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Abstract: Cucumber (Cucumis sativus L.) lateral branch elongation is influenced by a variety of
environmental signals, including light [e.g., far-red (FR) light] and hormones. In this experiment, the
effect of FR light on the lateral branch elongation of cucumber (‘Zhongnong No. 26’) seedlings was
investigated. The results showed that FR light significantly inhibited the lateral branch elongation
of cucumber seedlings. In addition, FR light significantly increased the auxin (indole-3-acetic acid,
IAA) content, decreased the cytokinin (CTK; Zeatin) content, and suppressed the expression of most
CTK synthetic-related genes, such as IPTs, in cucumber seedlings. The lateral branch elongation
of cucumber seedlings was assessed in response to decapitation and exogenous 6-BA treatment
to further investigate the relationship between IAA and CTK on the lateral branch elongation of
cucumber seedlings under FR light. Both decapitation and exogenous 6-BA treatment eliminated the
inhibitory effect of FR light on the lateral branch elongation of cucumber seedlings. In conclusion,
these results indicated that IAA and CTK were involved in the regulatory effects of FR light on
cucumber seedling lateral branch elongation.

Keywords: cucumber; lateral branch; far-red light; hormones; auxin; cytokinin

1. Introduction

As an important agronomic trait, plant type affects light energy capture efficiency,
photosynthesis and nutrient distribution [1,2] and is one of the determinants of fruit
yield and quality [3,4]. The architectural characteristics of the plant, such as the length of
internodes, the angle of leaves and the number of lateral branches, demonstrate a significant
degree of phenotypic plasticity [5]. Cucumber (Cucumis sativus L.) is an important facility
vegetable crop worldwide. Excessive numbers of lateral branches are harmful to the
development of flowers and fruits, so producers often need to manually remove excess
lateral branches to achieve high yields [6,7]. However, this process is time-consuming
and labour-intensive, and producers are attempting to reduce production costs (especially
labour costs) as competition increases among producing regions.

Lateral branch formation involves axillary bud formation, sprouting, growth and
stem elongation through a complex network of intrinsic genetic factors (genes) and ex-
trinsic environmental factors (e.g., light, hormones) [8]. In addition, integrative phys-
iology, genetics and molecular tools have found that the formation and elongation of
lateral branches is controlled by diverse phytohormones through their biosynthesis, trans-
port and signalling and is coordinated with multiple environmental signals [9]. Fortu-
nately, molecular-marker-assisted breeding and several agronomic regulatory strategies
(e.g., light and plant growth regulators) have made it possible to breed cucumbers with
fewer lateral branching traits, which reduces the labour cost. Light (including light in-
tensity, light quality and photoperiod) regulates the growth and development of plant
lateral branches [10–13]. Far-red (FR) light is invisible light that regulates plant growth
and photomorphogenesis [14–16]. The red/far-red (R/FR) ratio is considered an important
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light signal that induces adaptive responses in plants. A low R/FR ratio triggers shade
avoidance syndrome (SAS), which is characterized mainly by a reduction in the number
and length of lateral branches [17,18]. Low R/FR ratios regulate lateral branch growth and
development mainly via phytochrome (phy, especially phyB), phytochrome interacting
factors (PIFs) and endogenous hormones [e.g., auxin (indole-3-acetic acid, IAA), gibberellin
(GA), abscisic acid (ABA) and cytokinin (CTK)] [6,19,20]. The phyB deficiency mutants
exhibited a lower branching capacity than the wild-type plants, whereas increasing the
R/FR ratio induced phyB accumulation, which caused lateral branch elongation [21].

Phytohormone regulatory networks play major roles in lateral branch growth and
development in response to FR light, and reciprocal networks of upstream and downstream
signals from different phytohormones can be generated. When the light signal (increased FR
light) is altered, phyB is inactivated and PIFs are promoted, which can initiate downstream
hormone (e.g., IAA) signalling to control lateral branch sprouting or dormancy [22]. IAA
serves as a major hormone for maintaining apical dominance in plants, and a large amount
of IAA, produced in the apical part of the main stem, moves downwards through polar
transport and indirectly regulates lateral branch elongation [23]. CTK has an antagonistic
effect on IAA, which acts as the second messenger of IAA to regulate the formation of lateral
branches [24]. These two hormones are considered to be the most important regulators of
branch formation. In addition, a low R/FR ratio can promote the accumulation of ABA
and the expression of ABA biosynthesis-related genes and inhibit the expression of cell
cycle-related genes to hinder the formation of lateral branches [25,26].

Although many studies have reported the regulation of lateral branch growth in higher
plants (Arabidopsis thaliana, tomato, etc.) by FR light, there is still much research space in
cucumber seedlings and the value of regulating the light environment in facility horticulture.
To analyse the mechanism of hormone signalling involved in the FR light regulation of
lateral branch elongation in cucumber seedlings, we observed and explored the changes in
the morphology of lateral branches, endogenous hormones and related gene expression
levels in cucumber seedlings under light signals (FR light) and/or hormone signals (IAA,
CTK). The aim of this study was to increase the understanding of the interaction between
FR light and/or hormone signals in regulating cucumber lateral branch elongation and to
provide a theoretical basis for the use of light quality (FR light) to regulate cucumber lateral
branch elongation.

2. Materials and Methods
2.1. Plant Materials and Treatments

The experiment was carried out at the Horticulture Science and Technology Building,
Fujian Agriculture and Forestry University, China (119.23◦ E, 26.08◦ N). The cucumber
variety for testing was selected as ‘Zhongnong No. 26’; the seeds were soaked for 6 h
and then germinated overnight and sown in a 50-hole tray. Upon the flattening of first
true leaves, the seedlings were chosen and placed in plastic containers (containing 3.5 L of
Yamazaki cucumber nutrient solution, pH = 6.8–7.0, EC = 2.2–2.5 mS·cm−1), with 5 plants
per container. These containers were kept in a plant cultivation room at a temperature of
27 ± 1 ◦C/23 ± 1 ◦C (day/night), and with a 12 h photoperiod using a full-spectrum
LED white light (WL, λmax = 450 and 660 nm, JIUPO, Fuzhou, China, R/FR ratio = 14.82,
PPFD = 157.16 ± 9.64 µmol·m−2·s−1) [27], as determined by an MK350D portable spec-
trometer (UPRtek, Taiwan, China) except where specified. The spectrum graph is shown in
Figure 1. Every 4 days, the nutrition solution was changed.

First, we investigated the effect of FR light on the elongating lateral branches of
cucumber plants. Two treatments were used: (1) WL and (2) WL combined with FR light
(λmax = 730 nm, SANANBIO, Quanzhou, China, 58.11 ± 6.95 µmol·m−2·s−1) (WL + FR,
R/FR ratio = 1.45, PPFD = 153.21 ± 11.98 µmol·m−2·s−1).
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Figure 1. The spectrum graph.

The seedlings were treated following the flattening of second true leaves (after ap-
proximately 7 days of hydroponics). After 8 days of FR light treatment, the lateral branch
length was determined using a Vernier calliper (precision 0.01 mm). After 48 h of FR light
treatment, the apical and basal internodes were excised. Subsequently, the samples were
promptly frozen in liquid nitrogen and then preserved at −80 ◦C. Each experiment was
conducted a minimum of three times.

Second, we studied the effect of decapitation on the elongation of the lateral branches of
cucumber seedlings. Upon the flattening of second true leaves (after 7 days of hydroponics),
the seedlings were treated by FR light. Moreover, the seedlings were subjected to FR light
treatment for 4 days, after which, the plants were decapitated. There were four treatments in
the experiment: (1) WL, (2) WL + decapitation, (3) WL + FR and (4) WL + FR + decapitation.
After 4 days of decapitation, the lateral branch length was determined using a Vernier
calliper (precision 0.01 mm). After 6 h of decapitation treatment, the first and second
internodes (from the bottom) were excised. Subsequently, the samples were promptly
frozen in liquid nitrogen and then preserved at −80 ◦C. Each experiment was conducted a
minimum of three times.

Finally, we studied the effect of CTK on the elongation of the lateral branches of
cucumber plants. Upon the flattening of second true leaves (after 7 days of hydroponics),
the seedlings were treated. There were four treatments in the experiment: (1) WL, (2) WL +
6-BA, (3) WL + FR and (4) WL + FR + 6-BA. The concentration of 6-BA (Sangon Biotech,
Shanghai, China) was 50 µmol·L−1 in the morning every 2 days. [28]. After 8 days of
treatment, the lateral branch length was determined using a Vernier calliper (precision
0.01 mm). After 6 h of 6-BA treatment, the first internode (from the bottom) was excised.
Subsequently, the samples were promptly frozen in liquid nitrogen and then preserved at
−80 ◦C. Each experiment was conducted a minimum of three times.

2.2. Measurement of Endogenous Hormone Contents

The contents of IAA and Zeatin were determined by an Elisa Kit (mlbio, Shanghai,
China), and the methods were described by He et al. and Tsago et al. [29,30]. Briefly, a total
amount of 0.3 g of frozen stem samples was homogenized in 3 mL of cold 50 mmol·L−1

phosphate-buffered saline (PBS, pH 7.2–7.4). The resulting homogenates were centrifuged
at 2000 rpm·min−1 (H1750R, Cence, Changsha, China) at 4 ◦C for 10 min. According to the
manufacturer’s instructions, 40 µL of sample dilution buffer and 10 µL of supernatant were
added to the bottom of the sample wells. And 100 µL of horseradish peroxidase-conjugated
reagent was added to each well except the blank control. The solution was sealed with the
closure plate membrane and incubated at 37 ◦C for 60 min. Then, the closure plate membrane
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was peeled off and the solution was removed. The wells were refilled with the wash solution,
left to stand for 30 s and then drained, and the process was repeated 5 times. After washing,
50 µL of chromogen solution A and 50 µL of chromogen solution B were added to the wells
and evaded light preservation at 37 ◦C for 15 min. After colouring, 50 µL of stop solution
was added to stop the reaction. The absorbance was carried out at 450 nm with a multimode
microplate reader (SpectraMax iD3, Molecular Devices, San Jose, CA, USA), within 15 min
after the termination of the reaction. A standard curve was established for each micro-titre
plate to calculate the IAA and Zeatin content.

2.3. Real-Time Quantitative PCR (RT–qPCR) Analysis

The extraction of total RNA was performed using 0.2 g internode samples using a
FastPure Plant Total RNA Isolation Kit (Polysaccharides & Polyphenolics-rich) (Vazyme
Nanjing, China). The RNA was converted into complementary DNA (cDNA) using FastK-
ing gDNA Dispelling RT SuperMix (Tiangen, Beijing, China) and 1 µg of total RNA in a
20 µL reaction volume. For qPCR in a 20 µL reaction volume containing a 1 µL cDNA
template, 10 µL or 2 × RealStar Fast SYBR qPCR Mix (GenStar, Beijing, China) and 0.5 µL
of primer were used. The RT-qPCR analysis was conducted utilizing a LightCycler® 96 real-
time PCR system (Roche, Basel, Switzerland) at 95 ◦C for 2 min, while cycling 40 times at
95 ◦C for 15 s, 60 ◦C for 30 s and 72 ◦C for 30 s. The 2−∆∆CT method was used to calculate the
relative expression levels of the genes. The primers designed specifically for the YUC genes
were obtained from Yan et al. [31]. The primers designed specifically for the LOG genes
were obtained from Mandal et al. [32]. The primers designed specifically for the IPT and
CKX genes were obtained from Zhu et al. [33]. Tua: F 5′-CTCTCAACCCATTCTCTCTTGG-
3′, R 5′-CGGTTGAGGTTCGAGTAGTTAG-3′. The gene-specific primers used here are
shown in Tables 1 and 2.

Table 1. YUC and LOG genes’ primer sequences for RT-qPCR.

Genes Accession Number Primer Sequences (Forward/Reverse)

YUC2 Csa020745 F 5′-TGCAAGGCAAAAGACTTCACG-3′

R 5′-GCTATACATTCGGCTCTTTCAAGGA-3′

YUC4 Csa006121 F 5′-TGGCTAAAGCAGGGGTGTGA-3′

R 5′-CGTTGGCGATTTTCATAGCG-3′

YUC6 Csa021077 F 5′-GAAGTATTTGGAGGATTACGCTG-3′

R 5′-TGTTTCCTCAGAACGACCGC -3′

YUC7 Csa000192 F 5′-GGTGAGGCTTACCGTGGGAAAC-3′

R 5′-CTTGGCATCATGGTTACAAAGA-3′

YUC8 Csa008610 F 5′-CATACGCCAAGCATTTTGAGAT-3′

R 5′-ATGTATTCGACCTCGTTACGGG-3′

YUC9 Csa001400 F 5′-CCGAGTCTTCCGTTTCTGGT-3′

R 5′-GGCATGACACACTCTGCATTTTC-3′

YUC10a Csa017301 F 5′-GTCCTTCTGGCTTGGCTACCT-3′

R 5′-TGGCTAAGTGAAGGCATAAACG-3′

YUC10b Csa008786 F 5′-CCTTCTGGTCTTGCCACTGC-3′

R 5′-CAAAACCGATTGGGGAGG-3′

YUC10c Csa019194 F 5′-CTATCCACCGCCGCATGTTTA-3′

R 5′-CGCCAGCTCCGATGATTTCTT-3′

YUC11 Csa016452 F 5′-CAATGCACCGACGTATATTTCG-3′

R 5′-CCTCTCTTGCTCACCACTACTTGT-3′

LOG1 Csa6G127300 F 5′-CAACTCGGGTCATCGAAAAG-3′

R 5′-CCATCAACCCAACACTTCCT-3′

LOG2 Csa4G646190 F 5′-CGGAGGAGGTAGTGTTGGA-3′

R 5′-ACTGCCTTCACTTCTCCCACT-3′
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Table 2. IPT and CKX genes’ primer sequences for RT-qPCR.

Genes Accession Number Primer Sequences (Forward/Reverse)

IPTs

Csa3M150100 F 5′-CGGCGGAAAGATAAAGTGG-3′

R 5′- CAACATCAAGTCCTTCATAAACCTG-3′

Csa6M237640 F 5′-AAACGATGTCTCCCTATTCTGGC-3′

R 5′-CCGACACGAACGAGTTGAGG-3′

Csa7M253720 F 5′-CGATGTTGCTCTGCCTGTTC-3′

R 5′-CGAACTTCTTCCACTAACCCTAAC-3′

Csa6M030440 F 5′- GCGGGTGGATGAGATGTTG-3′

R 5′-CTTCAAATGCTCTTGCCTGC-3′

Csa5M609740 F 5′-GGTCCAACTCCTTCATTCACG-3′

R 5′-AATGGGAAACTCAACGTCTAACC-3′

Csa1M152000 F 5′-TTGATGGCATAATTTCTCGTGG-3′

R 5′-CAGAAGAAACGGACTAACAAGAGC-3′

Csa4M083690 F 5′-TGTTCCGATAGTTTGTGGTGG-3′

R 5′-CTTCATTTCTCCGCAAGTCTG-3′

Csa4M083690.2 F 5′-TTCCGATAGTTTGTGGTGGG-3′

R 5′-AACTTCAGCAGCAATGTCTGG-3′

Csa7M392940 F 5′-AGCAAGGGAAAGAAGCAGATG-3′

R 5′-TTCGTTGGGAACTTTGTGGC-3′

CKXs

Csa1M588560 F 5′-GGATTGAACTATTTAGAGGGTTTGC-3′

R 5′-GATGATTGTAGAGTGATGAGAAGGTG-3′

Csa1M589060 F 5′-GATCGAGTTCATACCGACGAGG-3′

R 5′-GACGCCAGAAGTGAGATTACGC-3′

Csa1M589070 F 5′- GTCTCGTGGGTGGATTATTTGC-3′

R 5′-TGAGGACCGAACCGAAACG-3′

Csa2M000440 F 5′-CCGTAAACCAACAACCAAACA-3′

R 5′- CGTAATCCGACGAGGCTATG-3′

Csa2M362450 F 5′-TCTTATGACCCGAGACCCGC-3′

R 5′-CCACTCATTTCAATCACCACCC-3′

Csa3M823030 F 5′-GGCATAGTTATCAACATGGAGTCC-3′

R 5′-AGATTCCCACTGTGAACCTGC-3′

Csa4M343590 F 5′-CCATCAACCCTCTTCACATCAG-3′

R 5′-CCATAAACCTTTCGCTCGG-3′

Csa4M647490 F 5′-GCGGAAGAGGAAGCAGTTG-3′

R 5′-CTTGGAACGCAGAAGAGGG-3′

Csa5M175820 F 5′-TGCCTCAGCACAGTTCTTTCTA-3′

R 5′-CAAGCAGTGGATTTCCCTACAA-3′

2.4. Statistical Analyses

DPS software (v17.10, Zhejiang University, Hangzhou, China) was used to analyse
whether there were any significant differences between the treatments, and then, the results
were subjected to an LSD test with a significance level of 5% (p < 0.05).

3. Results
3.1. FR Light Inhibits Lateral Branch Elongation in Cucumber Seedlings

In the present study, FR light was applied to cucumber seedlings in the two-leaf stage.
The results showed that FR light treatment significantly inhibited the elongation of the
lateral branches of cucumber seedlings after 8 days (Figure 2), and the lengths of the first,
second, third and total lateral branches (from the bottom to the top of the stems) were
reduced by 41.22%, 93.96%, 43.27% and 81.88%, respectively, compared with those of the
control (full-spectrum LED white light).
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Figure 2. Effects of far-red (FR) light on the elongating lateral bud of cucumber seedlings (A). The
data are the mean ± SD (n = 5) (B). Different lowercase letters indicate significant differences at
among treatments (p < 0.05).

3.2. Effect of FR Light on the Endogenous Hormone Contents and Related Gene Expression in
Cucumber Seedlings

The results showed that FR light significantly promoted IAA levels in the apical and
basal internodes of cucumber seedlings by as much as 36.98% and 41.96%, respectively,
and significantly reduced Zeatin levels by 19.69% and 8.24%, respectively (Figure 3A,B).
In addition, we observed the response of the IAA synthetic genes—YUCs—to FR light
and found that the expression levels of YUC4, YUC6, YUC9, YUC10b and YUC11 were
significantly downregulated, while only the expression level of YUC8 was significantly
upregulated (Figure 3C,D). Moreover, the expression levels of most of the CTK synthetic
genes, IPTs, also showed significant downregulation (Figure 3G,H), which was consistent
with the Zeatin content; moreover, the expression levels of the CTK synthetic gene, LOG1,
showed significant downregulation only in the basal internodes (Figure 3F). Interestingly,
the expression of most of the CTK hydrolytic genes, such as CKXs, was also significantly
downregulated, while that of only one gene (Csa4G343590) was significantly upregulated
(Figure 3I,J), which may be related to feedback regulation.

3.3. The Inhibitory Effect of FR Light on the Branch Elongation of Cucumber Seedlings Was
Related to IAA

To investigate the relationship between IAA and lateral branch elongation in cucumber
seedlings under FR light, we investigated the effect of decapitation on lateral branch
elongation in cucumber seedlings under FR light. Consistent with the expected results,
decapitation eliminated the inhibitory effect of FR light on lateral branch elongation in
cucumber seedlings (Figure 4). Additionally, decapitation significantly downregulated the
expression of IAA synthetic genes, YUCs (YUC7, YUC9 and YUC10b), but an increase in
IAA levels was observed (Figure 5A,B). In addition, decapitation significantly upregulated
the expression of most of the CTK synthetic genes, IPTs (Figure 5D); interestingly, the
CTK synthetic gene, LOG2, and most of the CTK hydrolytic genes, such as CKXs, were
significantly downregulated (Figure 5C,E). The trend of the changes in Zeatin content
was also consistent with that of the synthetic genes, which increased by 17.46% after
decapitation compared with that in the FR light group (Figure 5A). These results suggest
that FR light enhances apical dominance through IAA signalling, thereby inhibiting lateral
branch elongation.
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Figure 3. Effects of FR light on the endogenous hormone contents (A,B) and related gene expression
(C–J) in cucumber seedlings. The data are the mean ± SD (n = 3). Different lowercase letters indicate
significant differences among treatments (p < 0.05).
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Figure 4. Effects of FR light and/or decapitation on the elongating lateral bud of cucumber seedlings (A).
The data are the mean ± SD (n = 5) (B). Different lowercase letters indicate significant differences among
treatments (p < 0.05).

Figure 5. Effects of FR light and/or decapitation on the endogenous hormone contents (A) and
related gene expression (B–E) in cucumber seedlings. The data are the mean ± SD (n = 3). Different
lowercase letters indicate significant differences among treatments (p < 0.05).
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3.4. The Inhibitory Effect of FR Light on the Branch Elongation of Cucumber Seedlings Was
Related to CTK

We investigated the effect of exogenous 6-BA on lateral branch elongation in cucumber
seedlings under FR light to elucidate the relationship between CTK and lateral branch
elongation in cucumber seedlings. Consistent with the expected results, exogenous 6-
BA eliminated the inhibitory effect of FR light on lateral branch elongation in cucumber
seedlings (Figure 6). Exogenous 6-BA upregulated the expression of the CTK synthetic gene,
LOG2, to a certain extent and significantly upregulated the expression of IPTs (Csa7G253720
and Csa5G609740) (Figure 7B,C). Interestingly, compared with those in the FR light group,
the expression of most of the CTK hydrolytic genes, such as CKXs, was significantly
upregulated (Figure 7D), and the Zeatin content increased by 32.46% (Figure 7A). These
results further indicated that FR light inhibited lateral branch elongation by regulating
CTK levels.

Figure 6. Effects of FR light and/or 6-BA on the elongating lateral bud of cucumber seedlings (A).
The data are the mean ± SD (n = 5) (B). Different lowercase letters indicate significant differences
among treatments (p < 0.05).
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Figure 7. Effects of FR light and/or 6-BA on the endogenous hormone contents (A) and related gene
expression (B–D) in cucumber seedlings. The data are the mean ± SD (n = 3). Different lowercase
letters indicate significant differences among treatments (p < 0.05).

4. Discussion

In recent years, light has been recognized as a signal to regulate lateral branch elonga-
tion. For instance, increasing photosynthetically active radiation (PAR) usually promotes an
increase in the number of lateral branches [10], and the addition of red light induces lateral
branch elongation [13]. Conversely, the addition of blue or FR light inhibits lateral branch
elongation [34–36]. The regulation of lateral branch elongation by light involves multiple
mechanisms, including the expression levels of photoreceptors, endogenous hormones and
their related genes. The Cryptochrome 1 (CRY1) gene mediates the response to blue light [34],
and the phyB gene mediates the response to red/FR light [6] to regulate lateral branch
elongation. At the same time, stem branch branching is antagonistically regulated by
multiple hormones [including IAA, CTK, GA, ABA, strigolactone (SL) and brassinosteroid
(BR)] that act through branched1 (BRC1, a transcription repressor of bud outgrowth) [37,38].

The classical view is that IAA is considered to be the primary hormone controlling
the elongation of lateral branches [39,40]. In the “polar transport of IAA” theory, IAA
transport in the stem is a systematic signal, and the high flux of IAA in the main stem
prevents the export of IAA from lateral shoots, resulting in the inhibition of lateral branch
elongation [41]. Normally, PhyB attenuates IAA signalling to promote lateral branch elon-
gation [42], whereas a decreased R/FR ratio inactivates phyB, which in turn enhances
the inhibitory effect of IAA on lateral branches [35]. Correspondingly, PIFs can also bind
to the promoters of IAA synthetic genes and response genes to regulate their expression
directly [43–45]. Therefore, under low-R/FR conditions, the accumulation and signal
transduction of IAA in plants increase rapidly [42]. Our results also showed that FR light
promoted the accumulation of IAA in the top and basal internodes (Figure 3A,B); how-
ever, the expression levels of most IAA synthetic genes, such as YUCs, were significantly
downregulated (Figure 3C,D), indicating that the response of IAA content and signal trans-
duction in the main stem to FR light was weak and transient [46]. As expected, decapitation
eliminated the inhibitory effect of FR light on lateral branch elongation (Figure 4), and the
above results showed that the inhibition of IAA signalling affects the efficacy of FR light,
thus suggesting that the inhibition of lateral branch elongation in cucumber seedlings by
FR light is related to IAA. Interestingly, although decapitation suppressed the expression
of YUCs (YUC7, YUC9 and YUC10b) in the basal internode (Figure 5B), the IAA levels
increased (Figure 5A), which might be related to the output of IAA in the lateral branches
after decapitation.

CTK is considered to be another important factor in the regulation of plant lateral
branch development, which acts by decreasing the transcript levels of the BRC1 gene
and antagonizing the apical dominance of IAA and SL [10,47,48]. CTK levels are mainly
related to its biosynthesis and hydrolysis [49]. In terms of synthesis, adenosine phosphate-
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isopentenyltransferases (IPTs) are the catalytic enzymes involved in the first step of CTK
biosynthesis and are also rate-limiting enzymes. The LONELY GUY enzyme (LOG) can
directly convert inactive cytokinins (iPRMP and tZRMP) into biologically active free cy-
tokinins (iP and tZ) [50]. In terms of hydrolysis, cytokinin oxidase (CKX) controls en-
dogenous CTK levels (CKX catalyses the irreversible hydrolysis of CTK and plays an
indicative role in monitoring CTK levels) [51]. The results showed that FR light reduced
the accumulation of Zeatin in internodes (Figure 3A,B); accordingly, the relative expression
levels of most of its synthesized genes, namely IPTs, were significantly downregulated
(Figure 3G,H). However, most of the hydrolysed genes, such as CKXs, were downregulated,
except for Csa4G343590, suggesting that the decrease in Zeatin levels was mainly related
to the inhibition of synthesis. In addition, IAA in the polar transport stream also inhibits
the biosynthesis of CTK by downregulating the expression of IPTs [52,53]. Undoubtedly,
decapitation upregulated the expression of most IPTs and downregulated the expression
of most CKXs (Figure 5D,E), thereby promoting the accumulation of Zeatin in basal in-
ternodes (Figure 5A). As stated in the second messenger model, CTK acts downstream of
IAA to control lateral branch elongation; in this model, the localized synthesis of CTK in
stem nodes is sufficient to promote lateral branch elongation. Interestingly, decapitation
promoted Zeatin accumulation and subsequently promoted IAA accumulation in basal
internodes (Figure 5A). Cao et al. [22] also reported that after decapitation, the rate of
CTK accumulation in basal internodes was much higher than the rate of IAA depletion,
suggesting that the depletion of IAA induced by decapitation was not the initial signal
that triggered CTK accumulation. Next, we utilized exogenous 6-BA treatment to verify
the interactions between FR light and CTK. Similar to what was observed with the de-
capitation treatment, in the FR light treatment, 6-BA promoted the elongation of lateral
branches (Figure 6), which may be related to the application of exogenous 6-BA to promote
the biosynthesis of endogenous CTK [54]. Our results also showed that exogenous 6-BA
supply at the stem nodes directly promoted the accumulation of endogenous Zeatin in
the internodes (Figure 7A), which subsequently induced the negative feedback regulation
of CTK biosynthesis, leading to an increase in the expression level of the CTK hydrolytic
genes, such as CKXs, (Figure 7D). In addition, CTK can activate the expression of the
cytokinin receptor AHK4 [55], upregulate sucrose convertase [56] and promote the cell cy-
cle [57]. In conclusion, high levels of CTK inhibit IAA activity, subsequently inducing lateral
branch elongation.

In addition to IAA and CTK, other hormones may also play a role in regulating lateral
branch elongation. SL functions as an inhibitor of lateral branch elongation by acting on
BRC1 to promote its high expression, thereby enhancing the inhibitory effect of IAA on
lateral branch elongation [58]. BR receives CTK signal and activates the BZR1 transcription
factor to inhibit the transcript levels of the BRC1 gene, thereby promoting lateral branch
elongation [28]. In addition to hormones, sugars have also been demonstrated to have a
signalling functions in the growth and development of lateral branches. The provision
of exogenous sucrose or its derivative hexose (glucose and fructose) has been found to
inhibit the transcript of the BRC1 gene, which in turn promotes the elongation of lateral
branches [56,59]. Furthermore, there exists a complex interplay between sugar and hor-
monal pathways. The growth of lateral branches is regulated by the antagonistic coupling
of sugar and IAA levels. In vitro experiments have shown that the provision of exoge-
nous sucrose partially counteracts the inhibitory effect of IAA and reduces endogenous
IAA levels [59,60]. Additionally, the elongation of lateral branches induced by exogenous
sucrose has been associated with the synthesis of CTK and the downregulation of the
SL signalling gene (MAX2) [56]. These results show that other hormones and signalling
molecules (including SL, BR and sugar), interact with IAA and CTK and regulate lateral
elongation. Accordingly, it has been reported that SL, BR and ABA are involved in the
regulation of lateral branch elongation by FR light [25,36]. Then, do they (SL, BR, ABA and
sugar) also mediate the FR light-regulated lateral elongation of cucumber seedlings? If so,
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how they mediate this process and their interaction networks with IAA and CTK remain to
be further studied.

5. Conclusions

In summary, our study determined that FR light regulates lateral branch elongation in cu-
cumber seedlings by promoting IAA signalling and inhibiting CTK biosynthesis
(e.g., by reducing the transcriptional level of IPTs) to enhance apical dominance. How-
ever, other phytohormones (e.g., BR and SL) and signalling molecules (e.g., sugar) may also
contribute to the response to FR light in this process. Furthermore, there could be further
interactions. In the future, we will focus on these potential aspects to carry out more detailed
mechanistic research.
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