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Abstract: Drought, a crucial abiotic stressor, markedly reduces the growth and yield of tomato crops
(Solanum lycopersicum L.). Consequently, adopting drought-resistant cultivars and implementing
breeding programs to enhance drought tolerance have emerged as enduring solutions to alleviate
the adverse effects of drought in various tomato cultivation regions. In this study, 68 United States
Department of Agriculture (USDA) tomato accessions were assessed in a controlled greenhouse
experiment, encompassing both water deficit treatment and a control group subjected to standard
watering conditions. The experiment was arranged in a randomized complete block design with
three replications. The results of this study pinpointed four accessions, PI 365956, PI 584456, PI
390510, and PI 370091, as drought-tolerant accessions. Additionally, high broad-sense heritability
was revealed for leaf wilting, leaf rolling, and SPAD chlorophyll content (total leaf chlorophyll).
Furthermore, positive correlations were found among parameters associated with leaf wilting, leaf
rolling, and SPAD chlorophyll content. The findings offer valuable insights for tomato breeding
initiatives, especially those focused on enhancing drought tolerance in elite cultivars. Future studies
will expand the evaluation to include a larger pool of tomato accessions and conduct a genome-wide
association study to identify single nucleotide polymorphism (SNP) markers for molecular breeding
in tomatoes.

Keywords: tomato; Solanum lycopersicum; drought; drought tolerance; leaf wilting; leaf rolling; plant
height; total leaf chlorophyll

1. Introduction

Global environmental shifts have become an undeniable reality [1], marked by an
escalation in extreme aridity or drought, heat, and floodwaters [1–4]. These occurrences are
growing in both frequency and intensity [5]. These factors bear significant and immediate
consequences for the agricultural sector, resulting in diminished productivity [3,6], leading
to reduced food supply, elevated food prices, and adverse effects on the livelihoods of
many households [5–8].

Among all the factors adversely affecting sustainable crop production, drought, re-
ferred to as deficit irrigation or soil water deficit [9], has emerged as a pervasive global
challenge, representing a substantial agricultural catastrophe. The crop and yield losses re-
sulting from drought surpass the cumulative impact of other environmental factors [10,11].
Approximately 25% of the world’s population is at risk due to drought, with the majority
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hailing from developing countries in Africa and Asia [10]. Thus, it is important to develop
drought-tolerant cultivars through rigorous screening and selection processes [12,13].

Tomato (Solanum lycopersicum L.) is widely cultivated in the open field and greenhouse
and is a widely consumed horticultural crop, with wild accessions demonstrating signifi-
cant resilience to drought conditions, unlike the cultivated accessions [14,15]. Despite this
resilience, the global cultivation of tomatoes is exposed to the prominent abiotic constraint
of drought. For optimal growth and yield, tomatoes require a continuous water sup-
ply [16–18]. The impact of drought stress on tomato yield varies based on soil and climatic
conditions [16,19]. Short periods of water deficit result in both qualitative and quantitative
losses in fruit production [16]. Inadequate water availability negatively impacts multiple
aspects of tomato plant growth and overall yield [16]. Additionally, irrigation costs con-
tribute to more than 10% of the total expenses in tomato cultivation, posing a considerable
financial risk to tomato production. Therefore, it is crucial to implement measures that can
alleviate the substantial expenses associated with supplying water to tomato crops [20].
Addressing farmers’ needs, the development of drought-tolerant tomato varieties is a key
focus in contemporary breeding programs [21–24].

The occurrence of severe drought stress limits plant development by curtailing the pho-
tosynthetic rate, causing wilting, stomatal closure, reduced water content, and decreased
growth and cell size [25,26]. However, crop varieties displaying strong drought tolerance
tend to uphold an elevated photosynthetic rate, substantial growth, and slow plant wilting
even in drought conditions, as described and cited by Cui et al. [10] and Ravelombola et al.
(2020) [27]. The identification of such varieties relies on two principal dimensions: adapt-
ability in crop structure and internal organization, and the adaptability of physiological
and biochemical responses in plants. Commonly utilized indicators for this assessment
encompass morphological characteristics, markers related to growth and development, as
well as indicators associated with physiological and biochemical processes.

Ensuring global food security demands the strategic development of plants that can
withstand stress and maintain stable yields in challenging environments [28]. Traditionally,
breeders focused on increasing crop yields, resulting in a shortage of modern varieties
with stress tolerance [29]. Contemporary plant breeding now prioritizes enhancing stress
resilience by exploring ancestral varieties (landraces) and leveraging wild relatives of im-
portant crops known for their beneficial stress-tolerant traits [30]. Incorporating wild crop
relatives provides a strong foundation for discovering new genes and understanding the
mechanisms behind physiological adaptations [31]. Concerning tomatoes, undomesticated
species inherently exhibit adaptability to diverse soil and climatic conditions. Studies
by [32] illustrate these adaptive traits. Such adaptations play a pivotal role in the devel-
opment of genetic constitutions that demonstrate increased tolerance to abiotic stresses as
indicated by Gong et al. [25], Wang et al. [33], and Yang et al. [34].

Around the globe, there are over 62,800 varieties of cultivated (S. lycopersicum) and
wild tomatoes (S. pimpinellifolium and other Solanum species), mostly belonging to the S.
lycopersicum species, preserved in gene banks [14], including repositories such as the Asian
Vegetable Research and Development Center (AVRDC) located in Tainan, Taiwan, China,
the Plant Genetic Resources Unit at Geneva (PGRU) under the United States Department
of Agriculture (USDA) in New York, USA, and the CM Rick Tomato Genetics Resource
Center (TGRC) situated at the University of California, Davis, in California, USA. The gene
banks are a basis of successful genetic improvements due to the preservation of genetic
variation [13]. Considering the observed diversity and differing stress responses among
various cultivated and wild tomato varieties, the existence of gene banks accommodating a
wide range of tomato accessions presents a valuable resource for breeders. This enables
the screening and selection of drought-tolerant cultivars. This study aimed to evaluate
the effects of drought stress on 68 tomato accessions from the United States Department
of Agriculture (USDA) at a seedling stage. The goal was to identify potential drought-
tolerant accessions that can serve as parent plants in subsequent tomato breeding programs,
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with a focus on enhancing genetic resistance or tolerance to drought stress and providing
information for genetic study.

This paper presents a comprehensive evaluation presented in the Master’s thesis
by Chiwina [35]. The research, conducted at the University of Arkansas, explored the
complexities in understanding and enhancing drought tolerance in tomato.

2. Materials and Methods
2.1. Plant Material

Sixty-eight USDA tomato germplasm accessions were used for drought tolerance
evaluation in this study. Out of 68 accessions, 14 (20.6%) were originally collected from the
United States; 9 from Canada; 5 from Peru; and the remaining 40 from 24 other countries
(Supplementary Table S1).

2.2. Evaluation for Drought Tolerance

Evaluation of tomato accessions was performed in a greenhouse with natural lighting
at the Arkansas Agricultural Research and Extension Center, Fayetteville, AR (Figure 1A)
between January 2023 and February 2023. During the experiment, the greenhouse tempera-
ture and relative humidity were kept at 21/18 ◦C in the day/night and 73%, respectively.
The temperature and relative humidity variables in the greenhouse were monitored using
a WADSWORTH Control System 1.800.821.5829. The screening procedure was followed as
described in previous reports by [36–38], with slight modifications.
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Figure 1. Drought tolerance treatment in a greenhouse and measurement: (A) tomato plants,
(B) 0–9 scale for leaf wilting, and (C) 1–9 scale for leaf rolling.

Five seeds of each tomato accession were sown in pots (8.5 cm high, 8.5 cm top
diameter, and 5.8 cm base diameter) placed in trays (52 cm long, 26 cm wide, and 6 cm
high). Each tray contained 12 pots filled with commercial compost (Berger, berger.ca, BM 6)
up to 8 cm in 1 day before seeds were sown. Soon after seed sowing, each pot and tray
were filled with 300 mL and 2 L of water, respectively. After the initial irrigation, the
pots and trays were left unirrigated for 6 days. After seed germination, each pot kept at
most three plants, and extra plants were removed if the pot had more than three plants.
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Subsequently, a consistent irrigation schedule of 180 mL per pot was implemented every
3 days for 28 days, preceding the initiation of the drought treatment.

During the study, 180 mL of liquid (0.5 teaspoon per gallon or 3.8 L) fertilizer (Miracle-
Gro Water Soluble All Purpose Plant Food 24-8-16), containing ammoniacal nitrogen (N)
(3.5%), urea nitrogen (N) (20.5%), available phosphate (P2O5) (8%), soluble potash (K2O)
(16%), boron (B) (0.02%), water-soluble copper (Cu) (0.07%), chelated iron (Fe) (0.15%),
manganese (Mn) (0.05%), molybdenum (Mo) (0.0005), and water-soluble zinc (Zn) (0.06%),
was applied in liquid form to each pot every 10 days (and every 14 days in subsequent
applications following seed sowing), before the plants were exposed to drought treatment.

The experiment was a randomized complete block design (RCBD) with three blocks,
organized in a split-plot manner under greenhouse conditions, with the drought treatment
as the main plot and the tomato accessions as the subplot. During the experiment, thinning
was performed 15 days after planting. Three plants per pot were kept for each tomato
accession in a block. The drought treatment was applied to the tomato plants 35 days after
seed sowing until susceptible genotypes were completely dead approximately 10 days
without watering in this study, showing vulnerability to water scarcity conditions. The
control treatment was constantly maintained with 180 mL of tap water every 3 days.

2.3. Measurements

Measurements on plant height, leaf wilting, leaf rolling, and SPAD chlorophyll content
(total leaf chlorophyll) were recorded. Plant height was measured from each plant per
accession in each replicate for the drought-stressed and non-drought-stressed plants in
10 days after drought stress was initiated.

Visual assessment of leaf wilting and leaf rolling were performed based on a scale
of 0 to 9 (Figure 1B) and 1 to 9 (Figure 1C), respectively (Table 1), with slight modifica-
tions based on the symptoms associated with leaf drying and folding [37–39]. The scores
were recorded for each plant of the genotypes in the drought treatment, and the average
score in each accession was calculated to determine the drought tolerance response under
drought treatment.

Table 1. Visual assessment of leaf wilting and leaf rolling on a scale of 0 to 9 and 1 to 9, respectively,
in 68 tomato accessions assessed for drought tolerance.

Category * Leaf Wilting Leaf Rolling Stage

0 Normal (not wilted)
1 Slightly wilted No symptom of leaf rolling

2 Slight wilting—minimal signs of leaf wilting, but
overall plant health was relatively unaffected Minimal leaf rolling: Slight curling of a few leaves

3 Wilted leaves, with loss of turgidity, but the plant
remains moderately healthy

Mild leaf rolling: Some curling and folding of a small
number of leaves

4 Moderate wilting—significant wilting observed in
several leaves, indicating a moderate level of stress

Moderate leaf rolling: Noticeable curling and folding
of several leaves.

5 Moderate to severe wilting—a substantial number
of leaves wilted, indicating a higher level of stress

Significant leaf rolling: Extensive curling and folding
of a majority of leaves

6 Severe wilting—all leaves wilted, and the plant
was under considerable stress

Significant leaf rolling: Extensive curling and folding
of a majority of leaves.

7 Extreme wilting—all leaves wilted, and the plant is
severely stressed

Significant leaf rolling: Further increase in curling and
folding, affecting a significant portion of leaves

8 Critical wilting—all leaves and stem dried, and the
plant almost dead

Severe leaf rolling: Intense curling and folding of
almost all leaves, potentially impacting plant health

9 Dead
Leaves tightly rolled (Severe leaf rolling: Maximum
intensity of curling and folding, with nearly all
leaves affected)

* 0–4 = drought tolerant; 5 = moderately tolerant; 7–9 = drought sensitive.

The SPAD chlorophyll content was measured from three regions of trifoliate leaves
for all plants of each genotype per treatment (drought and without drought) using the
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SPAD-502 Plus Chlorophyll Meter (Spectrum Technologies, Inc., Plainfield, IL, USA). The
measurements for each region in the leaf were recorded, separately.

The following data were collected and computed [27] (Table S1):

i. LW-d6: leaf wilting on day 7 after drought treatment based on a 0–9 scale;
ii. LW-d10: leaf wilting on day 10 after drought treatment based on a 0–9 scale;

iii. LR-d6: leaf rolling on day 7 after drought treatment based on a 1–9 scale;
iv. LR-d10: leaf rolling on day 10 after drought treatment based on a 1–9 scale;
v. SPAD_healthy: leaf chlorophyll content is healthy without drought stress, measured

by the SPAD-502 Plus Chlorophyll Meter (Spectrum Technologies, Inc., Plainfield,
IL, USA);

vi. SPAD_stress: leaf chlorophyll content under drought conditions;
vii. SPAD_AD: absolute decrease in leaf chlorophyll content (SPAD_healthy—SPAD_stress);

viii. SPAD_II: inhibition Index in leaf chlorophyll content = [100 × (SPAD_healthy—
SPAD_stress)/SPAD_healthy].

ix. SPAD_RDT: relative drought tolerance in leaf chlorophyll content measured = (100 ×
SPAD_stress/SPAD_healthy) = (100—SPAD_II);

x. PlHt_healthy: plant height under irrigation treatment;
xi. PlHt_stress: plant height under drought treatment;

xii. PlHt_AD: absolute decrease in plant height (PlHt_healthy—PlHt_stress)
xiii. PlHt_II: inhibition index in plant height = [100 × (PlHt_healthy—PlHt_stress)/

PlHt_healthy];
xiv. PlHt_RDT = relative drought tolerance in plant height = [100 × (PlHt_stress/

PlHt_healthy)] = (100—PlHt_II);
xv. Broad-sense heritability (H2);

xvi. Pearson’s correlation analysis.

2.4. Phenotypic Data Analysis
2.4.1. Statistical Model

The statistical model for analysis of variance (ANOVA) was the following:
Yij = µ + Bi + Gj +
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ij, where i = 1, 2, 3 and j = 1.. . ..68, with µ representing the over-
all mean, Yij representing the response from the jth accession (Gj) (fixed effect) at the
ith block (Bi) (random effect), and eij representing the random error associated with the
ijth observation.

2.4.2. ANOVA, Distribution, Descriptive Statistics, and Pearson’s Correlation

The data were analyzed using JMP PRO 17. Analysis of variance (ANOVA) was per-
formed using the general linear model (GLM) procedure. Mean separation was conducted
using the Student T-test at alpha = 0.05. The distribution of the data was visualized using
the ‘Distribution’; descriptive statistics were estimated using the ‘Tabulate’; and the Per-
son’s correlation coefficients and their p-values were calculated by ‘Multivariate Methods’
options of JMP PRO 17, respectively. The broad-sense heritability (H2) was estimated,
using the following formula [39]: H2 = 100 × σ2

G/[σ2
G + (σ2

GE/e) + (σ2
E/re)], where

σ2
G is the total genetic variance, σ2

GE is variance between genetic and environment (here:
block) interaction; σ2

E is the residual variance; e is the number of the environment (block);
and r is the number of replications. The estimates for σ2

G, σ2
GE, and σ2

E are σ2
E = MSE,

σ2
GE = (MSGE—MSE)/r, and σ2

G = (MSG—MSGE)/re.

2.4.3. Absolute Decrease, Inhibition Index, and Relative Drought Tolerance

To completely evaluate tomato accessions for tolerance to drought, absolute decrease
(AD), inhibition index (II), and relative drought tolerance (RDT) were estimated for plant
height and SPAD chlorophyll content (leaf chlorophyll) in Microsoft Excel. The AD was a
measure of the absolute change (decrease) in the plant height or SPAD chlorophyll content.
The AD in plant height and SPAD chlorophyll content was achieved by subtracting the
plant height or SPAD chlorophyll content for the drought-stressed plants from those of
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well-irrigated plants (AD = the value in healthy plants without drought stress—the value
under drought conditions). The greater the AD value, the more likely a tomato accession
had its height or chlorophyll content decreased, showing high susceptibility of the accession
to drought stress. Conversely, the lower the AD value, the more likely the accession had
greater drought tolerance.

The inhibition index (II) was a measure of the inhibition percentage to drought tol-
erance and was calculated as II = [100 × (the value in healthy—the value under drought
treatment)/the value in healthy under normal irrigation]. In this study, a greater percent-
age of II indicated a decrease in plant height and SPAD chlorophyll content, suggesting a
greater susceptibility of the tomato accession to drought stress. Conversely, the lower the
II value, the higher the drought tolerance; thus, an II decrease in plant height and SPAD
chlorophyll content showed an increase in tolerance to drought stress.

On the other hand, RDT was a measure of the relative change (decrease) percentage
in the plant height or SPAD chlorophyll content, estimated by dividing the value under
drought conditions by healthy under proper irrigation. In this investigation, a greater RDT
percentage for a particular tomato accession indicated a lesser decrease in plant height
and SPAD chlorophyll content, signifying greater tolerance to drought, while a lower
RDT percentage showed a greater decrease in plant height and SPAD chlorophyll content,
showing high vulnerability of the tomato accession to dry conditions.

2.4.4. Rank of Drought Tolerance in Tomato Accessions

The 68 tomato accessions were ranked from 1 to 68 for each of the 10 traits (LW-d6, LW-
d10, LR-d6, LR-d10, SPAD_AD, SPAD_II, PlHt_AD, PlHt_II, PlHt_RDT, and SPAD_RDT),
where 1 was the top drought tolerance and 68 was the most vulnerable. Because the value
of II equals 100 minus ADT value (II = 100-ADT), the rank of ADT was the same as the
rank order of II, and both PlHt_RDT and SPAD_RDT are not listed.

2.5. DNA Extraction, Genotyping by Sequencing (GBS), and SNP Discovery

The DNA (genome) was extracted from fresh leaves of tomato plants using the
CTAB/SDS method. DNA sequencing was conducted using the genotyping-by-sequencing
(GBS) approach [40] in Pair-end sequencing libraries sequenced by Illumina NovaSeq
in University of Wisconsin Biotechnology Center (UWBC) (https://biotech.wisc.edu/,
accessed on 14 February 2024). The short-read sequences data are aligned to tomato
genome reference, Solanum lycopersicum, ITAG_4.0 (https://phytozome-next.jgi.doe.gov/
info/Slycopersicum_ITAG4_0, accessed on 14 February 2024), and SNPs were postulated
in a pipeline using TASSE_GBS [41] and Stacks 2 [42] (https://catchenlab.life.illinois.edu/
stacks/, accessed on 14 February 2024). A total of 392,496 single nucleotide polymorphism
(SNP) markers were discovered across 287 tomato genotypes distributed on 12 chromo-
somes of tomato and provided by UWBC.

2.6. Principal Component Analysis (PCA) and Genetic Diversity

Principal components were analyzed and the Dendrogram was drawn by the hierarchi-
cal cluster method, using JMP Pro 17 based on either trait (LW-d6, LW-d10, LR-d6, LR-d10,
SPAD_AD, SPAD_II, PlHt_AD, and PlHt_II) among the 68 tomato accessions. Genetic
diversity was analyzed, and a phylogenetic tree was generated using MEGA 11, based on
5003 single-nucleotide polymorphism (SNP) markers distributed on 12 chromosomes in
65 USDA GRIN tomato accessions, except for 3 accessions, PI 365956, PI 438587, and PI
600901 out of the 68 accessions in Table S1. Because they had poor GBS (genotyping-by-
sequencing) sequencing data, the three accessions were filtered out (removed) from the
genetic diversity analysis. The SNP marker set consisted of 5,003 SNP markers across the
65 accessions, after filtering and keeping the SNP markers with minor allele frequency
(MAF) >1.5%, missing allele <15%, and heterogeneous rate <=35% in this study.

https://biotech.wisc.edu/
https://phytozome-next.jgi.doe.gov/info/Slycopersicum_ITAG4_0
https://phytozome-next.jgi.doe.gov/info/Slycopersicum_ITAG4_0
https://catchenlab.life.illinois.edu/stacks/
https://catchenlab.life.illinois.edu/stacks/
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3. Results
3.1. Parameters and Distributions of Drought-Related Traits
3.1.1. Leaf Wilting

The leaf wilting (LW) scale of 0–9 varied among the 68 tomato accessions under 6 and
10 days of drought stress (Supplementary Tables S1 and S2). A large range was observed:
7.0 for LW-d6 and 6.3 for LW-d10 (Table S2). The mean was 6.9 ± 0.18 for LW in 6 days of
drought treatment (LW-d6), and 8.4 ± 0.17 under 10 days of drought treatment (LW-d10)
(Supplementary Table S2). These leaf wilting data revealed significant variation in tolerance
response to drought stress among the 68 tomato accessions.

The distributions of leaf wilting scores for either 6-day (LW-d6) or 10-day (LW-d10)
drought treatment were right-skewed (Figure 2A,B), showing that most of the 68 tomato
accessions were extreme susceptibility to drought stress, where the two accessions, PI
647531 and PI 634828, were the most susceptible, with 8.9 and 9 (highest scale defined) in
either LW-d6 and LW-d10, respectively, indicating they can be used as susceptible control
in drought evaluation experiment or as susceptible parents in breeding programs or in
genetic study of QTL (genomic regions) mapping of drought tolerance in tomato. The
accessions PI 365956, PI 584456, PI 390510, and PI 370091 had average leaf wilting scores
of less than 4 in both treatments (Supplementary Tables S1 and S2), showing that they
were the most drought tolerant and suggesting that the four accessions could be useful as
parents in breeding elite cultivars of tomato for drought tolerance.
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Figure 2. The four distributions of leaf wilting (LW) (A,B) and leaf rolling (LR) (C,D) in 68 tomato
accessions: (A,C) in 6 days and (B,D) in 10 days after drought treatment. X-axis represents the 0–9 and
1–9 scale of leaf wilting for day 6 and day 10 (LW-d6 and LW-d10) and leaf rolling for day 6 and day
10 (LR-d6 and LR-d10); Y-axis is for number of accessions; the bracket represents the peak of the
distribution; and the green line represents the theoretical normal distribution.

3.1.2. Leaf Rolling

The average leaf rolling (LR) scores for 6-day (LR-d6) and 10-day (LR-D10) drought
stress ranged from 2.0 to 9 and 3.4 to 9 (Supplementary Table S2), respectively, and the mean
of LR was 7.2 ± 0.18 in 6 days of drought treatment (LR-d6) and 8.4 ± 0.17 under 10 days
of drought treatment (LR-10d) (Supplementary Table S2), showing significant differences
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and a large range (7.0 for LR-d6 and 5.6 for LR-d10) in reaction to drought stress among the
68 tomato accessions.

Distribution of leaf rolling scores for either 6-day (LR-d6) or 10-day (LR-d10) drought
treatment were right-skewed (Figure 2C,D), the same trend as those in leaf wilting, showing
that most of the 68 tomato accessions were extremely susceptible to drought stress, where
the three accessions PI 647531, PI 196297, and PI 634828 had the highest scale of 9 in both
LR-d6 and LR-d10 (Table S1), indicating that the three accessions can be used as susceptible
control in drought evaluation experiment or as susceptible parents in genetic study of QTL
mapping of drought tolerance in tomato. The shown accessions PI 365956, PI 584456, PI
390510, and PI 370091 were found to have leaf rolling scores of less than 4, showing the
lowest scales, as they had the lowest leaf wilting scale values (Table S1), indicating that
they exhibited a greater level of tolerance to drought, suggesting that the accessions could
be useful as parents in breeding elite cultivars of tomato for drought tolerance.

3.1.3. Plant Height

Plant height measurements were taken for 68 tomato accessions under both irri-
gated and drought conditions. For the well-watered plants, the average plant height
(PlHt_healthy) ranged from 11.8 cm to 34.2 cm at 10 days, with a nearly normal distribution
skewed right among the 68 accessions (Figure 3A), with a mean of 26.6 cm and a standard
deviation (Std Dev) of 4.02 (Supplementary Table S2). The accession PI 584456 was the
shortest at 11.8 cm and PI 433016 was the tallest at 34.2 cm (Table S1).
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Figure 3. The 5 distributions of plant height (PLHT)-related traits for drought tolerance in 68 tomato
accessions. * PlHt_healthy = Plant height under irrigation; PlHt_stress = Plant height under
drought conditions; PlHt_AD = Absolute decrease in plant height = PlHt_healthy—PlHt_stress;
PlHt_II = Inhibition Index in plant height = [100 × (PlHt_healthy—PlHt_stress)/PlHt_healthy]; and
PlHt_RDT = Relative drought tolerance in plant height = [100 × (PlHt_stress/PlHt_healthy)] =
(100—PlHt_II).

Under drought conditions, the average plant height (PlHt_stress) ranged from
6.5 cm to 15.0 cm at 10 days (Figure 3B), with a mean of 11.5 cm and a Std Dev of
1.31 (Supplementary Table S2). The accession PI 584456 was still the shortest with 6.5 cm
and PI 258478 was the tallest with 15.0 cm (Table S1).
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The absolute decrease in average plant height (PlHt_AD) had a large range of 16.2 cm
and ranged from 5.3 cm to 21.5 cm with a mean of 15.1 ± 0.41 cm (Figure 3C, Supplementary
Table S2), indicating that there was a large difference and variation in height decrease
(AD) under drought stress among the 68 tomato accessions, whereas the accession PI
584456 showed the smallest AD of 5.3 cm plant height decrease (Table S2), indicating
that the accession was somewhat drought tolerant. On the other hand, the accession PI
433016 showed the greatest AD of 21.5 cm (Table S2), indicating that the accession was the
most susceptible to drought.

The inhibition index in plant height (PlHt_II), which represents the reduction in plant
height of drought-stressed plants compared to well-watered plants, had a large range of
24.9% and ranged from 39.7% to 64.7% (Figure 3D; Supplementary Table S2), with a mean
of 56.0 ± 0.73% (Supplementary Table S2), indicating that there was a large difference and
variation in plant height inhibition (tolerance) to drought tolerance among the 68 tomato
accessions. The accessions PI 600906, PI 330725, PI 499370, and PI 451970 had the lowest
II% of 39.7, 39.8, 40.0, and 44.2%, respectively (Table S1), indicating that the accessions had
the greatest drought tolerance in this study. The accessions PI 636277, PI 438859, PI 286255,
PI 193399, and PI 644750 had the highest PlHt_II% of over 63% (Table S2), showing that
they were the most drought-susceptible accessions.

Relative drought tolerance in plant height (PlHt_RDT), defined as the ability of a
plant to maintain its height under drought compared to optimal irrigated conditions, had a
large range of 24.9% and ranged from 35.3% to 60.3% (Figure 3E, Supplementary Table S2),
with a mean of 44.0 ± 0.73% (Supplementary Table S4), indicating that there was a large
range and difference among the 68 accessions. The three accessions PI 499370, PI 330725,
and PI 600906 had the highest, with >60% of RDT (Table S1), and showed the greatest
drought tolerance among the 68 accessions. The accessions PI 286255 (Moneymaker) and
PI 644750 (Giant Tree) had the lowest RDT% with <36%, indicating that the two accessions
were susceptible to drought.

3.1.4. SPAD Chlorophyll Content

The SPAD chlorophyll content (total leaf chlorophyll) for irrigated plants (SPAD_healthy)
ranged from 29.5 to 34.6 with a range of 5.1 and showed a near-normal distribution among
the 68 accessions (Figure 4A, Supplementary Table S2), with a mean of 32.1; Std Dev of 1.31;
Std Err of 0.16; and CV of 4.1 (Supplementary Table S2). Accessions with the greatest SPAD
chlorophyll content were PI 330342, PI 291337, and PI 258484 with 34.6, and the lowest
were PI 451967, PI 127825, and PI 466917 with <30.0 (Supplementary Table S2).

For the plants under drought treatment, SPAD chlorophyll content (SPAD_stress)
varied from 11.1 to 20.3, and the mean and standard deviation were 12.9 and 1.66, respec-
tively (Supplementary Table S2). Distribution of SPAD chlorophyll data under drought
stress among the 68 accessions was right-skewed (Figure 4B). Accessions with the highest
SPAD chlorophyll content under stress were PI 365956 (LA 1373) (20.3), PI 584456 (19.5), PI
370091 (18.8), and PI 390510 (18.2) (Supplementary Table S1), indicating that these acces-
sions were more tolerant to drought stress. PI 158760 and PI 438587 had the lowest SPAD
chlorophyll values with less than 11.5 (Supplementary Table S2), showing high sensitivity
of the accessions to drought stress.

The absolute decrease in average SPAD chlorophyll content (SPAD_AD) had a large
range of 11.5 and ranged from 11.1 to 20.3 with a mean of 19.2, a Std Dev of 2.10, Std
Err of 0.25, and CV of 10.9% (Figure 4C, Supplementary Table S2), indicating that there
was a large difference and variability in chlorophyll content decrease (AD) under drought
stress among the 68 tomato accessions. Accessions PI 584456 and PI 365956 exhibited
the smallest chlorophyll content decrease values, measuring 11.1 and 11.6, respectively
(Table S2), indicating that PI 584456 and PI 365956 displayed a relatively low reduction in
chlorophyll content, indicating a degree of drought tolerance in these particular accessions.
The accessions PI 645361 and PI 600906 showed the greatest SPAD_AD of 22.6% (Table S2),
indicating that the two accessions were more drought-susceptible.
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Figure 4. The 5 distributions of leaf chlorophyll content (SPAD leaf chlorophyll)-related traits
for drought tolerance in 68 tomato accessions. * SPAD_healthy = leaf chlorophyll content in
healthy without drought stress, measured by the SPAD-502 Plus Chlorophyll Meter (Spectrum
Technologies, Inc., Plainfield, IL, USA); SPAD_stress = leaf chlorophyll content under drought
stress condition; SPAD_AD = Absolute decrease in leaf chlorophyll content (SPAD_healthy—
SPAD_stress); SPAD_II = Inhibition index in leaf chlorophyll content = [100 × (SPAD_healthy—
SPAD_stress)/SPAD_healthy]; and SPAD_RDT = Relative drought tolerance in leaf chlorophyll
content measured = [100 × SPAD_stress/SPAD_healthy] = (100—SPAD_II).

The inhibition index in SPAD chlorophyll content (SPAD_II) had a large range of
31.1% and ranged from 35.4% to 66.4% (Figure 4D; Supplementary Table S2), with a mean
of 59.8 ± 0.65% (Supplementary Table S2), indicating that there was a large difference and
variability in SPAD chlorophyll content inhibition (tolerance) to drought tolerance among
the 68 tomato accessions. The two accessions PI 365956 and PI 584456 had the lowest
SPAD_II values of <37.5% (Table S1), displaying the greatest level of drought tolerance.
The accessions PI 645361 and PI 158760 had the highest SPAD II% with over 66% (Table S2),
being highly vulnerable to drought.

The relative drought tolerance in SPAD chlorophyll content (SPAD_RDT) varied from
33.6% to 64.6% with a large range of 31.1% (Figure 4E, Supplementary Table S2). The mean
and standard deviation were 40.2% and 5.37%, respectively (Supplementary Table S4), show-
ing significant differences in drought tolerance among the 68 tomato accessions. The largest
SPAD_II values were observed in PI 365956 (64.6%), PI 584456 (62.8%), and PI 390510 (53.8%),
indicating that the three accessions had the highest tolerance to drought stress based on
SPAD chlorophyll content. In contrast, PI 158760 (33.6%) and PI 645361 (33.8%) showed
the lowest relative drought tolerance values, indicating extreme vulnerability to drought
stress (Supplementary Table S1). Overall, four tomato accessions, PI 365956 (LA1373), PI
584456 (Allure), PI 370091 (Vision), and PI 390510 (W-C 1050), are drought tolerant, with a
scale of <4 in leaf wilting and leaf rolling, decreasing to <16 in absolute SPAD chlorophyll
content and <47% in SPAD chlorophyll inhibition index (II), decreasing to <18 cm in absolute
plant height and <62% in plant height inhibition index (II) (Table 2).

Table 2. Top four tomato accessions with the highest drought tolerance based on eight traits.

Accession Name Taxonomy Origin LW-d6 * LW-d10 LR-d6 LR-d10 SPAD_AD SPAD_II PlHt_AD PlHt_II

PI 365956 LA1373 Solanum
peruvianum L.

Lima,
Peru 1.9 2.7 2.0 3.9 11.1 35.4 13.7 50.3

PI 584456 Allure Solanum
lycopersicum L.

United
States 2.7 3.1 2.2 3.8 11.6 37.2 5.3 45.1

PI 370091 Vision Solanum
lycopersicum L. Canada 2.6 4.0 2.6 3.4 14.7 43.9 17.7 61.7
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Table 2. Cont.

Accession Name Taxonomy Origin LW-d6 * LW-d10 LR-d6 LR-d10 SPAD_AD SPAD_II PlHt_AD PlHt_II

PI 390510 W-C 1050

Solanum
lycopersicum L.
var. cerasiforme

(Alef.) Voss

Ecuador 2.9 3.7 2.7 3.8 15.6 46.2 16.1 56.4

* LW-d6 = leaf wilting-d6, LW-d10 = leaf wilting-d10, LR-d6 = leaf rolling-d6, LR-d10 = leaf rolling-d10,
SPAD_AD = SPAD chlorophyll absolute decrease (SPAD_healthy—SPAD_stress), SPAD_II = SPAD chloro-
phyll inhibition index [100 × (SPAD_healthy—SPAD_stress)/SPAD_healthy], PlHt_AD = Absolute decrease in
plant height (PlHt_healthy—PlHt_stress), and PlHt_II = Inhibition index in plant height [100 × (PlHt_healthy—
PlHt_stress)/PlHt_healthy].

3.1.5. Pearson’s Correlation Analysis

The correlation coefficients (r-value) among the eight drought-tolerance-related traits in
68 tomato accessions were also shown in Figure 5. A clear linear regression line was observed
in each pair among the six traits (leaf wilting-d6 (LW-d6), leaf wilting-10 (LW-d10), leaf
rolling-d6 (LR-d6), leaf rolling-d10 (LR-d10), SPAD absolute decrease (SPAD_AD), and SPAD
inhibition index (SPAD_II), and between plant height absolute decrease (PlHt_AD) and plant
height inhibition index (PlHt_II)) with a high r-value (Table 3), indicating high correlations.
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rolling-d10, SPAD_AD = SPAD chlorophyll absolute decrease content (SPAD_healthy—SPAD_stress),
SPAD_II = SPAD chlorophyll inhibition index [100 × (SPAD_healthy—SPAD_stress)/SPAD_healthy],
PlHt_AD = Absolute decrease in plant height (PlHt_healthy—PlHt_stress), and PlHt_II = Inhibition
index in plant height [100 × (PlHt_healthy—PlHt_stress)/PlHt_healthy].

Table 3. Correlation coefficients (r-value) and their probability (p-value) among eight drought
tolerance-related traits in 68 tomato accessions.

Correlation
Coefficients

(r-Value)
LW-d6 LW-d10 LR-d6 LR-d10 SPAD_AD SPAD_II PlHt_AD

LW-d10 0.85
LR.d6 0.95 0.90

LR.d10 0.87 0.92 0.93
SPAD_AD 0.60 0.68 0.69 0.67
SPAD_II 0.71 0.84 0.80 0.81 0.93
PlHt_AD 0.15 0.24 0.14 0.15 0.04 0.11
PlHt_II 0.15 0.25 0.14 0.15 0.07 0.11 0.90

Probability
(p-Value) LW-d6 LW-d10 LR-d6 LR-d10 SPAD_AD SPAD_II PlHt_AD

LW-d10 1.75E-20
LR-d6 8.99E-34 6.54E-25
LR-d10 4.64E-22 7.61E-28 3.85E-31

SPAD_AD 5.16E-08 1.30E-10 1.06E-10 3.87E-10
SPAD_II 1.29E-11 2.22E-19 1.95E-16 5.68E-17 1.09E-30
PlHt_AD 0.22 0.05 0.26 0.24 0.77 0.39
PlHt_II 0.24 0.04 0.27 0.22 0.59 0.38 3.68E-26

* LW-d6 = leaf wilting-d6, LW-d10 = leaf wilting-d10, LR-d6 = leaf rolling-d6, LR-d10 = leaf rolling-d10,
SPAD_AD = SPAD chlorophyll absolute decrease content (SPAD_healthy—SPAD_stress), SPAD_II = SPAD chloro-
phyll inhibition index [100 × (SPAD_healthy—SPAD_stress)/SPAD_healthy], PlHt_AD = Absolute decrease in
plant height (PlHt_healthy—PlHt_stress), and PlHt_II = Inhibition index in plant height [100 × (PlHt_healthy—
PlHt_stress)/PlHt_healthy].

3.1.6. ANOVA and Broad-Sense Heritability

Analysis of variance (ANOVA) for the parameters of drought tolerance and board-sense
heritability was estimated for all 14 traits (LW-d6, LW-d10, LR-d6, LR-d10, SPAD_healthy,
SPAD_stress, SPAD_AD, SPAD_II, PlHt_healthy, PlHt_stress, PlHt_AD, PlHt_II, PlHt_RDT,
and SPAD_RDT) in the 68 tomato accessions (Table S4). The Genotype (accession) had
a significant effect at p = 0.05 level for all the 14 traits except SPAD_healthy. The signif-
icant effect of interaction between genotype (accession) and the block was also observed
for PlHt_healthy, PlHt_stress, PlHt_AD, PlHt_II, PlHt_RDT, SPAD_stress, SPAD_II, and
SPAD_RDT at p = 0.05 level, but not for LW-d6, LW-d10, LR-d6, LR-d10, SPAD_healthy, and
SPAD_AD (Table S4), indicating the stability of LW-d6, LW-d10, LR-d6, and LR-d10.

The broad-sense heritability (H%) was calculated for each of the 14 traits, and they
were 52.2, 89.2, 69.3, 90.4, 64.1, 62.4, 94.1, 70.3, 70.3, 25.4, 72.2, 48.5, 73.5, and 73.5% for
LW-d6, LW-d10, LR-d6, LR-d10, PlHt_healthy, PlHt_stress, PlHt_AD, PlHt_II, PlHt_RDT,
SPAD_healthy, SPAD_stress, SPAD_AD, SPAD_II, and SPAD_RDT, respectively (Table S4),
showing that all the 14 traits had high heritability (H%), >60% up to 94.1% except LW-d6
(52.2%), SPAD_healthy (25.4%), and SPAD_AD (48.5%), implying that drought tolerance
could be inherited.

3.1.7. Ranking of Accessions

In this study, the 68 tomato accessions were ranked 1 to 68 in terms of drought toler-
ance, where 1 denotes the highest level of drought tolerance and 68 represents the most
susceptible. The values of PlHt_healthy, PlHt_stress, SPAD_healthy, and SPAD_stress
in each tomato accession were determined by the genetic background of the tomato
genotypes (accessions) themselves and their interaction with the environment, but were
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not directly associated with drought tolerance; therefore, their values were excluded
from the ranking for drought tolerance. Each of the 10 traits, LW-d6, LW-d10, LR-d6,
LR-d10, PlHt_AD, PlHt_II, PlHt_RDT, SPAD_AD, SPAD_II, and SPAD_RDT, was ranked
from 1 to 68 (Table S5). In addition, two overall rankings of drought tolerance were used
to rank the 68 accessions for their drought tolerance. Due to PlHt_RDT = 100—PlHt_II,
PlHt_RDT had the same ranking order as PlHt_II and was removed from the overall
ranking. The SPAD_RDT was also removed because it had the same ranking order as
the SPAD_II. The first overall ranking was created for the eight traits LW-d6, LW-d10,
LR-d6, LR-d10, PlHt_AD, PlHt_II, SPAD_AD, and SPAD_II, defined as Rank (8) (Table
S5). Based on the correlation analysis, the plant height related to drought tolerance
may have different mechanisms due to the low r-value between plant height-related
traits and others (Tables 3 and S3, Figure 5); therefore, the second overall ranking was
formed using the six traits LW-d6, LW-d10, LR-d6, LR-d10, SPAD_AD, and SPAD_II
(Table S5). The four accessions with drought tolerance in Table 2, PI 365956, PI 584456,
PI 370091, and PI 390510, were also listed as the top four drought tolerances, ranked
based on Rank (6) and each of the six traits LW-d6, LW-d10, LR-d6, LR-d10, SPAD_AD,
and SPAD_II individually (Table S5), indicating that the four accessions were the most
drought tolerant from this study. They can be used in tomato breeding programs as
parents to develop drought-tolerant cultivars. In addition to the four drought-tolerant
accessions, the three accessions PI 330725, PI 193400, and PI 127825 were ranked highly
(Table S5), suggesting an intermediate level of drought tolerance.

3.1.8. PCA and Genetic Diversity

Two-way phylogenetic trees were created for (1) among the 68 accessions and (2) for
the 8 traits LW-d6, LW-d10, LR-d6, LR-d10, PlHt_AD, PlHt_II, SPAD_AD, and SPAD_II
(Figure 6). (1) For the 68 accessions, four clusters (groups) were formed (Figure 6). The
four accessions with top drought tolerance in Table 2 and Table S5, PI 365956, PI 584456, PI
370091, and PI 390510, were grouped into the same cluster I based on hierarchical clustering
analysis (Figure 6), indicating that they had similar drought tolerance. Two out of three
accessions in cluster II, PI 330725 and PI 193400 (Figure 6), were also tolerant to drought
stress (Table S1) and ranked among the top six (Table S5), indicating they had similar
responses to drought stress at an intermediate level. The tomato accessions in clusters
III and IV are drought susceptible (Figure 6), showing that susceptible accessions were
merged together. This study has indicated that the eight traits LW-d6, LW-d10, LR-d6,
LR-d10, PlHt_AD, PlHt_II, SPAD_AD, and SPAD_II can be used to distinguish drought
tolerant and susceptible tomato accessions. (2) For the eight traits, there were two clusters:
PlHt_AD and PlHt_II were clustered together as one group, and the other six as another
cluster. This was further divided into two groups: SPAD_AD and SPAD_II in the same
group and the other four as another group, where LW-d6 and LW-d10 were together, and
LR-d6 and LR-d10 were a pair (Figure 6 bottom), indicating that leaf wilting and leaf rolling
had similar results for drought tolerance, close to the results for SPAD chlorophyll content,
but a little different from those for plant height.

The bioplot revealed a consistent pattern among LW-d6, LW-d10, LR-d6, LR-d10,
SPAD_AD, and SPAD_II, indicating a close association with each other. In contrast,
PlHt_AD and PlHt_II demonstrated proximity to each other but were notably distinct
from the mentioned variables (Figure 7A). This suggests a strong correlation among LW-d6,
LW-d10, LR-d6, LR-d10, SPAD_AD, and SPAD_II, while PlHt_AD and PlHt_II showed a
distinct pattern. The screen plot (Figure 7B) and PCA plot (Figure 7C) further illustrated
the presence of two or four distinct clusters within the 68 accessions.
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Figure 6. The two-way dendrogram in 68 tomato accessions by hierarchical cluster analysis in JMP Pro
17 based on 8 drought-tolerance-related traits: leaf wilting-d6 (LW-d6), leaf wilting-d10 (LW-d10), leaf
rolling-d6 (LR-d6), leaf rolling-d10 (LR-d10), SPAD chlorophyll absolute decrease (SPAD_AD), SPAD
chlorophyll inhibition index (SPAD_II), plant height absolute decrease (PlHt_AD), and plant height
inhibition index (PlHt_II), where the top four drought tolerant accessions were grouped into cluster I
(top). * LW-d6 = leaf wilting-d6, LW-d10 = leaf wilting-d10, LR-d6 = leaf rolling-d6, LR-d10 = leaf
rolling-d10, SPAD_AD = SPAD chlorophyll absolute decrease content (SPAD_healthy—SPAD_stress),
SPAD_II = SPAD chlorophyll inhibition index [100 × (SPAD_healthy—SPAD_stress)/SPAD_healthy],
PlHt_AD = Absolute decrease in plant height (PlHt_healthy—PlHt_stress), and PlHt_II = Inhibition
index in plant height [100 × (PlHt_healthy—PlHt_stress)/PlHt_healthy].
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Figure 7. Principal component analysis (PCA) in 68 tomato accessions by JMP Genomics based on
8 drought-tolerance-related traits, leaf wilting-d6 (LW-d6), leaf wilting-d10 (LW-d10), leaf rolling-d6
(LR-d6), leaf rolling-d10 (LR-d10), SPAD chlorophyll absolute decrease (SPAD_AD), SPAD chlorophyll
inhibition index (SPAD_II), plant height absolute decrease (PlHt_AD), and plant height inhibition
index (PlHt_II): (A) Bioplot, (B) Screen plot, and (C) PCA with 4 clusters. ** LW-d6 = leaf wilting-d6,
LW-d10 = leaf wilting-d10, LR-d6 = leaf rolling-d6, LR-d10 = leaf rolling-d10, SPAD_AD = SPAD
chlorophyll absolute decrease content (SPAD_healthy—SPAD_stress), SPAD_II = SPAD chlorophyll
inhibition index [100 × (SPAD_healthy—SPAD_stress)/SPAD_healthy], PlHt_AD = Absolute de-
crease in plant height (PlHt_healthy—PlHt_stress), and PlHt_II = Inhibition index in plant height
[100 × (PlHt_healthy—PlHt_stress)/PlHt_healthy].

From the phylogenetic tree, among 65 tomato accessions, which did not include
the 3 accessions PI 365956, PI 438587, and PI 600901 out of the 68 accessions in Table S1
since the 3 accessions did not have good DNA sequencing data, these 65 accessions were
divided into 2 clusters (sub-populations), Q1 and Q2, based on 5,003 SNPs distributed
on 12 chromosomes by MEGA 11, where Q1 has 9 accessions and Q2 has 56 accessions
(Figure 8). The six drought-tolerant accessions, PI 584456, PI 370091, PI 390510, PI 330725,
PI 193400, and PI 127825, were arranged into different locations (parts) in the phylogenetic
tree; the PI 584456 was grouped to cluster Q1 and the other five to Q2 (Figure 8), indicating
that the six accessions had different genetic bases and that PI 584456 is different from
others, suggesting how to select these valuable drought-tolerance resources as parents in
tomato breeding.
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Figure 8. Phylogenetic tree created by MEGA 11 using the maximum likelihood (ML) method
based on 5005 SNPs distributed on 12 chromosomes, where the accession number (PI), origin, and
cluster (Q1, Q2) are merged as each taxon name in the tree. The red square shapes are the 6 greatest
and intermediate drought-tolerant accessions with leaf wilting and leaf rolling rate of less than 4.0;
2 clusters (sub-populations), Q1 and Q2, were observed among the 65 USDA GRIN tomato accessions,
where Q1 has 9 accessions and Q2 has 56 accessions.
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4. Discussion

Drought tolerance in crops is related to many factors that may contribute to tolerance,
making studies on drought tolerance difficult. Numerous mechanisms of drought tolerance
in several crops depend on the conditions, crop variety, and growth stages. As a result,
many researchers have used multiple indicators to assess drought tolerance in a compre-
hensive and integrated manner, which can provide more accurate and realistic information
on drought tolerance in crops and can help researchers discover and select drought-tolerant
cultivars for cultivation and breeding. Inadequate information on drought tolerance in
tomatoes has compromised the development of drought-tolerant cultivars. This study
screened the germplasm collection of tomatoes using multiple parameters and generated
valuable information on drought tolerance in tomatoes by supplying reactions of various
tomato accessions to drought stress.

4.1. Drought-Associated Parameters
4.1.1. Leaf Wilting

The results of the drought tolerance study based on leaf wilting showed significant
genetic variation among tomato accessions for tolerance to water stress. The results were
consistent with past studies that have reported genetic variation in tomatoes for drought
tolerance based on leaf wilting traits [43]. Finding genetic variation and developing highly
drought-tolerant cultivars is critical for sustainable agriculture, as drought is a major
environmental stress that affects crop productivity and quality worldwide. This study
identified tomato accessions PI 365956, PI 584456, PI 390510, and PI 370091 imported from
Peru, United States, Ecuador, and Canada (Supplementary Table S1; Table 2), respectively,
to exhibit slow wilting under dry conditions, showing greater tolerance to drought stress,
as the similar reports by Cardoso et al. (2022) [38], Abdellatif et al. (2023) [43], and
Pathan et al. (2014) [44] They concluded that plant genotypes of tomato and soybean that
maintained slow-wilting traits and less yield loss were drought-tolerant. The drought-
tolerant accessions identified based on leaf wilting characteristics in this study could serve
as valuable parental lines. These accessions exhibited reduced wilting traits, showing
their usefulness in breeding for enhanced drought tolerance in high-yield but drought-
susceptible tomato cultivars.

4.1.2. Leaf Rolling

Leaf rolling is caused by dehydration of various sections across the leaf, which mini-
mizes the leaf surface area for sunlight penetration and transpiration, leading to stomatal
closure and reduced photosynthesis [45]. Leaf rolling is a significant indicator of drought
tolerance in plants, as described by Baret et al. (2018) [46], Chandra et al. (2009) [47], and
Merrium et al. [48]. The use of leaf rolling as an indicator of drought tolerance has recently
been explored to facilitate the selection of more drought-tolerant cultivars of crops [46,49].
Baret et al. [46] recently phenotyped maize genotypes in the field and reported the occur-
rence of leaf rolling in water-stressed plants at the flowering stage even during the first
day of exposure to drought. Another recent study by Yang et al. [49] aimed to compare
rice varieties AK58 and ZM36 subjected to dry conditions based on the degree of leaf
rolling at the seedling stage and they found rice variety AK58 to have its leaves slightly
rolled, showing considerable tolerance to drought, unlike rice variety ZM36. Regarding
tomatoes, Medyouni et al. [50] assessed tomato plants in an arid environment and noted a
reduction in leaf size (a reduction in the number, width, and length of the leaves, as well as
the leaf surface area). The results of this study showed significant variation in leaf rolling
or folding among the 68 tomato accessions, indicating the importance of this trait to the
overall drought tolerance level in tomato plants. Tomato accessions PI 370091, PI 390510,
PI 584456, and PI 365956 were identified to exhibit great tolerance to drought based on
leaf rolling scores (score of less than 4) (Supplementary Table S1; Table 2), showing that
they could be utilized for selection as parental lines for successful breeding with a focus on
developing more drought-tolerant tomato cultivars.
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4.1.3. Plant Height

This study was conducted to investigate the effects of drought stress on tomato plants.
The assessment involved 68 tomato accessions, with particular attention paid to plant height
as an indicator of drought tolerance. Drought stress is recognized for its role in inhibiting
plant growth, attributed to compromised mitosis and the loss of turgor [51]. Ahmadikhah
and Marufinia [52] observed a reduced plant height in rice cultivars exposed to water
deficit conditions. Another recent study by Su et al. (2019) [53] showed that even drought-
tolerant genotypes of maize reduced plant height under drought stress conditions. This
study showed significant variations in plant height among the accessions under both well-
irrigated and drought-stressed conditions, with a mean absolute decrease in plant height
of 19.2 cm (Supplementary Table S2; Table 2) across the accessions under drought stress.
The decrease in plant height is directly associated with the restriction of cell expansion,
leading to the development of plants with diminished growth and reduced yield [54]. The
inhibition index and relative drought tolerance were also calculated, recognizing accessions
PI 365956, PI 584456, PI 370091, and PI 390510 to have a large inhibition index and relative
drought tolerance, indicating that these accessions were drought tolerant. These drought-
tolerant accessions were noted to be better adapted to water-deprived conditions than the
others and could be suitable parental lines for utilization in breeding to enhance drought
tolerance in tomatoes.

4.1.4. SPAD Chlorophyll Content

Drought stress hinders plant growth by reducing photosynthesis [55], the mechanism
through which plants transform light into energy [56]. Chlorophyll, a green pigment [57],
is essential for photosynthesis [58], and drought-induced chlorophyll breakdown can affect
a plant’s ability to carry out photosynthesis efficiently, making the plant fail to complete
its growth cycle. Several previous studies reported decreased chlorophyll content for
plants exposed to extremely dry conditions, depending on the period of drought [59].
Leaf chlorophyll content is shown to increase during an early stage of water stress and
decrease gradually with increasing periods of drought [60]. The results of this study
showed that leaf chlorophyll content was greatly reduced in drought-stressed tomato
plants, indicating that water stress negatively affected chlorophyll synthesis, as illustrated
in many previous studies. Interestingly, some tomato accessions were shown to maintain
slightly greater levels of chlorophyll content under drought stress as compared to others,
indicating potential differences in drought tolerance among the accessions. Alidu et al.
and Cardoso et al. [38,61] also reported moderately greater leaf chlorophyll content in
drought-tolerant cowpea recombinant inbred line and tomato genotypes, respectively,
subjected to dry conditions. Furthermore, the report by Monteoliva et al. [58] indicates that
plants exhibiting more elevated chlorophyll levels than their counterparts under optimal
water availability conditions are anticipated to exhibit greater tolerance. This hypothesis
postulates a positive correlation between increased chlorophyll levels and enhanced rates
of photosynthesis, consequently leading to elevated crop yields. In this investigation, the
accessions with the highest relative drought tolerance based on chlorophyll content were
PI 365956, PI 584456, PI 370091, and PI 390510 (Supplementary Table S1; Table 2), which
all showed over 50% retention of chlorophyll content under drought stress. These results
imply that chlorophyll content could be a suitable trait for detecting tomato accessions
with greater drought tolerance and for breeding programs aimed at improving water stress
tolerance in tomato plants.

4.1.5. Pearson’s Correlation Analysis

This study revealed robust positive correlations among leaf wilting, leaf rolling, and
SPAD chlorophyll content parameters (Supplementary Table S3). O’Toole and Moya [62]
established a strong association between leaf rolling, leaf tip drying, and the preservation
of leaf water potential. Baret et al. [46] emphasized that prolonged drought conditions may
lead to leaf rolling, potentially linked to a decline in chlorophyll content due to reduced
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leaf surface area exposed to sunlight. In a cowpea drought-tolerance study, Pungulani
et al. (2013) [63] demonstrated a significant correlation between leaf wilting and relative
water content. Conversely, weak correlations were observed between plant-height-related
parameters and other traits (Supplementary Table S3; Table 3; Figure 5). Ahmadikhah and
Marufinia, [52] also reported weak correlations between plant height and leaf chlorophyll
content (chl. a) in a drought-tolerance study on rice.

The results of this study carry substantial implications for crop breeding initiatives
aimed at enhancing drought tolerance. By prioritizing traits that exhibit strong correla-
tions, such as leaf wilting, leaf rolling, and SPAD chlorophyll content, as demonstrated in
this study, breeders can effectively work towards developing crops better suited for dry
environments. Moreover, the observed weak correlations between plant-height-related
parameters and other traits suggest that breeders may need to consider diverse sets of traits
when targeting improved plant height in conditions with limited water availability.

5. Conclusions

In summary, this study effectively identified highly drought-tolerant tomato acces-
sions, classifying them into three groups: drought tolerant, moderately tolerant, and
drought sensitive. The outstanding performance of accession PI 365956 stands out, fol-
lowed closely by PI 584456, PI 370091, and PI 390510, all demonstrating considerable
drought tolerance. The potential presence of genes associated with drought tolerance, as
noted in previous studies, highlights the importance of exploring these genetic resources
in molecular and physiological investigations. These valuable tomato accessions could
be key to understanding and improving the mechanisms that drive yields in water-scarce
environments. As we move forward, the application of these findings could significantly
contribute to crop adaptation to climate change and sustainable water resource manage-
ment in agriculture. In future research, we plan to evaluate additional traits related to
drought tolerance in a broader range of tomato germplasm accessions, conduct a genome-
wide association study to identify molecular markers and candidate genes for drought
tolerance, and implement genomic prediction for genomic breeding in tomato.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/agronomy14020380/s1, Table S1: The 68 tomato accession ID, name,
taxonomy, origin, country, and 14 traits for measuring drought tolerance; Table S2: Parameters of
14 traits for drought tolerance in 68 tomato accessions; Table S3: Correlation coefficients (r-value) and
their probability (p-value) among 14 drought tolerance related traits in 68 tomato accessions; Table S4:
ANOVA for the parameters of drought tolerance and board sense heritability estimation in 68 tomato
accessions; Table S5: The ranks of the 68 tomato accessions for their drought torance in each of the
eight traits plus the averages of six and eight traits, respectively.
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