles, nano-gels, nano-fibers, and other nano-structured substances, where the encapsulated
bioactives in PBNs can be stabilized in different environmental conditions, such as heat,
light, and others [110]. Furthermore, the use of proteins as substrates for the preparation
of nanoparticles as carriers of bioactive ingredients has received increased attention in
the drug and food industries due to their stability, good water solubility, and bioaccessi-
bility [111,112]. Along with applications of PBNs, which are needed to enhance the oral
bioavailability from food protein NPs [113], the delivery of bioactive compounds using
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PBNs is a crucial issue [114,115]. Thus, the safety of PBNs and their biocompatibility as
well as needed regulations were discussed in many studies focused on the rules of the
US Food and Drug Administration (FDA) for approved nano-formulations. These studies
addressed topics such as designing biocompatible protein NPs [116], functional protein
nanoparticles [117], application of protein NPs to encapsulate functional food [118], and
protein-based NPs for therapeutic nucleic acid delivery [119]. More studies are needed
on foods, focusing on alternative proteins, sustainable packaging, food architecture, and
precision nutrition [120].

5.2. Alternative Protein Nanoparticles

The rapidly increasing global population, demand for food production, generation
of food waste, and need to establish a sustainable environment have renewed interest in
animal-protein substitutes such as plant, algal, fungal, and insect sources [121,122] and
in the development of effective waste management strategies [123]. In addition to these
practices, nanotechnology has emerged as a promising tool due to the unique proper-
ties of nanomaterials [124] and by offering opportunities to make food production more
sustainable [125]. Nanotechnology provides better sensors, membranes, and sorbents,
novel materials for timed and targeted delivery of agrochemicals, and new materials for
monitoring and improving animal health [125].

Among the alternative proteins, plant-based protein is the most well-established cate-
gory [122]. The NPs generated from plant-based proteins are preferred over carbohydrates
and synthetic polymeric-based materials for food or medical applications [126]. In general,
zein and gliadin are the predominant plant proteins used to develop nanoparticles due
to their easy solubility in aqueous conditions [126]. Sustainable nanotechnology can be
established by using biodegradable waste [127]. For example, in the rice milling industry,
rice bran waste is an under-utilized sustainable resource that has been used to prepare
nanoparticles with chitosan. These nanoparticles showed interesting properties by delaying
degradability in gastric conditions in the small intestine with good biodegradability. When
loaded with curcumin, an improvement in solubility and an increase in the entrapment
efficiency were noted. Additionally, they exhibited higher cytotoxicity compared to free
curcumin for Caco-2 cells, which has great potential for application in hydrophobic active
agent delivery [128]. Like plant protein, edible insects are also sustainable sources of
proteins [129]. Study of the potential of insect proteins to form nanoparticles (uncoated or
coated with chitosan) and protect hydrophobic nutraceuticals (curcumin) revealed a mod-
erate interaction resulting in a moderate encapsulation efficiency but an efficient release
profile [129]. Coating the protein nanoparticles with chitosan protected the curcumin in the
gastric phase, proving their promise as a delivery vehicle [129].

Animal proteins can also have interesting characteristics. For example, gelatine
biopolymer nanoparticles have significant potential use in the food industry due to the
numerous available active group sites for attaching target molecules [130]. However, these
animal proteins can be associated with immunogenic responses [126] and may be rejected
due to sociocultural (including religious) and health concerns [130]. Salah and his col-
laborators [131] characterized the protein nanoparticles extracted from chicken feathers,
which were prepared by the reduction technique with plant extracts followed by ultrasonic
treatment. The nanocomposite of these proteins showed great potential application in the
future development of textile finishing due to its high loading efficiency and targeting
effect. In another study, improvement of the mechanical properties of biobased mullet
scale gelatin–carbon nanoparticles occurred upon the addition of the carbon nanoparticles,
showing an increase in the elongation at break (clear plasticizing effect) and a decrease in
the stiffness [132].
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6. Nano-Farming of Mushrooms
6.1. Mushroom-Based Nanoparticles

The exploration of mushroom-derived nanoparticles has gained considerable attention
in the field of nanotechnology in recent years, as seen in Table 1. This can be observed
particularly through the utilization of some significant bioactive compounds, such as
β-glucan polysaccharides [133], chitosan [134], and carbon nanodots produced through
advanced technologies [135]. Moreover, there is a burgeoning interest in the capacity to
synthesize gold and silver nanoparticles [136]. Edible mushrooms are an important source
of human food. β-glucan, one of the most significant bioactive compounds present in
mushrooms, is a relatively large molecule produced through intricate biochemical pro-
cesses that entail specific enzymes, specifically β-glucan synthases, and involve structural
components such as glucose molecules. These processes result in the formation of the
distinctive beta-1,3 and beta-1,6 linkages that characterize β-glucans within the fungal
cells [54,137]. Beta-glucans exhibit differences in their macromolecular structure, glycosidic
linkage, and functional characteristics, depending on their respective sources [138]. These
can be formed into nanoparticles with advantages like an increased surface area, improved
bioavailability, biodegradability, enhanced mechanical properties, and reduced environ-
mental impact [133]. B-glucan nanoparticles from Lentinula edodes and Pleurotus ostreatus
have demonstrated significant antitumor activity against colon and breast cancer cells. L.
edodes has exhibited particularly high potential compared to P. ostreatus [139]. Chitosan has
a high molecular weight and low immunogenicity. It is the product of the deacetylation of
chitin that is present in the exoskeletons of crustaceans, insects, and fungal cell walls [140].
It is comprised of a blend of β-(1,4)-linked-D-glucosamine and N-acetyl-D-glucosamine.
Its primary repetitive unit is characterized by β-(1,4)-linked-D-glucosamine [141].

Table 1. The characterization of mushroom-based nanoparticles and the potential applications.

Source/Produced
Nanoparticles Mushroom Species Nano Size (nm) Application Ref.

Water-soluble
β-(1→3)-d-glucan

Sparassis crispa;
Phellinus linteus 150–390 Food, cosmetic, and pharmaceutical industries [142]

β-glucans Lentinula edodes 10–25 Cancer treatment and therapeutic interventions [139]

β-glucans Pleurotus ostreatus 40–50 Cancer treatment and therapeutic interventions [139]

Chitosan nanoparticles Pleurotus eryngii 2.25 Antimicrobial coatings, drug delivery systems,
wound dressings, food additives [143]

Chitin nanocrystals Lentinula edodes 142–182 Biomedical applications, drug encapsulation,
polymer composite, cosmetics, textile industry [144]

Carbon nanodots Pleurotus spp. 4.7–8.8
Cancer treatment and therapeutic interventions,
antimicrobial coatings, drug delivery systems,
wound dressings, food additives

[145]

Carbon nanodots Pleurotus spp. 2–10 Ultrasensitive detection of Hg2+ ions and
photoinduced bactericidal activity

[146]

Copper oxide
nanoparticles

Pleurotus
citrinopileatus 20 Biomedical applications (mainly antimicrobial

and anticancer) [147]

Silver nanoparticles Ganoderma spp. ------ Antibacterial and therapeutic agents [148]

Zinc oxide nanoparticles Cordyceps militaris 1.83 Therapeutic investigations as antioxidant,
antidiabetic, and antibacterial potential [149]

Numerous researchers were involved in transforming these macromolecules into
nanoparticles to improve bioavailability, control substance release, augment surface area,
optimize the utilization of functional properties (excellent physicochemical, antimicro-
bial attributes) and quantum size effect [150], and contribute to sustainable develop-
ment [134,141,151]. Carbon nanodots (CNDs) are nanoscale carbon-based particles smaller
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than 10 nm. They have attracted considerable attention due to their fluorescence, an-
timicrobial properties [152], and easy preparation [153]. They can be synthesized from
mushroom extracts through hydrothermal synthesis [152,154,155] by reacting with precur-
sor substances in a high-temperature and high-pressure aqueous environment [135,156].
The production of synthesized silver (Ag-NPs) and gold (Au-NPs) nanoparticles by mi-
croorganisms is an emerging field of nanobiotechnology, which offers a cost-effective, rapid,
and environmentally friendly green chemistry method [136]. Several edible mushrooms
have been explored for their ability to reduce metal ions and facilitate the formation of
stable metal nanoparticles [157,158]. Fungi like Agaricus [153,154], Ganoderma [155,156],
Inonotus [157,158], Pleurotus [142,143], and Schizophyllum [144,145] species have been used
in the biosynthesis of silver and gold nanoparticles. The process involves the use of fungal
extracts or biomass to achieve the reduction of metal ions to their respective nanoparticles.

6.2. Nano-Applications in Food Packaging

Nanotechnology, with its ability to manipulate materials at the molecular and atomic
levels, is poised to revolutionize various industries, including food packaging [159]. Pack-
aging plays a pivotal role in ensuring food safety. It represents a crucial step in the food
supply chain [160] and plays a role in establishing sustainable value within food chains
while mitigating food waste [161]. Its primary objectives include preventing spoilage
and contamination, enhancing sensitivity through the facilitation of enzyme activity, and
minimizing weight loss [160]. Biodegradable functional films are materials crafted from
ingredients that possess the unique characteristic of breaking down naturally over time,
contributing to a reduction in the environmental impact. These materials are specifically
designed for applications that prioritize sustainability, aiming to minimize the ecologi-
cal footprint associated with conventional packaging [162–164]. Mushrooms, renowned
for their diverse and valuable components, play a crucial role in shaping the landscape
of biodegradable functional films. Various studies have explored the potential of several
mushroom compounds for application in biodegradable functional films. These approaches
show promise in contributing to the development of environmentally conscious packaging
solutions [137,152,165].

7. Nano-Food Farming: Role of Nano-Nutrients

The production of food from cropping and livestock systems needs an adequate supply
of nutrients in the proper ratios for healthy growth. These nutrients vary widely from
essential to beneficial nutrients for plants and animals. The movement and uptake of
applied nutrients by plants represents an important issue for crop production (Figure 5).
The pathway of applied nutrients into the soil rhizosphere depends on many factors that
involve the plant, soil, growth media, environmental, and agronomic factors. The method
of nutrient application to crops can also influence the bioavailability of nutrients. The
nutritional value of plant-based foods mainly reflects the mineral composition of these
plants, which depends on the plant genetics, growing environment, and management
practices [166]. The mineral composition of crops results from the uptake of nutrients
from soil and/or foliar applications. The proper method of nutrient application depends
in part on the type of fertilizer being applied, whether it is mineral [167], organic [168],
a biofertilizer [169], nanofertilizer [170] or nano-biofertilizer [71]. Plant nutrition is also
influenced by the environmental conditions around the plants, including abiotic and biotic
stresses [171]. Nutritious plant-based foods are essential for human health [172]. Several
publications have reported on human diseases related to plant-based diets, such as cardio-
vascular disease [173,174], chronic diseases [175], dementia and depression [176], systemic
inflammation [177,178], chronic kidney disease [179], and general health outcomes [180].

In general, the chemical and biological pathways for Se-NPs synthesis are well-known,
with priority over the biological methods via microbes or plant parts. The biological
methods are more sustainable and have lower toxicity. For nano-farming, it is preferable
to apply biological Se-NPs to support crop and animal production for food safety and to
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improve animal and human health, especially under stressful conditions [181,182]. Se-NPs
have direct and indirect impacts on multiple aspects of the agroecosystem, including the
soil, cultivated plants, and the food chain [183].
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The application of nano-nutrients in nano-enabled agriculture has received intense
research attention. However, the mechanism of uptake, movement of these nano-nutrients
in the rhizosphere, and entry into plants, plant cells, and organelles are still insufficient.
Many recent reports have discussed the delivery of nanoparticles (NPs) at different levels,
including at the whole-plant and single-cell levels [185–187]. More details on this topic
are presented in Figure 6. The differences between the uptake of traditional or mineral
nutrients (Figure 5) and nano-nutrients (Figure 6) can be explained by the factors controlling
their uptake and movement. In general, the 4Rs of nutrient management present the right
strategy for the optimum use of applied nutrients, which includes applying the right
nutrient at the right rate, right source, right time, and right place.
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7.1. Nano-Selenium and Nano-Tellurium

Among the chalcogenide group, also known as the oxygen group, selenium (Se)
and tellurium (Te) are similar elements that have many common proprieties (Figure 7).
These include antimicrobial, antioxidative, antifungal, and anticancer properties, along
with their ability to serve as drug delivery agents and to assist in bioremediation and bio-
recovery. Alloys of Se and Te include similar crystal structures (hexagonal), electronegativity
(5.88 and 5.50 eV), valences (+6), and atomic radii (117 and 137), respectively [188]. Both
Se and Te are rare in the Earth’s crust, with abundances of about 0.05 and 0.001 mg kg−1,
respectively. The high similarity in characteristics between these elements led to many
similar applications for the bulk and nano-forms as well as their alloys, as reported by
many studies [60,189–191].

Research has focused on the biological production of Se and Te nanoparticles [192–194]
and the application of nano-Se for a variety of farming practices (Table 2). Applications of Te
nanomaterials include electronics, opto-electronics, magnetoelectricity such as transistors,
photodetectors, and sensors, and biomedicine [195]. Knowledge of the potential applica-
tions of nano-Te in farming is still in the very early stage. Research has been conducted on
the myco-synthesis of tellurium nanoparticles [196] and production through Alteromonas
sp. (a marine organism) under saline conditions [197]. The most promising application
of biologically produced Te-NPs investigated to date has been based on the antimicrobial
activity against pathogenic microorganisms [196], which may lead to meaningful appli-
cations in the farming and food systems. The highly efficient removal of pollutants like
gallium from aqueous environments using biological nano-Te has been reported [198].
Biologically fabricated Te-NPs have been shown to have antioxidant, antibacterial, and
cytotoxic applications [199]. Other studies have reported using yeast strains (Yarrowia
lipolytica and Trichosporon cutaneum) to produce nano-Te [200].

https://www.cleanpng.com/png-biostimulant-fertilisers-agriculture-soil-foliar-f-5425521/
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Table 2. Applications of nano-selenium in different farming practices.

Crop Applied Dose of
Nano-Se

Farming
Practices Main Impacts of Nano-Se Refs.

Sugarcane (Saccharum
spp. hybrids)

Foliar application of 5
and 10 mg L−1

Growing
seedlings under
biotic stress

Nano-Se enhanced antioxidants and jasmonic
acid content; reduced accumulation of ROS and
H2O2 under biotic stress as an eco-fungicide.

[202]

Lemon verbena (Lippia
citriodora Kunth)

Foliar application of
10 uM nano-Se

Before full
flowering stage

Nano-Se alleviated salt stress by improving
secondary metabolites (protein, proline, and
soluble sugars) and antioxidants.

[203]

Red Pitaya (Hylocereus
undatus)

Foliar at 5 mg L−1 and
soil at 3 mg L−1

Biofortification
of fruits and
post-harvest

Nano-Se enhanced antioxidant capacity and
nutritional value by boosting biosynthesis of
amino acids, phenylpropanoid, and betalain.

[204]

Faba bean (Vicia faba L.) Foliar application at
100 mg L−1

Biofortification
of bean seeds

Nano-Se improved the seed weight, yield and
quality, and biofortification level. [205]

Common Bean
(Phaseolus vulgaris L.)

Applied 50 and 100
ppm nano-Se and
nano-Si

Control
Alternaria leaf
spot disease

Applied nano-Se and nano-Si was an effective
alternative to fungicide against the studied
phytopathogen.

[53]

Caralluma tuberculata In vitro containing
100 µg L−1 nano-Se

Producing
secondary
metabolites

Se-NPs elicited the production of antidiabetic
metabolites (gallic acid, cumarin, ferulic acid,
caffeic acid, catechin, quercetin and rutin).

[206]
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Table 2. Cont.

Crop Applied Dose of
Nano-Se

Farming
Practices Main Impacts of Nano-Se Refs.

Rice (Oryza sativa L.) Applied nano-Se to soil
at 0.1 mg·kg−1

Rice seedling
growth

Nano-Se enhanced root exudates and
rhizobacteria, which promoted rice growth by
increasing malic and citric acid content.

[207]

Rice (Oryza sativa L.) Se bio-nanocomposite
Alleviating
cadmium
toxicity

Applied nanocomposite alleviated the inhibition
of plant growth and Cd-oxidative stress by
reducing Cd accumulation in rice plants.

[208]

Lettuce (Lactuca sativa L.) Applied Se-NPs to the
soil at 50 mg kg−1

Enhancing
plant disease
resistance

Se-NPs suppressed Fusarium-induced wilt
disease in lettuce by modulating the shoot
metabolite levels of citrate, succinate, malate and
upregulated jasmonic acid.

[209]

Strawberry (Fragaria ×
ananassa)

Nano-Se at 25, 50, 75,
and 100 mg L−1

Seedling
production

Se-NPs enhanced growth of seedlings by
promoting nutritional status, photosynthetic
pigments, and enzymatic antioxidants.

[28]

Nano-Se has many crucial roles in farming practices, especially under biotic and abiotic
stresses (Table 2). Under biotic stress that resulted from Xanthomonas albilineans infection,
nano-Se supported the growth of sugarcane as an eco-fungicide and improved the juice
quality [202]. The suggested mechanism of nano-Se for plant disease resistance involves
enhancing the capacity of antioxidants, inducing the pathway of jasmonic acid, reducing
the accumulation of ROS and H2O2, and promoting the pathways for phytohormones
signaling [171,202,210]. Many studies have confirmed the role of nano-Se in inducing the
resistance of crops to phytopathogens such as Botrytis cinerea in cucumber [211], spot blotch
disease in wheat [212], Podosphaera xanthii in melon [210], Fusarium-induced wilt disease
in lettuce [209], and Alternaria leaf spot disease in the common bean [53]. Along with
the mitigation of stress, other benefits that have been reported due to nano-Se in farming
include nano-biofortification [204,205], improving the quality and shelf life of harvested
crops [213], and mitigation of abiotic stresses, including salinity [214], heavy metals [215],
and drought [216]. The beneficial role of nano-Se in animal production has been confirmed
by many studies under traditional and stressful conditions [217,218].

7.2. Carbon Nanodots

Carbon, along with hydrogen and oxygen, represents the origin of life as a main
component of any organic matter. Carbon is an essential nutrient for all living organ-
isms. Therefore, producing food and feed with farming practices depends on carbon.
Nano-farming has received a great deal of attention due to its promising ability to support
sustainable agriculture [52]. Carbon can be formed into a variety of nanomaterials, in-
cluding graphene, fullerenes, carbon black, carbon nanofibers, carbon nano-horns, carbon
nanotubes (e.g., multi-walled carbon nano-tubes, and single-walled carbon nano-tubes),
quantum dots as carbon dots, and carbon nano-diamonds [219–221]. Carbon nanomaterials
have exceptional optical, electrical, mechanical, and thermal properties. They are also
inert, non-toxic, have a high level of biocompatibility, long-term chemical stability, and are
eco-friendly [219,222–224]. Along with the biomedical applications of carbon nanodots,
there is great interest in using carbon nanomaterials in the agriculture sector [225,226]. This
ranges from enhancement of crop productivity [227–229] to genetic alteration and acute
cytotoxicity [230], nano-seed priming [231], and nano-remediation of polluted soil [232].

Carbon nanodots (CNDs) are a versatile and promising class of nanomaterials with a
wide range of potential applications. Recent studies have identified the presence of CNDs
in various food products, including caramels, bread, jaggery, sugar caramel, cornflakes,
and biscuits [233]. CNDs were also found in Coke (Figure 8A) and in soil used to grow
mushrooms (Figure 8B). A model of CND formation is given in Figure 8C. CNDs have been
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found to interact with agricultural crops, influencing their growth, physiological functions,
and production [234]. These interactions can lead to changes in the crop yield, metabolite
production, and gene and protein expression [234]. The size and concentration of CNDs
can significantly impact their effects on crops [234]. However, the potential risks of these
interactions, such as the accumulation of CNDs in edible parts of crops and their potential
impact on animal and human health, must be carefully evaluated [222]. The effects of
CNDs vary depending on the nanomaterial type, concentration, and exposure time [235].
The unique properties of CNDs, such as low toxicity and high biocompatibility, make them
promising for use in agriculture [236]. Some farming applications of CNDs are presented
in Table 3. Further research is needed to understand these interaction mechanisms better
and evaluate the potential benefits and risks of using CNDs in farming [237]. Therefore,
while CNDs and other carbon-based nanomaterials have the potential to influence agri-
cultural crops positively, further research is needed to fully understand their effects and
potential risks.
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Table 3. Different applications of carbon nanodots for farming practices and food production.

Type of C Nanodot Farming Practices Main Impacts Refs.

Multi-walled carbon
nano-tubes (MCNs) Seedling development

An application of 800 mg·L−1 MCN promoted maize root length,
height, seedling dry weight, and photosynthesis enzymes related
to nitrogen metabolism in maize seedlings.

[238]

Nano-carbon composites Nano-pesticide against
fungus

Applied nanocomposite of C-TiO2 inhibited the fungus
Phytophthora palmivora, serving as a disinfectant for agricultural
plant pathogens.

[239]

Carbon nanomaterials
(CNMs) Amendment of sandy soils

CNMs applied at 200–400 mg kg−1 increased shoot biomass of
lettuce, total chlorophyll content, photosynthesis activity, and
bioavailability of soil nutrients.

[229]

Carbon nanoparticles
(CNPs) Soil fertility improvement

CNPs applied at 200 mg kg−1 enhanced maize growth by
improving nutrient use efficiency, plant height, the uptake of
nutrients, and biomass yield.

[240]

Carbon nano-tubes Magnetic nano-sorption
pesticides

Using magnetic nanocomposite cellulose for sorption
agro-pesticide samples due to high porosity, high surface area and
good reusability up to 15 times for the extraction of pesticides.

[241]

Carbon dots (CDs) Seed nano-priming
CDs applied at 0.25–2 mg mL−1 accelerated germination of pea
seeds, increased biomass accumulation and elongation of shoots
and roots compared to the control.

[242]

Nitrogen -doped carbon
dots (N-CDs)

Seedlings growth under
salt stress (150 mM NaCl)

N-CDs enhanced Arabidopsis salt stress tolerance and induced
plant growth, chlorophyll content, and reduced malondialdehyde
content compared to the control.

[243]

Carbon quantum dots
(CQDs)

Protecting agent against
Cd-stress

Putrescine-functionalized-CQD-NPs increased the fresh and dry
leaf weight of grapes and mediated Cd-stress by promoting
enzymatic activity, anthocyanin. and phenolics.

[244]

Carbon nanodots Food preservation
Carbon nano-dot/silk fibroin films were antibacterial and
antioxidative films that increased fruit preservation as a
multifunctional and eco-friendly packaging system.

[245]

MnO2 nano-sheets and
carbon dot (MnO2-CD)

Nano-biosensor for food
safety

The MnO2-CD was an efficient nano-biosensor for Staphylococcus
aureus having higher stability, good biocompatibility, and
catalytic activity compared to natural enzymes.

[246]

8. Nano-Farming: Applied Nanofibers

Nanofibers are natural or synthetic polymeric fibers on a small (nano) scale that
have certain properties (mainly a high surface-area-to-volume ratio, interconnected nano-
porosity, and high mass transport properties). Natural nanofibers have animal, mineral,
and plant sources. The properties of plant-based nanofibers depend on the plant fraction
used to create them, such as leaves, stalks, seeds, and stems [59]. Nanofibers have been
applied to several farming practices, including different growing stages [58] starting from
seed germination [247], have been used to apply bioactives through nano-agrochemicals,
including nanofertilizers [248] and nano-pesticides [249], and have been used post-harvest
for the preservation of fruits and vegetables [250–254]. Nanofibers can also be used in the
nano-remediation of polluted soil [255] and wastewater treatment [246,256] as well as in
food safety, packaging and processing [257].

Several studies have investigated the use of nanofibers for farming and in the food
sector (Table 4). The food sector investigations have included topics such as creating
porous cellulose-acetate nanofiber hydrogels [258], starch-based nanofibers to monitor
food freshness [259], poly-lactic acid nanofibers in food packaging [260], green nanofibers
for the delivery of active foods [261], and natural cellulose nanofibers for fresh food
packaging [257]. These nanofibers are good candidates for food packaging due to their
biodegradability, ability to serve as exceptional barriers, and mechanical attributes [257].
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These nanofibers can also reduce the food respiration rate and improve the rheological and
antimicrobial properties, which extends the shelf life of food products [257].

Table 4. The applications of nanofibers in farming practices and the food sector.

Nanofibers (NFs) Farming Practices Main Impacts of NFs Refs.

Natural multifunctional
nanofibers from cellulose Multi-functional air filtration

The NFs created an eco-friendly filter to remove indoor
pollutants like volatile organic compounds and
particulate matter.

[262]

Zein nanofibers coated by
carbon dots Dairy farming NFs were able to detect the pathogen Staphylococcus

aureus, which causes mammary infections in dairy cows. [263]

Cellulose nanofibers based
on lignin Farmland drainage

This nanofiber can utilize crop straw through an
FeCl3-mediated deep eutectic solvent biorefinery and
lignin-containing cellulose nanofibers flocculant
fabrication followed by P-fertilizer production.

[264]

Cellulose and carboxy-methyl
cellulose nanofibers Slow-release fertilization

Urea-loaded hydrogel applied via nanofibers enhanced
seed germination and plant growth through effective
and sustainable transport of fertilizer and water.

[265]

Cellulose nanofiber with
anthocyanins and
carbon nanodots

Applications in food
packaging NFs extended the shelf life of packaged perishable food. [266]

Poly-lactic acid nanofibers Active food packaging
This NF has strong antifungal activity that suppressed
the proliferation of microbes in the preserved grapes
and improved their quality.

[260]

Citrus insoluble nanofiber Producing fat replacers A composite NF gel showed potential as a fat replacer
and for inhibiting lipid digestion. [264]

Green nanofiber Delivery of active foods Curcumin-loaded starch-based fast-dissolving NF
showed promise in the pharmaceutical and food fields. [261]

Chitosan-based nanofibers Delivery of drugs Cellulose and chitosan derivative-based NFs showed
promise as biocompatible drug delivery systems. [267]

Starch-based nanofibers Monitoring of food freshness NFs can reflect food freshness as a degradable, non-toxic,
and smart food label with pH-sensitive nanofiber mats. [259]

9. Nano-Food Farming Challenges

Due to their effective and sustainable applications, nanomaterials (NMs) have emerged
as a key empowering technology for agro-production. The advantages may include their
higher target rate and delivery efficiency, less coagulation/aggregation, and higher stability
at reaction sites [268]. Several studies have reported on nano-enabled agriculture and
have focused on issues such as nano-enabled precision farming [17], nano-enabled farm-
ing [12,268], the nano-food industry [269], nano-enabled seed treatments [19,270], nano-
structured manganese oxides [271], nano-enabled agrochemicals [88,170,272], and nano-
Zn-enabled cropping systems [16]. Along with nano-enabled farming, nano-processed
food products have shown great promise for a variety of applications in the food indus-
try [269,273,274] using organic compounds such as chitosan [275], cellulose [276], and
proteins [277]. Inorganic nanoparticles have also been used in the food industry, includ-
ing nano-selenium [278], nano-silver [279], nano-iron [280], nano-zinc oxide [281], and
nano-titanium oxide [282]. The main challenges facing farming include climate change and
global warming, soil fertility loss, water scarcity, energy security, biodiversity loss, and
environmental deterioration (Figure 1). The suggested solutions include the integration of
farming practices, more applied farming system design and innovation, farming system
development and assessment, and sustainable farming management (Figure 9). For exam-
ple, an integrated nanocomposite that used protein-based nitrogen-doped CDs/TiO2-NPs
was successfully utilized for the photocatalytic degradation of pollutants like Cr VI [283].
More studies on the integration between mushrooms, CDs, nanofibers, and nano-nutrients
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are needed. The most important issue displayed in Figure 9 is the suggested integration
among the four studied sectors (proteins, mushrooms, nano-nutrients, and nanofibers).
Creating an integrated farming system is an important target that can be achieved utilizing
these types of suggestions. This should be the subject of additional investigations in the
future. For example, how can we maximize the benefits among these previously mentioned
four sectors? Could we produce CNDs from mushroom mycelium, nanofibers enriched
with nano-Se for therapeutic purposes, etc.?
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farming. Some selected applications are listed, focusing on the possible interactions among the four
studied sectors (source: collected and summarized from references in the review).

The nano-farming journey is not yet finished but will continue into the future with
enormous challenges left to overcome. These challenges are not only at the local, national,
and global levels but also represent challenges translating discoveries from the lab to the
field. Many of these challenges are summarized with the following questions:

- What are the main risks and benefits of nano-enabled agriculture?
- What are the full life-cycle studies of the nanomaterials utilized in agriculture?
- How do we effectively move our research from the laboratory to the field level?
- To what extent does the field scale remain a critical knowledge gap?
- To what extent is nano-enabled agriculture an emerging global issue for crop production?
- What are the knowledge gaps that should be addressed concerning nano-safety?
- To what extent can nanotechnology create safe and efficient delivery systems for food?
- What are the required regulations, biosecurity measures, and public concern issues

related to manufacturing, packing, and consuming nano-based food?

10. Conclusions and Further Perspectives

In concert with the increasing global population, we need to produce more food to feed
all people worldwide. At the same time, agriculture faces several obstacles that may cause a
significant decline in global food production and delivery. Nano-farming offers promising
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solutions that could make significant progress toward increasing global food production
while also increasing food quality and reducing food waste. This review of nano-farming
focused on four sectors: proteins, mushrooms, nano-nutrients, and nanofibers. These
sectors offer much opportunity to the agricultural industry. Each sector has the ability
to supply the agricultural and food industries with essential requirements for human
health. Protein-based NPs have promising applications in the food, therapeutic, and
pharmaceutical industries. Due to their good water solubility, bioaccessibility, and stability,
the nano-application of proteins has received increased attention in relation to their use as
carriers of bioactive ingredients for food and drugs. Many nano-applications have been
documented for edible mushrooms, including producing nanoparticles and bioactives
within mushroom-based nano-applications. Selenium and tellurium nano-nutrients and
CNDs offer several opportunities in the field of agri-food production beyond the obvious
application of nano-nutrients in crop production. Nanofibers have incredible possible
applications in irrigation and the food industry. It is important to note that there are still
many unknowns regarding nano-farming and there are many challenges that need to be
investigated so we can strike a balance between sustainable production and protecting
the agro-environment from potential nanotoxicity. Studies on nano-farming need to move
from the lab into the field and factory to address many of these challenges.
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