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Abstract: Accurate nitrogen fertilizer management determines the yield and quality of fruit trees,
but there is a lack of multispectral UAV-based nitrogen fertilizer monitoring technology for orchards.
Therefore, in this study, a field experiment was conducted by UAV to acquire multispectral images
of an apple orchard with dwarf stocks and dense planting in southern Xinjiang and to estimate the
nitrogen content of canopy leaves of apple trees by using three machine learning methods. The
three inversion methods were partial least squares regression (PLSR), ridge regression (RR), and
random forest regression (RFR). The results showed that the RF model could significantly improve
the accuracy of estimating the leaf nitrogen content of the apple tree canopy, and the validation set
of the four periods of apple trees ranged from 0.670 to 0.797 for R2, 0.838 mg L−1 to 4.403 mg L−1

for RMSE, and 1.74 to 2.222 for RPD, among which the RF model of the pre-fruit expansion stage of
the 2023 season had the highest accuracy. This paper shows that the apple tree leaf nitrogen content
estimation model based on multispectral UAV images constructed by using the RF machine learning
method can timely and accurately diagnose the growth condition of apple trees, provide technical
support for precise nitrogen fertilizer management in orchards, and provide a certain scientific basis
for tree crop growth.

Keywords: drone multispectral; machine learning; remote sensing inversion; apple tree

1. Introduction

Nitrogen is the basic constituent of protein, chlorophyll, amino acids, and other key
organic molecules [1] and is a key indicator of plant growth and also the main concern
of precision agriculture. Nitrogen deficiency dictates the synthesis of other substances,
such as chlorophyll and amino acids, thereby reducing the photosynthetic capacity of
plants [2], which in turn affects crop growth, yield, and quality, posing a risk to food
security [3]. However, the overuse of nitrogen is harmful to the environment [4], mainly
due to the evaporation of nitrogen in the atmosphere and leaching into the groundwater,
resulting in water and atmospheric pollution as well as the risk of greenhouse gas (GHG)
emissions; but globally, especially in Europe, nitrogen overuse has slowly become less
threatening. Therefore, there is a growing need for precise nitrogen fertilizer management
strategies [5,6].

The evaluation of plant nitrogen status is mainly focused on estimating leaf nitro-
gen content [7–9]. Therefore, researchers usually use differences in plant varieties and
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growth stages as the basis for diagnosing plant nitrogen nutrition. Traditional nitrogen
determination requires destructive sampling and has a time lag. With the development of
remote sensing technology, the monitoring of plant nitrogen has new technical support.
Ground-based remote sensing has the irreplaceable advantages of being free from sunlight,
soil, and weeds [10], such as when using Multiplex®3 (Dynamax, Elkhart, IN, USA) [11],
Dualex 4 (Force-A, Orsay, Paris, France) [12–14], and other proximal remote sensing sen-
sors, and has produced excellent results. However, it still requires a lot of repetitive work
at the test site and only obtains spectral information from a single location, making it
difficult to realize nitrogen content monitoring on a large regional scale. Satellite remote
sensing platforms can realize nitrogen content monitoring on a regional scale, and there
have been several results produced using this method [15,16], but the resolution of satellite
remote sensing is low, and satellite images have a fixed transit date, so the flexibility of
obtaining satellite remote sensing images is not high. Some scholars also use methods such
as remote sensing, topographic maps, and geographic information system (GIS) analysis to
estimate tree crown characteristics. Valjarević et al. [17] used these methods to reconstruct
forest conditions in the Toplica region over a period of nearly 60 years. Zhou et al. [18]
investigated the differences in park access by race/ethnicity in six medium-sized Illinois
cities, and differences in canopy cover were also examined using a variety of classification
techniques to calculate the number of canopies in a community.

In recent years, UAV remote sensing has gradually become the mainstream method
of digital precision agriculture in the field of remote sensing in agriculture due to some
advantages such as its small size, flexibility, portability, low cost, etc., and has been suc-
cessfully applied to the prediction of crop chlorophyll [19] and crop yield [20]. The camera
carried by the UAV usually acquires visible, multispectral, and hyperspectral images, and
their main difference lies in the differences in the number of bands, resolution processing
methods, etc. The spectral information of UAV remote sensing images is extracted to calcu-
late the vegetation index, and the screening of sensitive variables can effectively remove
the redundant information in the vegetation index, reduce the complexity of the model
inversion, and thus improve the model accuracy. For example, Noguera et al. [21] extracted
the multispectral UAV information of the olive tree canopy and constructed a prediction
model for nitrogen, phosphorus, and potassium content of the olive tree canopy. Prado
Osco et al. [22] extracted the spectral information of the multispectral images combined
with a machine learning method to predict the nitrogen concentration of the citrus tree
canopy. The same research method was sampled to estimate the nitrogen concentration of
the crop in different tree crops, and better research results were achieved [23,24]. However,
few of the available research crops have predicted canopy leaf N content for apple trees.

Apple occupies an important position in China’s fruit production, and its planting
area and production are located at the forefront of global food production. Due to the
unique geographical environmental and climatic characteristics, the Xinjiang production
area is the only independent production area among the six major apple production areas
in the country, and the output accounts for about 4.5% of the national total output, while
South Xinjiang is the main production area in Xinjiang. Plant growth monitoring plays an
important role in apple yield and quality enhancement. In southern Xinjiang, orchards have
large areas and a low level of precision management of irrigation and fertilizer application.
Traditional methods for measuring the water and nutrient status of orchards require a
large amount of fieldwork, which is undoubtedly time-consuming and labor-intensive [25].
The development of UAV remote sensing provides a feasible way to accurately monitor
the plant growth of orchards. Caruso et al. [26] used multispectral UAV map images and
thermograms to monitor olive tree water status, canopy growth, and yield and concluded
that there are different effects on fruit tree growth and yield under different irrigation
conditions, etc. Apolo et al. [27] estimated the yield and size of citrus trees using a stick
method combining UAVs and deep learning. Arakawa et al. [28] estimated the yield and
size of citrus trees using a machine learning method combining UAV and UAV visible light
images to estimate the yield of chestnut fruits on trees. Zhang et al. [29] used ground-space
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remote sensing fusion to invert the nitrogen content of orchard canopies. Fruit trees are
perennials that grow and develop differently from annual crops, and the complexity of
their canopies still leaves gaps in the monitoring of canopy moisture and nutrient status.

Therefore, the objective of this paper was to invert the nitrogen content of the apple
tree canopy of an orchard with dwarf stocks and dense planting in southern Xinjiang using
three different methods based on spectral data imaged by an unmanned aerial vehicle
(UAV). The methods used include partial least squares regression (PLSR), mountain ridge
regression (RR), and random forest regression (RF).

2. Materials and Methods
2.1. Study Area

The field experiment was carried out in an apple orchard (40◦39′ N, 81◦16′ E, average
elevation 1013 m) with dwarf stocks and dense planting located in Alar City (Figure 1),
Xinjiang, China. The experimental region has a typical arid climate. Changes in mean
annual temperature and rainfall are shown in Figure 2, while the annual evaporation is
as high as about 2100 mm, and the average annual total solar radiation is 552.73 kJ cm2,
with an average annual sunshine duration of 2900 h, a frost-free period of 203 d, and a
fluctuating groundwater level of less than 3.0 m. The area of experimental plots is 2100 m2,
the soil texture is sandy loam, the field water capacity of 0–120 cm layer is 18.5%, the soil
density is 1.51 g cm−3, and the basic physical and chemical properties of the soil are shown
in Table 1.
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Table 1. Basic soil physical and chemical properties in the experimental site.

Organic Matter
(g kg−1)

Available Phosphorus
Content

(mg kg−1)

Available Boron
Content

(mg kg−1)

Available Potassium
Content

(mg kg−1)

Alkali Hydrolyzed
Nitrogen Content

(mg kg−1)

11.05 7.2 0.6 33 18.4
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Figure 2. Average fruit tree fertility and rainfall.

2.2. Experimental Design

The variety was 5-year-old ‘Royal Gala’ with row spacing of 3.5 m × 1 m and plant
height of about 4.5 m. The plant was grown in the same row. Five irrigation ratings of
13.5 mm (W1), 18 mm (W2), 22.5 mm (W3), 27 mm (W4), and 31.5 mm (W5) were set up,
and the irrigation regime was as shown in Table 2. Figure 2 shows the temperature and
rainfall during the experimental period of 2022 and 2023. The drip irrigation method was
one row and one pipe, with a drip head flow rate of 4 L/h, a drip hole spacing of 30 cm,
and drip pipes arranged on bamboo poles 50 cm above the ground.

Table 2. Table of irrigation regimes.

Vintages Treatment Flooding Quota Number of Wa-
terings/Times

Irrigation
Quota/mm

2022

W1 13.50 21 283.50
W2 18.00 21 378.00
W3 22.50 21 472.50
W4 27.00 21 567.00
W5 31.50 21 661.50

2023

W1 13.50 21 283.50
W2 18.00 21 378.00
W3 22.50 21 472.50
W4 27.00 21 567.00
W5 31.50 21 661.50
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2.3. UAV Imagery of Apple Tree Canopy

A DJI M600 UAV equipped with a Micro-MCA Snap multispectral imager (Tetracam
Inc., Chatsworth, CA, USA) was used to acquire cotton canopy images, as shown in Figure 3.
The Micro-MCA Snap multispectral camera captures bands from 450 nm to 1000 nm, with
a sensor of 1.3 million pixels and a lens focal length of 9.6 mm, and the sensor parameters
are listed in Table 3. The maximum flying altitude of the aircraft is 2500 m, the maximum
flying speed is 18 m/s, and the hovering accuracy is 0.5 m vertically and 1.5 m horizontally.
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Table 3. Multispectral camera sensor parameters.

Band Name Center Wavelength (nm) Band Width (nm)

NIR1 (near-infrared 1 band) 800 80
B (blue light band) 490 80

G (green light band) 550 70
R (red light band) 680 80
RE (red side band) 720 100

NIR2 (near-infrared 2 band) 900 140

2.4. Multispectral Imaging and Spectral Data Acquisition
2.4.1. Multispectral Image

Multispectral imaging took place on 1 May (flowering and fruiting period), 4 July
(pre-expansion period), and 2 August (post-expansion period) in 2022 season and on 12
July (pre-expansion period) in 2023 season. Each flight was flown between 12:00 and 16:00
when the sky was clear and less cloudy and when the field of view was wide and suitable
for UAV flight. The drone was set to fly at an altitude of 50 m [30], with a set airspeed of
7 ms−1 and an 85% overlap between the heading and the side image. The Micro-MCA Snap
multispectral camera has a focal length of 9.6 mm, lens shot 90 degrees vertically down,
an image size of 1280 × 1024, and a ground resolution of approximately 4 cm. Ground
identification markers were laid down before the aircraft flew, and the sampling points
were fixed for each flight, and the images taken by the UAV contained the entire test area,
which could be clearly labeled in the images. The sampled spectral information can be
extracted using ArcGIS.
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2.4.2. Spectral Data Acquisition and Processing

For the multispectral images of the apple trees taken by the UAV in three periods,
the pix4dmapper software (pix4, Lausanne, Switzerland) was used to stitch together
the successive photographs to obtain multispectral images in six separate bands. Band
synthesis was then performed using ENVI5.6 software (EVIS, Charlottesville, VA, USA)
to obtain a six-band multispectral image, and the file was exported to TIF format for
post-processing. Next, the spectral image was cropped using ArcGIS 10.8 software (ESRI,
Redlands, CA, USA) to obtain the target region. ArcGIS 10.8 software was used to extract
the pixel reflectance of each sampling point.

2.5. Total Nitrogen Content of Apple Leaves

Total nitrogen content was determined by the Kjeldahl method [31]. The day after
the drone flew at each fertility stage, the leaves were collected, 60 sampling points were
randomly selected in the experimental area, and 90 sampling sites were selected in the
pilot area in 2023. The leaves were picked uniformly in each plot. To ensure no loss of
nitrogen content in apple leaves, the leaves were dried at 60 ◦C for one week, and the dried
leaves were ground and sieved through a 0.2 mm sieve. A total of 0.2 g of leaf sample
was heated in 5 mL of concentrated sulfuric acid at a concentration of more than 95%, and
catalytic boiling was carried out with hydrogen peroxide at a concentration of 30%. The
decocted solution was subjected to an AA3 Continuous Flow Analyzer (SEAL, Norderstedt,
Germany) to test the nitrogen content of the samples.

2.6. Determination of Vegetation Index

Vegetation indices formed by combining reflectance of different bands can eliminate
the interference of external factors and improve the sensitivity of target parameters. In this
paper, 14 vegetation indices (Table 4), which are closely related to the nitrogen status of
fruit trees, were selected to establish a prediction model for the nitrogen content of apple
tree canopy leaves at different fertility periods.

Table 4. Calculation of the vegetation index.

Vegetation Index Formula References

VARI (G − R)/(G + R − B) [32]
NRI (G − R)/(G + R) [33]
SAVI (1 + 0.5) × (NIR − R)/(NIR + R + 0.5) [34]
EVI 2.5 × (NIR − R)/(NIR + 6 × R − 7.5 × B + 1) [35]
R-M NIR/RE − 1 [36]

NDRE (NIR − RE)/(NIR + RE) [37]
GOSAVI 1.16 × (NIR − G)/(NIR + G + 0.16) [38]
OSAVI 1.16 × (NIR − R)/(NIR + R + 0.16) [39]

GBNDVI NIR − G + B/NIR + G + B [40]
NDVI (NIR − R)/(NIR + R) [41]
RVI NIR/R [42]
DVI NIR − R [43]

GNDVI NIR − G/NIR + G [40]
TVI 0.5 × (120 × (NIR − G) − 200 × (R − G) [44]

Note: R is the red band, G is the green band, NIR is the near-red band, and RE is the red edge band.

2.7. Machine Learning Models

In this paper, we used Python learning platform to divide the modeling set and
validation set in the ratio of 7:3, with leaf nitrogen content of fruit trees at each reproductive
stage as the dependent variable and vegetation index as the independent variable. Firstly,
the nitrogen content estimation models of each fertility period were established to explore
the optimal spectral indices, and secondly, partial least squares regression (PLSR), ridge
regression (RE), support vector machine regression (SVR), and random forest regression
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(RFR) models were constructed. The accuracy of the canopy nitrogen content of apple trees
in each model was estimated to select the optimal model.

PLSR [45] is an innovative bilinear regression method for evaluating multivariate
statistics. RR [46] is a biased estimation regression method dedicated to the analysis of
covariate data and is a modified partial least squares estimator, but it is superior to the
partial least squares method in fitting certain data. RFR [47], proposed by Breiman in 2001,
generates a training set by integrating the decision tree and averaging the predictions after
continuous regression and multiple sampling of the samples.

2.8. Model Evaluation Analysis

In this paper, a model for estimating the nitrogen content of fruit tree canopy leaves
was evaluated using the coefficient of determination (R2), root mean square error (RMSE),
and relative prediction deviation (RPD). The calculation formulae are given in
Equations (1)–(3).

R2 = 1− ∑n
i=1
(

f i− y)2

∑n
i=1( f i− y)2 (1)

RMSE =

√
∑n

i=1( f i− y)
n

(2)

RPD =
SD f i

RMSE
(3)

where n is the number of samples, fi is the measured value, y is the predicted value, SD f i is
the standard deviation, and y is the average of the measured values.

The correlation between nitrogen content and each vegetation index was determined
using the Pearson correlation coefficient. The correlation coefficient is generally expressed
as r, with a range of [−1, 1]. When r = 0, it indicates that there is no linear relationship
between the two variables; when r is less than 0, it indicates a negative correlation; and
when r is greater than 0, it indicates a positive correlation. When the absolute value of r is
in (0, 0.2), there is a very weak correlation; when it is (0.2, 0.4), there is a weak correlation;
when it is (0.4, 0.6), there is a medium correlation; when it is (0.6, 0.8), there is a strong
correlation; and when it is (0.8, 1), there is a very strong correlation. In this paper, vegetation
indices with absolute values of correlation greater than 0.4, i.e., above moderate correlation,
are selected for modeling. The calculation formula is shown in Equation (4).

r =
[∑n

i=1 (xi− x)(yi− y)] 2

∑n
i=1(xi− x)2∑n

i=1(yi− y )2 (4)

where xi and yi are the values of the two variables, and x and y are the mean values of
the variables.

The closer the R2 is to 1, the smaller the RMSE, the better the model, and the RPD
is the ratio of the standard deviation (SD) to the root mean square error (RMSE) of the
test set, which indicates that the model has no predictive ability when the RPD is <1.4.
During the construction of the model for estimating nitrogen concentration in apple tree
canopy leaves, a network search was used to determine the super parameters, and the
optimal parameters of each model were identified by h (h is an arbitrary number) times the
cross-validation comparisons.

The technical roadmap of this study is shown in Figure 4.
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3. Results
3.1. Relationships between the Nitrogen Content of the Canopy Leaves and Vegetation Index

The statistical description of the nitrogen content of the canopy leaves of apple trees
in each reproductive period is shown in Table 5. Due to the dilution effect, the nitrogen
content of the apple tree canopy leaves decreased as fertility increased.

Table 5. Statistical description of the nitrogen content of apple tree canopy leaves.

Growth Phase Number of
Samples

Maximum
Value (mg/L)

Minimum
Value (mg/L)

Average Value
(mg/L)

Standard
Deviation

CV
(%)

Whole 180 57.25 16.52 28.42 7.96 28.0
Flowering 60 57.25 23.02 36.66 7.27 19.8

Preliminary 60 34.96 21.12 27.57 2.95 10.7
Expansion 60 27.62 16.52 21.04 2.27 10.8

Preliminary2 80 43.94 22.66 33.31 4.66 14

In this study, Pearson’s phase relationship was used to analyze the correlation between
canopy leaf nitrogen content and the vegetation index of fruit trees. Origin was used to
produce correlation heatmaps, and the numbers indicate the correlation between them;
when the correlation is higher, the corresponding pattern is larger and darker. Figures 5–7
show the correlation between the leaf nitrogen content of fruit trees and vegetation indices
in 2022 for each reproductive stage. The results show that among the 14 vegetation indices
selected, the leaf nitrogen content of fruit trees in each reproductive stage was positively
correlated with vegetation indices, and the correlation was concentrated in the range
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between 0.4 and 0.7. Figure 8 shows the correlation between the N content of fruit trees and
vegetation indices during the pre-fruit expansion period in 2023, and the results showed
that all vegetation indices except DVI were positively correlated with N content.
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3.2. Machine Learning Model Analysis for Estimating Nitrogen Content of Apple Leaves

Figure 9 shows the estimated model for estimating the canopy leaf nitrogen content of
fruit trees at each fertility stage using the PLSR model. During the three fertility periods
of fruit trees in 2022, pre-fruit expansion and post-fruit expansion, the validation set R2

varied in the range of 0.574 to 0.575, and the RMSE varied in the range of 1.904 mg·L−1 to
1.908 mg·L−1, indicating that the accuracy of estimation using the PLSR model was similar
during these two fertility periods. And at flowering and fruiting, it had a validation set of
R2 = 0.690 and RMSE = 3.942 mg·L−1, and at pre-fruit expansion in 2023, it had a validation
set of R2 = 0.650 and RMSE = 2.780 mg·L−1. As far as the modeling set is concerned, the
best fertility period for predicting the leaf nitrogen content of fruit trees using the PLSR
model was the late fruit expansion stage in 2022. It had the highest modeling set R2 and
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the smallest RMSE among all the fertility periods, with R2 = 0.729, RMSE = 1.001 mg·L−1,
and RPD = 1.922, which had a certain prediction effect.
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Figure 10 shows the estimated model for estimating canopy foliar N content of fruit
trees at various fertility stages using the RR model. The validation set R2 varied between
0.480 and 0.628, and the RMSE ranged from 1.134 to 3.651 during the three fertility periods
of the fruit trees, 2022, pre-fruit expansion and post-fruit expansion, whereas the validation
set for the 2023 pre-fruit expansion was R2 = 0.559 and RMSE = 2.568 mg·L−1. As far
as the modeling set is concerned, the best fertility period for predicting the leaf nitrogen
content of fruit trees using the RR model was the late fruit expansion stage in 2022. It
had the highest modeling set R2 and the lowest RMSE among all the fertility periods with
R2 = 0.707, RMSE = 1.079 mg·L−1, and RPD = 1.847.
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The validation results of the RF model in predicting the nitrogen content of fruit tree
leaves at all fertility stages are presented in Figure 11. Its validation set R2 varied from 0.570
to 0.758, and RMSE varied from 0.838 mg·L−1 to 4.403 mg·L−1 during the three fertility
periods of the fruit trees in 2022, and its validation accuracy became higher, and RMSE
decreased as the fertility period progressed, indicating that the accuracy of the model
improved. It also had a good validation set of R2 = 0.797, RMSE = 1.891 mg·L−1, and
RPD = 2.222 in 2023 during the pre-fruit expansion period.
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3.3. Comparison of Model Accuracy

The RPD of the validation set was further utilized to assess the accuracy of the esti-
mation of canopy leaf nitrogen content of fruit trees at various fertility stages, as shown in
Figure 12. At the flowering and fruiting stage in 2022, the highest accuracy was predicted
using the PLSR model, which had a predictive effect of RPD = 1.797 (>1.4), followed by
the RF model, which had a predictive effect of RPD = 1.74 (>1.4), and lastly, the RR model,
which had a predictive effect of RPD = 1.639 (>1.4). In the pre-expansion period of 2022, the
highest accuracy was obtained by using the RF model, which had an RPD = 1.745 (>1.4),
followed by the RR model and the PLSR model, which had an RPD = 1.536 (>1.4) and 1.535
(>1.4), respectively, indicating that both of them had similar prediction effects. At the late
fruit expansion stage in 2022, the highest accuracy was obtained using the RF model with
an RPD = 2.034 (>1.4), followed by the PLSR model with an RPD = 1.532 (>1.4), and lastly,
the RR model with an RPD = 1.387 (<1.4), indicating that the model was not effective in
prediction at this fertility stage. In 2023, the best prediction in the pre-expansion stage of
the fruit was made using the RF model, which had an RPD = 2.222 (>1.4), followed by the
PLSR model, which had an RPD = 1.692 (>1.4), and lastly, the RR model, which had an
RPD = 1.507 (>1.4), which was effective in making a prediction. Overall, the RF model was
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used to predict the canopy leaf nitrogen content of fruit trees with good predictive effect at
all fertility stages.
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4. Discussion
4.1. Estimation of Nitrogen Content Using Vegetation Index as the Independent Variable

Due to the different absorption and scattering effects of incident light in different
wavelength bands, vegetation indices are able to develop specific spectral response charac-
teristics [48]. In this study, Pearson correlation analysis was used to obtain the correlation
between 14 vegetation indices and the nitrogen content of fruit tree leaves at various fertility
stages. The results showed that the correlations between vegetation indices and nitrogen
content were inconsistent at different fertility stages, which was similar to the results of
the correlation analysis between vegetation indices and nitrogen concentration of winter
wheat plants in the study by Chen et al. [49]. Sensitive variables can effectively remove
the redundant information of vegetation indices, reduce the complexity of the model, and
thus improve the validation accuracy of the model. Some scholars have already conducted
studies in this regard, such as Liu et al. [50], who constructed the model using seven kinds
of vegetation indices after screening, which greatly improved the validation accuracy of
the model.

4.2. Estimation of Nitrogen Content of Fruit Tree Canopy Leaves Based on Different
Inversion Methods

In this study, three different inversion methods were used to estimate fruit tree leaf
nitrogen content based on canopy multispectral data. Compared to the RF model, both the
PLSR model and the RE model have lower model accuracy, as shown in Figures 9 and 10
of the revised version. This is because the RF algorithm is able to solve non-linear problems
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and does not need to do any feature selection, the generalization error is estimated using un-
biased estimation when creating the random forest algorithm, and the model generalization
is strong. While the PLSR model and the RE model are both linear regression models, they
are weak in terms of problem-solving ability. The three selected regression models, PLSR,
RR, and RF, can be categorized as linear machine learning models and non-linear machine
learning models, where RF is non-linear. Among the linear models, PLSR performed more
prominently at all fertility stages, with predictive performance at all fertility stages of fruit
trees, with RPDs greater than 1.4, whereas RR did not have predictive performance at
the later stages of fruit expansion in 2022 (RPD < 1.4). The two models performed more
similarly at other fertility stages, probably because RE, as a modified PLSR regression
model [45,46], is more similar in its ability to deal with analytical problems, and both are
able to deal with some multicollinearity problems, resulting in more similar results.

The RF model, on the other hand, showed strong ability. It had good performance
in all four fertility periods of fruit trees, and their validation set R2 was higher than 0.7 or
more and RPD was greater than 2.0 or more at the late fruit expansion stage in 2022 as well
as at the pre-fruit expansion stage in 2023, which provided excellent prediction ability. The
study by Zha et al. [51] showed that when estimating the nitrogen nutrient index (NNI)
of rice based on remote sensing by unmanned aerial vehicle (UAV), the RF model had the
best accuracy, and the study by Osco et al. [52] reached the same conclusion. Of course,
similar conclusions were found not only in estimating crop N content, N concentration,
and NNI but also for other growth indicators. Wang et al. [53] showed that the use of the
RF regression model can provide more accurate prediction accuracy for the prediction of
leaf area index in rice, and the results of this study are consistent with this paper. Zheng
et al. [24] estimated the nitrogen content of winter wheat leaves using multispectral UAV
images combined with machine learning methods, and the results showed that the RF
algorithm had the best performance. Barzin et al. [54] compared eight different machine
learning methods to predict the nitrogen content of maize leaves using UAV images, and
the results showed that the RF algorithm was one of the best-fitting models.

4.3. Insufficient Research

In this study, only the vegetation index was chosen as the independent variable to
construct the prediction model of nitrogen content, which, in general, has some limitations
to the improvement of model accuracy, while some studies have shown that the use of
an approach based on the combination of the vegetation index and texture features can
effectively improve the accuracy of the model, and the combination of the nitrogen content
of plant leaves with the spectral information of the spectral data and the texture information
of the image can improve the nitrogen prediction accuracy and generalization ability of
the model [55,56]. The fusion of spectral and texture features is beneficial to alleviate
the shortcomings of spectral analysis techniques with low sensitivity, thus improving the
robustness of nitrogen prediction models [55]. Yan et al. [56] constructed a chlorophyll
content prediction model based on the combination of spectral and texture features by com-
paring two algorithms, BPNN and SVM, and achieved better prediction results. Compared
with other studies, this study has the problems of more influencing factors and a relatively
small number of samples. Therefore, the subsequent optimization of the inversion model
will consider different crops and increase the sample data to further improve the accuracy
of the model application.

5. Conclusions

In this study, the multispectral UAV technology was used to estimate the total nitrogen
content of apple trees in the flowering and fruiting stage, the pre-fruit expansion stage,
and the post-fruit expansion stage in the southern border by utilizing linear parametric
regression and machine learning regression. The results showed that machine learning
regression was able to significantly improve the estimation accuracy of the full nitrogen
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content of canopy leaves of fruit trees in South Xinjiang, especially the RF algorithm, which
had higher accuracy in all three periods of fruit trees.

Therefore, it is estimated that the best choice for estimating the whole nitrogen content
of fruit tree canopy leaves during the reproductive period based on multispectral UAV
imagery is to use the machine learning method, and the RF algorithm can obtain the
most prominent effect, which can provide a theoretical basis for the precise management
of orchards.
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Abbreviations

PLSR partial least squares regression
RR ridge regression
RFR random forest regression
SVR support vector regression
VARI visible atmospheric impedance index
NRI nitrogen reactivity index
SAVI soil conditioning vegetation index
EVI enhanced vegetation index
R-M red edge model
NDRE normalized red edge difference
GOSAVI optimized green band soil-adjusted vegetation index
OSAVI optimized soil-adjusted vegetation index
GBNDVI normalized blue–green band difference vegetation index
NDVI normalized difference vegetation index
RVI ratio vegetation index
DVI difference vegetation index
GNDVI green band normalized vegetation index
TVI triangle vegetation index
RMSE root mean square error
RPD relative prediction deviation
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