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Abstract: This study presents an explanatory biophysical model developed and validated to
simulate seed coat colour traits including CIE L*, a*, and b* changes over time for stored lentil
cultivars PBA Hallmark, PBA Hurricane, PBA Bolt, and PBA Jumbo2 under diverse storage
conditions. The model showed robust performance for all cultivars, with R2 values ≥ 0.89 and
RMSE values ≤ 0.0019 for all seed coat colour traits. Laboratory validation at 35 ◦C demon-
strated a high agreement (Lin’s Concordance Correlation Coefficient, CCC ≥ 0.82) between
simulated and observed values of all colour traits for PBA Jumbo2 and strong agreement
(CCC ≥ 0.81) for PBA Hallmark in brightness (CIE L*) and redness (CIE a*), but not in yellow-
ness (CIE b*). At 15 ◦C, both cultivars exhibited moderate to weak agreement between simulated
and observed values of all colour traits (CCC ≤ 0.47), as very little change was recorded in the
observed values over the 360 days of storage. Bulk storage system validation for PBA Hallmark
showed moderate performance (CCC ≥ 0.46) between simulated and observed values of all colour
traits. Modelling to simulate changes in seed coat colour traits of lentils over time will equip growers
and traders to make informed managerial decisions when storing lentils for long periods.

Keywords: post-harvest; marketability; quality prediction; decision support tool; management

1. Introduction

The seed coat colour of lentil is an economic determinant for growers and traders
as it strongly influences the marketability and value of the grain. The colour of the seed
coat darkens over time particularly under extreme storage conditions and is primarily
attributed to environmental factors such as temperature and grain moisture content [1]. De-
pending on the lentil grain moisture content and temperature at harvest as well as external
weather conditions such as seasonal and daily variation in temperature during storage,
the lentil seed coat can substantially darken. This can result in reduced marketability, the
downgrading of the stored grain and, consequently, lower profits for growers [1].

Seed colour can be quantified objectively in terms of brightness (CIE L*), redness
(CIE a*), and yellowness (CIE b*), where darkening may be visually observable with a
0.4 to 1 unit change in brightness, redness, or yellowness as determined in the field of
pathology [2] and in the paint industry [3]. Therefore, quantifying seed coat colour traits
when storing grain over extended periods, using CIE L*, a*, and b* values, can offer a way
to determine rates of deterioration in colour. These data can assist in informing economic
strategies for growers and traders to minimise changes in quality from harvest to the
time of sale by optimising storage practices and the length of time in storage. There is an
opportunity to develop an explanatory objective model to predict the change in seed coat
colour in response to the measurable storage conditions of temperature and grain moisture
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over time. Such a model should have applications across diverse environments to forecast
the change in seed coat colour traits as an economic decision support tool in pulse grain
storage systems.

In seed storage systems, real-time environmental monitoring has been widely used to
maintain the quality of food products [4], fruit [5], maize grains [6,7], and a wide range of
food grains [8]. Such monitoring includes various in situ sensors coupled with various statis-
tical prediction methods using multiple linear regression [7,9] and artificial intelligence (AI)
approaches [6,10,11]. However, these statistical methods rely on large quantities of data
that comprise nearly all possible interpolative combinations to cover the expected environ-
mental variance. The development of an explanatory model based on the key biophysical
properties of variables that change in state over time (e.g., seed coat colour traits) driven by
environmental variables (e.g., temperature and grain moisture content) that vary over time
provides a more universally applicable model that can be extrapolative in nature rather
than interpolative. Such a model, with sufficiently low error margins, should find utility in
the management of grain storage systems aimed at maintaining high quality grain.

Currently available models monitor storage conditions (such as temperature and
humidity), predict chemical properties, and assess and predict insect populations in the
stored cereal grains [12]. However, the monitoring of the quality of the grain, such as the
decline in seed coat colour, is limited. There were two aims of this study: (1) to develop
and validate an explanatory biophysical model which predicts the changes in seed coat
brightness (CIE L*), redness (CIE a*), and yellowness (CIE b*) of stored lentil grains over
time across diverse storage conditions and (2) to simulate the impact of several storage
scenarios on lentil grain quality in order to understand the broad sensitivity analysis of
lentil seed coats under various storage conditions.

2. Materials and Methods
2.1. Measurement of Seed Coat Colour

The construction of the biophysical model was based on data recorded in a previous
study [1] where grain samples from four red lentil cultivars (PBA Hallmark, PBA Hurricane,
PBA Bolt, and PBA Jumbo2) grown in the Western Victorian region, representing a semi-
arid climatic environment, were stored for 360 days at two different grain moisture contents
(10 and 14% w/w) and four storage temperatures (4, 15, 25, and 35 ◦C). The grain, in harvest
condition, from selected cultivars grown in individual paddocks in the Wimmera region
of Horsham, VIC, Australia, were sourced from a commercial trader in December at the
end of the 2019 growing season. The 10% moisture content represents typical harvest
moisture levels in the harvested grain, while 14% represents the highest recommended
harvest moisture content. Temperatures of 15, 25, and 35 ◦C represent a range of grain
storage conditions in a semi-arid climatic environment, with 4 ◦C as the control temperature
treatment. The seed coat brightness (CIE L*), redness (CIE a*), and yellowness (CIE b*) of
these four red lentil cultivars were measured over time using a Minolta Spectrophotometer
(CM5, Hamburg, Germany) based on the Commission Internationale l’Elcairage (CIE)
values L*, a*, and b* systems as described by Wrolstad and Smith [13]. An increase in the
L* value signifies brighter grain, and a decrease in value signifies darker grain. A positive
increase in both the a* and b* values indicate a more brown/yellow grain, while negative
values of a* and b* denote a more green/blue grain. This data set has not previously been
used to construct an explanatory biophysical model.

2.2. Development of Equations for the Model

The rate of change in seed coat colour per day was derived from linear regression
independently for all cultivars at four temperatures (4, 15, 25, and 35 ◦C) and two grain
moisture contents (10 and 14%, w/w); the details of the linear regressions are provided in
Supplementary Figures S1–S3. This rate of change in seed coat colour traits was observed
as a non-linear function with temperature and grain moisture content (Figures 1–3). A
composite quadratic function of temperature and moisture content provided a good fit
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to the observed rate of change data (Supplementary Figures S1–S3). However, the rate
of change in CIE b*, measured at the 14% (w/w) moisture content and temperatures of
4, 15, 25, and 35 ◦C, showed a linear increase up to 25 ◦C, followed by a subsequent decrease
(Figure 3). Therefore, in this study, the average rate of change in CIE b* over the storage
period was applied to build the rate function for the model.
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Figure 3. Rate of change in seed coat yellowness (CIE b*) for red lentil cultivars stored at 4, 15, 25,
and 35 ◦C and at 10 and 14% (w/w) grain moisture content. Error bars across the points were similar
and smaller than the symbol size (SE ≤ 0.003).

2.3. Development of the Model

The observed changes in seed coat colour point to a simple rate and state model,
whereby the seed coat colour (state) changes over time, either decreasing or increasing,
driven by grain moisture content and temperature. The design, validation, and test-
ing of such a model can be facilitated using the commercially available model develop-
ment software “Structural Thinking, Experimental Learning Laboratory with Animation”
(STELLA) [14]. This package has been successfully used in developing explanatory models
in biology [15], ecology [16], and the environmental sciences [17]. The advantage of such
structural systems thinking it that is allows rapid separation of state variables from rate
variables and allows feedbacks and feedforwards to be explored with graphical interpreta-
tion. In this description, the state variables are given initial values that change over a period
of daily time steps. The rate of change per day is derived from rate constant functions
and environmental conditions over the storage period (Figures S1–S3). The rate constants
need to be defined from experimental data. Under long-term storage at high temperatures
and grain moisture contents, brightness (CIE L*) is expected to decrease with redness
(CIE a*), and yellowness (CIE b*) is expected to increase. Applying the model across a range
of expected environmental conditions provides a predicted colour state.

An explanatory biophysical model for predicting the change in seed coat colour of red
lentils by accounting the change in brightness (CIE L*), redness (CIE a*), and yellowness
(CIE b*) of the seed coat is defined in Figure 4. This model was developed using the
STELLA software version 3.0.1 available from iSSE systems. STELLA constituents four
core components: (1) stocks, which are the state variables responsible for accumulating and
preserving information inflows and outflows; (2) flows, which serve as exchange variables,
orchestrating the movement and transfer of information between these state variables;
(3) converters, which are versatile auxiliary variables that incorporate constant values or
values contingent upon other variables, curves, or functions spanning various categories;
and (4) connectors, builds vital links between modelling features, variables, and elements,
thereby facilitating seamless integration and interaction within the system.
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Figure 4. Explanatory biophysical model of three seed coat state variables (�, brightness CIE L*,
redness CIE a*, and yellowness CIE b*) developed with STELLA and showing the rate of change
drivers that reduce or increase colour over time and according to the storage conditions (grain
moisture content and temperature, #).

2.4. Determination of Rate Constants

Rate constants (A, B, a1, a2, and b1 and b2) are parameters that derive daily rate of
change together with environmental variables for each cultivar and three colour states.
The daily rates of change in seed coat colour states were calculated using the equation
(Equation (1) as described below) at each moisture content. To obtain a single equation
that will apply to the fitted range of both temperature and moisture content, simultaneous
equations were solved by algebraic solution or fitting regression equations. These equations
apply a temperature function that is influenced by moisture driven coefficients (Equation (2)
as described below). A quadratic equation is the simplest non-linear function to explore
three equations to solve the four coefficients.

A two-step process comprised of firstly fitting the change in seed coat colour per
day to temperature for the two levels of moisture content measured (10 and 14%) with an
assumed third moisture content of zero percent providing a zero rate of change:

Rate of change in seed coat colour per day = At2 + Bt + C (1)

where:

• ‘A’ represents a squared temperature coefficient.
• ‘B’ represents a linear temperature coefficient.
• ‘C’ represents the rate of change at 0 ◦C (which is assumed to be zero).

The second step required fitting the A and B coefficients to moisture content resulting
in the single rate equation:

Rate of change in seed coat colour per day = (a1m2 + a2m) × t2 + (b1m2 + b2m) × t (2)

where ‘a1’ and ‘a2’ are new coefficients of the square temperature term, ‘b1’ and ‘b2’ are
coefficients of the linear temperature term, ‘m’ is the grain gravimetric moisture content (%),
and ‘t’ is temperature (◦C). Because a quadratic function was fitted with three levels of
moisture content, the ‘a’ and ‘b’ fitted coefficients become perfect fits with zero standard
error. However, the full equation provides an acceptable fit and with high accuracy
(high R2 and low errors, Table 1) for each cultivar. Details of the quadratic equations
developed for the red lentil cultivars PBA Hallmark, PBA Hurricane, PBA Bolt, and PBA
Jumbo2 and their performance are provided in Table 1.
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Table 1. Initial values of colour traits (seed coat brightness CIE L*, redness CIE a*, and yellowness
CIE b*) and fitted rate constant parameters for four red lentil cultivars to the quadratic equations
for moisture (m). Number of observations per moisture parameter (n) and R2 and RMSE for the
combined moisture and temperature (t) function of the rate of change in seed coat colour trait per
day = (a1m2 + a2m) × t2 + (b1m2 + b2m) × t.

Colour Traits Cultivars Initial Colour a1 a2 b1 b2 n R2 RMSE

CIE L*

PBA Hallmark 43.7 (0.86) 1 −0.00857 0.00084 0.17724 −0.02005 3 0.98 0.0013
PBA Hurricane 44.7 (0.15) −0.00170 0.00005 −0.01529 −0.00071 3 0.99 0.0004

PBA Bolt 46.5 (0.13) −0.00571 0.00050 0.09067 −0.00960 3 0.99 0.0010
PBA Jumbo2 48.3 (0.09) −0.00272 0.00025 0.00641 −0.00199 3 1.00 0.0005

CIE a*

PBA Hallmark 10.5 (0.13) 0.00273 −0.00023 −0.03932 0.00313 3 0.98 0.0005
PBA Hurricane 10.1 (0.15) 0.00069 0.00007 0.00666 −0.00367 3 0.99 0.0001

PBA Bolt 9.50 (0.12) 0.00160 −0.00006 −0.00181 −0.00228 3 0.99 0.0005
PBA Jumbo2 8.00 (0.13) 0.00114 −0.00009 −0.01528 0.00161 3 0.99 0.0002

CIE b*

PBA Hallmark 17.6 (0.14) −0.00132 0.000421 0.05000 −0.00200 3 0.89 0.0012
PBA Hurricane 18.5 (0.18) −0.00507 0.00057 0.13750 −0.01425 3 0.94 0.0005

PBA Bolt 16.4 (0.18) −0.00154 0.00014 0.07500 −0.00550 3 0.99 0.0019
PBA Jumbo2 14.2 (0.86) 0.00182 −0.00011 −0.05643 0.00504 3 0.95 0.0009

1 Standard errors for the initial values of the colour traits are in parentheses.

2.5. Model Verification and Validation

Repetitive testing of the model was conducted to establish that the model performs as
designed, where the model correctly calculated the rate and state as programmed across
the diverse storage conditions. The modelled state variables of brightness (CIE L*), redness
(CIE a*), and yellowness (CIE b*) were subsequently tested against the measured data that
were used to derive the rate variables. Unbiased validation of the model was assessed
using two independent data sets.

The first dataset monitored seed coat colour of PBA Hallmark and PBA Jumbo2 stored
at either 15 or 35 ◦C in a laboratory setting [18]. In this case, initial colour values were
(± standard error) CIE L*, a*, and b* (42.7 ± 0.170, 8.7 ± 0.124, and 14.6 ± 0.774) for PBA
Hallmark and (48.4 ± 0.249, 7.2 ± 0.181, and 12.3 ± 0.608) for PBA Jumbo2.

The second dataset comprised observations of PBA Hallmark stored within a bulk
storage system under ambient environmental conditions. An experiment was conducted
for 150 days where the lentil grain of PBA Hallmark was stored in a small, commercial silo
with an approximately 15 tonne capacity. PBA Hallmark grown in the Horsham district
(located in southeastern Australia) were harvested during December 2022, before being
stored in an on-farm silo without aeration. On 28 February 2023, this grain was moved to
a silo situated in a north-facing position at the Agriculture Victoria Horsham SmartFarm
experimental site in Victoria, Australia. The silo was fully exposed to the sun and was
located at coordinates 36◦45′07′′ S latitude and 142◦06′52′′ longitude [19].

Temperatures within the silo were monitored at 33 different points using continu-
ous logging temperature and humidity sensors including Telesense [20] and Elitech [21].
Sensors were placed at three heights within the silo: 1.25 m from the base of the silo
(bottom), in the centre of silo which was 3.5 m from the base of the silo (middle) and
5.25 m from the base of the silo (top) (Figure 5). Within each level, two Telesense spears [20]
with embedded temperature and humidity sensors, within a cylindrical metal pipe, were
positioned horizontally at equidistant intervals of 0.99 metres from the centre of the silo
wall. The placement of these sensors (points 1, 2, 10, and 11) within the silo was carefully
selected to maintain 0.3 metres distance from the silo wall (Figure 5). At each level of the
silo, one spear assembled with seven temperature and humidity sensors of the Elitech
brand (model number RC-51H) [21] were horizontally positioned at the centreline of the
silo. The Elitech sensors were manually assembled within a metal pipe, to ensure symmetry
of sensor placement at the centre of the silo. Four sensors (points 3, 4, 8, and 9) were
positioned close to the silo wall (0.15 and 0.3 metres from both the north and south end of
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the silo), two sensors (points 5 and 7) were positioned in the middle (0.65 metres from both
ends of the silo), and one sensor (point 6) was positioned at the centre of the silo (Figure 5).
The sensors near the silo wall (points 1, 2, 3, 4, 8, 9, 10, and 11) were expected to experience
a greater influence from external temperatures, with the potential to observe greater change
in seed coat colour. In contrast, the sensors in the middle and at the centre were expected
to exhibit lower influence from external temperatures and have a greater buffering capacity.
This, in turn, was expected to have a lesser impact on seed coat colour.

The daily average temperature was collected at each point over the course of 150 days
(Supplementary Tables S1–S3). Grain samples were collected within close proximity to the
sensors at 30-day intervals and tested in a laboratory for grain moisture content (Supple-
mentary Table S4) with near infrared technology using a rapid content analyser (Model
XDS manufactured by FOSS Hilleroed, Denmark). Seed coat brightness (CIE L*), redness
(CIE a*), and yellowness (CIE b*) were also measured using a Minolta Spectrophotometer
(CR-410, Hamburg, Germany) based on the Commission Internationale l’Elcairage (CIE)
values under the L*, a*, and b* systems. The seed coat colour traits of the PBA Hallmark
stored in the silos including CIE L*, a*, and b*, had initial values (± standard error) of
39.5 ± 0.311, 8.2 ± 0.149, and 13.0 ± 0.204, respectively.

The temperature, grain moisture content, and colour traits were averaged across
33 monitoring points as no significant difference in the rate of change in colour traits was
observed across these points. Averaged temperature and grain moisture values were used
as inputs to the same equation (Equation (2) and Table 1) that was developed to simulate the
change in seed coat colour of PBA Hallmark. The simulations were verified by comparing
the averaged observed changes in seed coat colour traits. The agreement between the
observed and simulated values for model validation in both laboratory and bulk storage
settings was assessed using Lin’s Concordance Correlation Coefficient (CCC) as described
by Steichen and Cox [22]. The CCC is a numerical measure that ranges from -1 to 1, with
perfect agreement at 1.
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Figure 5. Schematic diagram illustrating the positions of sensors at different heights within the silo
and subsequent eleven monitoring points of temperature and humidity at the top level (5.25 m from
the base). The same number of monitoring points were applied at the same positions at the mid-
(3.25 m from the base) and bottom levels (1.25 m from the base).

2.6. Simulation under Different Storage Scenarios

The previous study [1] indicated that storing lentil grain at or above 25 ◦C results in
deterioration in seed coat colour, while storage temperatures at or below 15 ◦C result in
limited change in seed coat colour. Drawing on this reference, four hypothetical scenarios
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were developed to test the hypothesis that either harvesting lentils under cool conditions
prior to storage or actively cooling the stored grain can help to minimise the degradation
in seed coat colour. The rate of cooling for these scenarios was determined by reducing
the harvest temperature to 15 ◦C within either a 30-day or 60-day period, based on the
findings of a previous study [1]. To explore these hypothetical scenarios, the final, validated
model was run for PBA Hallmark, assuming a grain moisture content of 10% (w/w). The
first scenario represents a year where the grain is harvested at a hot temperature of
35 ◦C and placed in storage where a slow rate of cooling, 0.34 ◦C per day, occurred
until a temperature of 15 ◦C was reached and then maintained (Figure 6). The second
scenario represents a hot harvest (35 ◦C) where the grain was stored and a faster rate of
cooling was applied to the system, 0.67 ◦C per day until 15 ◦C was reached and maintained.
Similarly, the third scenario reflected a cool harvest temperature of 25 ◦C with a slower rate
of cooling (0.16 ◦C per day) until 15 ◦C was reached and maintained. The fourth scenario
represents a cool harvest (25 ◦C), and a fast rate of cooling was applied to the stored grain
(0.34 ◦C per day) until 15 ◦C was reached and maintained. Since the grain with higher
temperatures requires higher rates of cooling to equilibrate with the ambient temperature
compared to the grain with lower temperatures, a higher rate of cooling was applied to the
hot harvest and lower rates were used for the cool harvest scenario. Seed coat brightness
(CIE L*), redness (CIE a*), and yellowness (CIE b*) were simulated against these scenarios
for a storage duration of 360 days, considering the same initial values of CIE L*, a*, and b*
(43.7, 10.5, and 17.6) for model simulation and comparison purposes.
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Figure 6. Hypothetical scenarios used to test the sensitivity response of contrasting storage conditions
on lentil seed coat colour traits. Both hot and cool harvests with subsequent faster and slower rates of
cooling for red lentil grains were considered.

3. Results
3.1. Performance of the Model

Performance test of the explanatory model was carried out by simulating the change
in seed coat colour traits for all tested cultivars (PBA Hallmark, PBA Hurricane, PBA Bolt,
and PBA Jumbo2) using the same data set from which the model was developed. While
fitting the observed (measured in the experiment) rate of change in seed coat colour traits
(brightness CIE L*, redness CIE a*, and yellowness CIE b*) against the simulated rate of
change, the regression line exhibited a close fit, with R2 values at or above 0.89 and with
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low associated root mean square errors (RMSE) (≤0.0019) (Figures 7–9) across all tested
cultivars. This observation shows a high level of accuracy in simulating rates of change in
colour traits, indicating that the model demonstrates good explanatory performance in the
primary driving variables for modelling seed coat colour traits in red lentils.
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Figure 9. Comparison of the simulated and observed rates of change in seed coat yellowness (CIE b*)
for four red lentil cultivars. Where RMSE is the root mean square of error indicating the performance
of the model.

3.2. Model Validation

After achieving reasonable performance in the rate variables, this model was validated
against: (1) an independent data set consisting of changes in seed coat colour traits for PBA
Hallmark and PBA Jumbo2 [18], and (2) for PBA Hallmark, in an independent bulk storage
experiment in a field condition.

Validation of model performance using laboratory experiment data sets revealed
that the simulated values of changes in seed coat colour (CIE L* and a*) across culti-
vars and temperatures were not greatly different from the observed values, as indicated
by Lin’s Concordance Correlation Coefficient (CCC) and the observed standard errors
(Figures 10 and 11). The CCC is a useful performance indicator, but it assumes that a
“gold” standard reference measurement is available to test another model against it. In
our case, we assumed that the mean of the three colour measurements in each point
for all colour traits is a sufficient reference standard; Figures 10 and 11 support this.
The seed coat colour trait, CIE b* for PBA Jumbo2 exhibited a minimal difference be-
tween the simulated and observed values (Figure 11), while PBA Hallmark stored at a
14% grain moisture content and 35 ◦C did not show an agreement between simulated and
observed values (Figure 10). However, the average simulated value for the change in CIE
b* of PBA Hallmark at a 14% grain moisture content and 35 ◦C across time closely aligned
with the average observed values. The CCC between the simulated and observed values
across seed coat colour traits for PBA Jumbo2 suggest a moderate correlation at 15 ◦C
(CCC = 0.82–0.74) and strong correlation at 35 ◦C (CCC = 0.82–0.94). In the case of PBA
Hallmark, the CCC for CIE L*, a*, and b* at 15 ◦C (CCC = 0.47–0.71) suggests a moderate
correlation, while it was strongly correlated at 35 ◦C (CCC = 0.81–0.90), except for CIE b* at
a 14% grain moisture content, which exhibited no strong correlation (CCC = 0.01).
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Figure 10. Comparison of change in seed coat colour traits of PBA Hallmark grain. Comparison
of simulated and measured values of changes in seed coat colour traits (brightness CIE L*, redness
CIE a*, and yellowness CIE b*) of grain stored over a 360-day period at controlled temperatures of
15 and 35 ◦C and a 10% (w/w) grain moisture content. The error bars represent the 2 × standard error
(n = 3) on observed data together with Lin’s CCC.

Validation under the bulk storage system for PBA Hallmark showed reasonable perfor-
mance of the model, whereby no great differences between observed and simulated values
across traits occurred as indicated by CCC and the observed standard error (Figure 12). The
CCC values between the simulated and observed values across the traits were observed as
a moderate correlation (CCC = 0.46–0.54).
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Figure 11. Comparison of change in seed coat colour traits of PBA Jumbo2 grain. Comparison of
simulated and measured values of changes in seed coat colour traits (brightness CIE L*, redness
CIE a*, and yellowness CIE b*) of grain stored over a 360-day period at controlled temperatures of
15 and 35 ◦C at 10% (w/w) grain moisture content. The error bars represent the 2 × standard error
(n = 3) on observed data together with Lin’s CCC.

The combination of the observed low standard error and moderate CCC between the
observed and simulated values in both the laboratory and bulk storage system suggests
a reasonable agreement between the model simulations and the observed measurements
of the independent data for both cultivars across the traits CIE L* and CIE a* but not for
CIE b* in PBA Hallmark at 35 ◦C. This indicates that the model’s performance is generally
acceptable for all colour traits across the cultivars tested.
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Figure 12. Comparison of change in seed coat colour traits of PBA Hallmark grain stored at silo
condition. Comparison between simulated and measured values of changes in seed coat colour
traits (brightness CIE L*, redness CIE a*, and yellowness CIE b*) of grain stored in silo under natural
weather conditions over a 150-day period. The error bars represent 2 × standard error (n = 3) on
observed data together with Lin’s CCC.

3.3. Simulation of Storage Scenarios

The developed explanatory model demonstrated acceptable performance when a
range of validation tests were undertaken for the red lentil cultivar PBA Hallmark. The
current simulation test was used to understand how lentil colour would be expected to
response under various potential storage scenarios relevant to industry. If PBA Hallmark
were harvested at a hot temperature scenario of 35 ◦C at a 10% (w/w) grain moisture
content and stored for 360 days, and a slow rate of cooling (0.34 ◦C cooling/day) was
applied after storage until 15 ◦C was reached and maintained, the simulated seed coat
brightness suggests that the brightness would reduce by 0.007 CIE L* per day (Figure 13).
In contrast, the simulated rate of reduction in brightness in grains stored under hot harvest
conditions with a faster rate of cooling (0.67 ◦C cooling/day until 15 ◦C was reached and
maintained) was nearly half the rate (0.0039 CIE L*/day) compared with the slower rate
of cooling (0.007 CIE L*/day). Two scenarios, a hot harvest with fast cooling (0.67 ◦C
cooling/day) and a cool harvest (25 ◦C) with slow cooling (0.16 ◦C/day until 15 ◦C was
reached and maintained), demonstrated similar rates of change in seed coat brightness
(~0.004 CIE L*/day). Furthermore, the scenario with the cool harvest (25 ◦C) and fast
cooling (0.34 ◦C/day until 15 ◦C was reached and maintained) further reduced the rate of
reduction in brightness compared with the other three scenarios tested. Simulated rates
of change in seed coat redness (CIE a*) and yellowness (CIE b*) for these four scenarios
suggested that these traits undergo minimal changes, with the same rate of change in each
trait regardless of cooling treatments (Figure 13).

Harvesting at a cool temperature or increasing the cooling rate delayed seed coat
darkening, suggesting an extended storage period without degradation compared to grain
harvested at a hot temperature and not cooled. For example, the simulated rate of reduction
in brightness for hot harvests with a slow rate of cooling was predicted to take 140 days
to reduce one unit of CIE L*. On the other hand, both hot harvests with fast rates of
cooling and cool harvests with slow rates of cooling extended storage time for an additional
90 days by delaying the one-unit reduction in CIE L*. Lentils harvested at cool temperatures
and stored with a fast rate of cooling were predicted to be able to be stored up to 270 days
without a one-unit reduction in CIE L*.



Agronomy 2024, 14, 373 14 of 18Agronomy 2024, 14, x FOR PEER REVIEW 15 of 19 
 

 OFFICIAL 

 
Figure 13. Simulation scenarios and predicted change in lentil seed coat colour traits. Predicted 
change in seed coat brightness (CIE L*), redness (CIE a*), and yellowness (CIE b*), for PBA Hallmark 
maintained at a 10% (w/w) grain moisture content under different simulation scenarios. 

4. Discussion 
With uncertainty in lentil grain prices, demand, and supply, lentil growers are opting 

to store lentils on-farm to mitigate financial risk. However, environmental conditions such 
as grain moisture content and temperatures within the storage systems, can downgrade 
lentils by darkening their seed coat colour [1]. Predicting changes to the seed coat colour 
of lentils ensures that grain traders comply with established standards and ensure that the 
grain colour meets export customer expectations of a clean bright grain product at the 
time of purchase [23,24]. A biophysical model, which predicts the change in seed coat 
colour under given storage management and environmental conditions, may be useful in 
optimising on-farm storage practices and retaining the economic value of grain. 

The simulation tests conducted on the model under different harvest temperatures 
and cooling scenarios suggest that a model can be applied to inform a wide range of 
harvest and storage scenarios to mitigate the risk in seed coat colour decline. Simulation 
tests also underpin sensitivity analysis for defining important management factors within 
optimal storage systems. 

This simulation test supports the proposal that active cooling [1] can have a positive 
impact on maintaining seed coat colour of lentils harvested at high temperatures. In 

Figure 13. Simulation scenarios and predicted change in lentil seed coat colour traits. Predicted
change in seed coat brightness (CIE L*), redness (CIE a*), and yellowness (CIE b*), for PBA Hallmark
maintained at a 10% (w/w) grain moisture content under different simulation scenarios.

4. Discussion

With uncertainty in lentil grain prices, demand, and supply, lentil growers are opting
to store lentils on-farm to mitigate financial risk. However, environmental conditions such
as grain moisture content and temperatures within the storage systems, can downgrade
lentils by darkening their seed coat colour [1]. Predicting changes to the seed coat colour
of lentils ensures that grain traders comply with established standards and ensure that
the grain colour meets export customer expectations of a clean bright grain product at
the time of purchase [23,24]. A biophysical model, which predicts the change in seed coat
colour under given storage management and environmental conditions, may be useful in
optimising on-farm storage practices and retaining the economic value of grain.

The simulation tests conducted on the model under different harvest temperatures
and cooling scenarios suggest that a model can be applied to inform a wide range of harvest
and storage scenarios to mitigate the risk in seed coat colour decline. Simulation tests also
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underpin sensitivity analysis for defining important management factors within optimal
storage systems.

This simulation test supports the proposal that active cooling [1] can have a positive
impact on maintaining seed coat colour of lentils harvested at high temperatures. In
addition to hot harvests with active cooling, harvesting lentils at cool temperatures and/or
with subsequent cooling can be beneficial for preventing degradation in seed coat colour
during long-term storage.

The value of testing the potential storage scenarios encountered within the industry,
allows for a sensitivity analysis to perform the likely effect of different storage conditions
on lentil quality, such as assessing the seed coat colour. The simulation test also highlights
the principles that are important for optimal storage conditions and supports industry
education on best management practices. For example, if lentil grains are harvested under
high-temperature conditions, the model can assist growers in determining optimal rates
and duration of cooling to prevent the deterioration of the lentil seed coat in storage over
time. This biophysical model can assist growers or traders to identify the appropriate
temperatures and grain moisture within the storage facilities required to extend storage or
for transporting the grain.

While the comprehensive STELLA systems modelling framework was employed, a
very simple model without feedbacks or feedforwards was initially constructed (Figure 4).
This model was quite accurate despite the performance in CIE b*, as CIE L* and a* were more
representative of the change in seed coat colour over time than CIE b*. The prediction of CIE
b* across cultivars was developed through an average rate of change over the storage period.
This led to a mismatch between the observed and simulated values for PBA Hallmark at
35 ◦C. Therefore, a more comprehensive model may be necessary if CIE b* is required. A
biophysical model which includes CIE b* may involve positive and negative exponential
behaviour that is modelled with feedbacks in STELLA. Nevertheless, additional data are
required across a range of moisture contents and temperatures to the expected extremes,
which are likely to occur in storage systems in dry and hot environments. A much longer
period of storage (~2 years) also needs considering. In this study, independence between
the colour traits was assumed; however, there is a possibility of co-dependence between
the colour traits that maybe important in long-term storage. Investigating the relationship
of co-dependence in the colour values will strengthen the nature of the response of the rate
of change, thus providing robust utility in the management of colour in lentil over time
in storage.

The model developed in this study was derived from a critical set of observations;
specifically, changes in seed coat colour were measured at 30-day intervals over a period
of 360 days stored at two moisture contents (10 and 14% w/w) and four temperatures
(4, 15, 25, and 35 ◦C). To enhance the explanatory capabilities of the model, it is important
to consider a more comprehensive range of environmental factors. This includes grain
moisture content (e.g., at zero and greater than 20%), temperatures (at zero and greater
than 35 ◦C), the storage system size and shape, insect infestation, storage atmospheres,
storage elevation, changes in bioactive compounds, and the availability of light within
the storage system. The model was exclusively developed for four red lentil cultivars.
Expanding the scope to encompass a broader range of cultivars would be advantageous for
both growers and traders as this study demonstrated different rates of change in seed coat
colour traits in the cultivars tested (Figures 1–3). In addition, spatial variation associated
with storage environmental conditions over time within larger storage systems needs
to be quantified; therefore, enabling the colour values to be mapped within the grain
storage system. Mapping spatial variation could inform high-risk zones within current
storage systems, such as along the walls, which may be exposed to external temperature
fluctuations. These maps may assist in informing optimal design approaches for new
storage systems.

The biophysical model also provides the possibility to simulate storage temperature
by linking the real-time monitoring temperature from a large-scale storage system with
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meteorological ambient temperature. This has been reported in barley, where there was
a time lag between seasonal and ambient temperature and the temperature within the
centre of the bulk grain storage system [25]. If the relationship between meteorological
temperature data and the temperature within a storage system is established, then the
simulated storage conditions using meteorological data can be incorporated as inputs to the
model. However, other variables may impact model performance, including the spatial and
temporal variability within the storage system, the relationship to daily temperatures, the
elevation of the storage system, consideration of the various types and sizes of storage
systems, and grain size and packing density within the storage system. Similarly, as
humidity directly influences the grain moisture content within the storage system [26], the
biophysical model offers an opportunity to transform the explanatory model developed
in this study by directly incorporating humidity data instead of grain moisture content.
This is particularly relevant as timely monitoring of humidity using real-time sensors [27]
within storage systems is more practical than monitoring grain moisture content.

5. Conclusions

The explanatory biophysical model developed in this study can predict the change
in seed coat colour of lentils with reasonable concordance to the observed data, based
on the provided temperature and grain moisture content during storage. This predictive
capability can assist growers and traders in making well-informed managerial decisions to
improve storage conditions, thereby preventing degradation and retaining the economic
value of the grain. The model can also be applied to perform sensitivity analysis for various
storage scenarios, providing insights into optimal storage conditions and management
practices to prevent degradation or to extend the storage period. Upscaling this model to
the commercial scale and validating it across a range of storage systems and conditions in
the next step can enhance its effectiveness as an economic decision tool in the pulse grain
industry in the future.

Further research is required to scale up and validate the model for predicting changes
in the seed coat colour of stored lentils in commercial-scale storage facilities of varying
types, sizes, and shapes. This research should be conducted at both spatial and temporal
scales to ensure the accuracy of the model’s performance and its applicability to a range of
real-world scenarios. Similarly, this opens avenues for adapting and modifying the model
to predict other quality traits in lentils or other grain types in storage facilities.

Supplementary Materials: Supporting information can be downloaded at: https://www.mdpi.com/
article/10.3390/agronomy14020373/s1, data s1: Figure S1: Change in seed coat brightness (CIE L*)
in four red lentil cultivars stored at two moisture and four temperatures level for 360 days; Figure
S2: Change in seed coat redness (CIE a*) in four red lentil cultivars stored at two moisture and four
temperatures level for 360 days; Figure S3: Change in seed coat yellowness (CIE b*) in four red lentil
cultivars stored at two moisture and four temperatures level for 360 days; Table S1: Daily average
temperatures recorded over a period of 150 days at different points at the top level of the silo; Table
S2: Daily average temperatures recorded over a period of 150 days at different points at the mid-level
of the silo; Table S3: Daily average temperatures recorded over a period of 150 days at different points
at the bottom level of the silo, Table S4: The moisture content of the grain samples at various points
within the top, middle, and bottom levels of the silo, measured at 30-day intervals over a period of
150 days.
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