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Abstract: Fly ash (FA) is promising for environmental remediation, but how to modify the FA with
high remediation efficiency through an environmentally friendly and low-cost modification method
is scare. A modified FA (MFA) was prepared through a one-step hydrothermal modification with
Ca(OH)2 and KH2PO4. Results indicated that irregular agglomerates occurred on the surface of the MFA
and that the specific surface area increased by 1.94 times compared to that of FA. Compared to FA, glassy
compositions in MFA were destroyed and amorphous Si/Al and alkaline aluminosilicate gels were formed.
The soil application of 0.2–0.6% MFA significantly increased soil pH by 0.23–0.86 units compared to FA
and decreased available lead (Pb) and copper (Cu) by 25–97.1% and 13.5–75%, respectively. MFA
significantly decreased exchangeable Pb and Cu by 12.5–32% and 11.4–35.2%, respectively, compared
to FA. This may be due to the high pH and specific surface area of MFA, which promoted to the
formation of amorphous Si/Al, metal–phosphate precipitation, and complexation with functional
groups. In addition, MFA slightly increased the biomass of shoots and roots and decreased the uptake
of Pb and Cu by ryegrass. This study provides a new modification method for the utilization of FA in
the heavy metal-contaminated soils.

Keywords: fly ash; Pb and Cu; passivation; accumulation; ryegrass

1. Introduction

Coal-fired power plants are still the main source of electricity in many countries
worldwide and the generation is estimated to account for 46% of the global electricity
supply by 2030 [1]. China is the largest consumer of coal in the world, and the coal
consumption accounts for 56% of the country’s total energy consumption in 2021 [2,3].
Meanwhile, considerable amounts of fly ash (FA) are generated from coal-burning power
plants. In 2012, nearly 750 million tons of FA were produced annually worldwide [4],
and the increasing demand for energy has caused an alarming rise in FA production. The
output of FA was nearly 620 million tons in China in 2015 [5], which has become the largest
single source of solid pollution [1,6]. Although the worldwide production of FA has slightly
decreased in recent years, the utilization rate of FA has remained at a relatively low level [7].
In fact, there is a considerable amount of FA stored in stockpiles, landfills, and ponds,
causing seriously environmental issues [8]. Inappropriate disposal and long-term natural
exposure of FA causes severe air, soil, and water pollution, and is hazardous to plant growth
and human health [9]. Therefore, it is crucial to explore new utilization methods for FA.
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FA is mainly utilized in road construction, brick manufacture, the concrete industry,
and agricultural fields [10,11]. It can be used as an alternative for the adsorption of heavy
metals owing to its low cost, high porosity, high specific surface area, and iron/aluminum
oxides [11]. However, the adsorption capacity of heavy metals by FA is relatively low.
For example, the removal of copper (Cu) ions by FA was only 1.4 mg g−1, which was
significantly less than that of NaOH-treated FA (58.48 mg g−1) [12,13]. Cui et al. [14]
reported that 0.2–2% FA increased soil pH, but only 2% of FA significantly decreased the
exchangeable Cu and cadmium (Cd), by 35.7% and 35.9%, respectively. Therefore, it is
indispensable to improve its adsorption capacities via modification methods. Xu et al. [15]
used a low-temperature roasting method to modify FA, and soil application of the new
FA at a 2% rate decreased the available lead (Pb) by 30–48.3%. Nevertheless, the majority
of previous modification methods were complicated, time consuming, had high energy
consumption, and even led to secondary pollution, which limited the reuse of FA on a large
scale [16–18]. Therefore, it is important to develop environmentally friendly and low-cost
modification methods for FA.

Simple alkali modification of FA increased the specific surface area of FA from
1.45 m2 g−1 to 31.6 m2 g−1, and the adsorption capacity of Pb2+ and Cd2+ increased by
41.9% and 92.5%, respectively [19]. Numerous studies have demonstrated that phosphorus-
rich materials can be used as amendments in heavy metal-contaminated soils since they can
form metal–phosphate precipitation with low solubility and high buffering stability [20–22].
For example, Cao et al. [23] suggested that phosphate amendments could promote the
immobilization of Pb in soils and decreased the toxicity characteristic leaching procedure
of extractable Pb by 89.2%. Our previous studies also found that soil CaCl2-extractable Pb,
Cu, and Cd were decreased by 99.4%, 95%, and 79%, respectively, in potassium dihydrogen
phosphate-treated soils [24].

Therefore, we prepared a new modified FA (MFA) by one-step co-precipitation of
Ca(OH)2 and KH2PO4 in this study. This study aims (1) to investigate the passivation
effects of Pb and Cu by MFA in contaminated soil and (2) to evaluate the effects of MFA on
the biomass and metal accumulation of ryegrass. This study will provide a new potential
utilization direction for FA in environmental remediation.

2. Materials and Methods
2.1. Experimental Materials

Original FA samples were collected from the Luohe Power Plant in Huainan, China.
The pH of FA was 12.4 and the distribution of particle sizes of <5, 5–10, 10–20, 20–30, 30–50,
and >50 µm were 7.85%, 20.6%, 42.2%, 10.6%, 9.62%, and 9.13%, respectively. Total Pb and
Cu in FA were 40.1 mg kg−1 and 67.3 mg kg−1, respectively.

The soil samples were collected from an abandoned agricultural land near a Cu smelter
in Guixi, China. Soil samples were air-dried and then ground through a 10-mesh sieve for
the pot trial. Soil pH, organic carbon, cation exchange capacity (CEC), total Pb, and total
Cu were 3.67, 13.1 g kg−1, 89.5 mmol kg−1, 1331mg kg−1, and 635 mg kg−1, respectively.
Ryegrass is a suitable species for the revegetation of heavy metal-contaminated soils [25];
thus, we planted ryegrass in the contaminated soil. Annual ryegrass (Lolium Perenne L.) seeds
were purchased from a seed distributor. All chemicals used in this study were analytical grade
and purchased from Sinopharm Chemical Reagent Co., Ltd. (Nanjing, China).

2.2. Preparation of MFA

The original FA was modified with Ca(OH)2 and KH2PO4 under hydrothermal con-
ditions. Ca3(PO4)2 was anticipated to form through the reaction between Ca(OH)2 and
KH2PO4 (Equation (1)), and the theoretical mass ratio was 1.41:2.59 based on the purity
of Ca(OH)2 and KH2PO4. Our preliminary experiment showed that the MFA prepared
with a mass ratio of FA:Ca(OH)2:KH2PO4 = 20:1.41:2.59 had higher adsorption capacities
for Pb and Cu than that of 36:1.41:2.59, but lower than that of 8:1.41:2.59. Considering the
cost, we synthesized the MFA by weighting 20 g FA, 1.41 g Ca(OH)2, and 2.59 g KH2PO4 in
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a beaker and then mixed it well with 240 mL deionized water for 1 h. Subsequently, the
beaker was heated in a water bath at 100 ◦C for 24 h, and then the suspensions were cooled
and centrifuged and the solid residue was washed with distilled water until a stable pH
was reached (10 ± 0.10). Finally, the resulting MFA was oven-dried at 60 ◦C, ground, and
passed through a 100-mesh sieve.

3KH2PO4 + 3Ca(OH)2 = K3PO4 + Ca3(PO4)2 ↓ +6H2O (1)

2.3. Incubation Experiment

The incubation experiment was conducted in 1 L polyvinyl chloride (PVC) tanks
(10 cm (D) ×15 cm (H)) containing 3000 g of contaminated soil. Considering the economic
cost and operability of practical field application, FA and MFA were added to the soil at low
dosages of 0.2%, 0.4%, and 0.6% (w/w) [14]. There were seven treatments, including control
(CK), 0.2% FA (FA-2), 0.4% FA (FA-4), 0.6% FA (FA-6), 0.2% MFA (MFA-2), 0.4% MFA
(MFA-4), and 0.6% MFA (MFA-6). Meanwhile, 3.0 g basal fertilizer (N:P2O5:K2O = 15:15:15)
were manually mixed with the soils. The soil moisture in all treatments were maintained at
70% of the maximum water-holding capacity. Three replicates were performed for each
treatment. Then, 20 germinated ryegrass seeds (Lolium Perenne L.) were sowed into the
tanks and cultured in a light incubator at 25 ± 2 ◦C with a relative humidity of 70%, an
illuminance of 8000 lux, and a photoperiod of 12 h light/dark. The ryegrass was harvested
and then washed with tap water and deionized water after incubation for 30 days.

Soil pH and CaCl2-extractable Pb and Cu were determined on the 7th, 14th, 21th, and
30th days. The speciation of Pb and Cu in soils was determined on the 30th day. In addition,
the harvested ryegrass was separated into shoot and root parts, and the biomass and total
Pb and Cu concentrations in ryegrass were also determined on the 30th day.

2.4. Chemical Analysis

The scanning electron microscope (SEM), the Brunauer–Emmett–Teller (BET), Fourier
transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and X-ray
diffraction (XRD) analysis were carried out based on Cui et al. [26], and detailed information
can be found in Text S1.

The pH of FA, MFA and soil were determined using a pH meter (PHS-25, Leici,
Shanghai, China) with a liquid–solid ratio of 2.5:1. Soil organic carbon and cation exchange
capacity (CEC) were analyzed according to the methods of Walkley and Black [27] and
Pansu and Gautheyrou [28], respectively. Soil available silicon (Si) was determined by
the silicon–molybdenum blue colorimetric method [29]. Total Pb and Cu in FA, MFA and
soil were measured by a flame or graphite furnace atomic absorption spectrophotometer
(A3, Persee General Instrument, Beijing, China) after the samples were digested with an
acid mixture (HNO3-HF-HClO4: 5-10-5 mL) [30]. Soil available Pb and Cu were extracted
by 0.01 mol/L CaCl2 in a solid–liquid ratio of 1:5 (w/v) [31]. The sequential extraction
procedure was used to analyze the five types of speciation of soil Pb and Cu, including
exchangeable (EXC), binding to carbonate (CA), iron and manganese oxide (Fe-Mn), organic
matter (OM), and residual (RES) [32]. For more detailed information on the sequential
extraction procedure, refer to Text S2.

The shoots and roots of ryegrass were digested with an acid mixture
(9 mL HNO3:1 mL HClO4) based on our previous study [33], and the total Pb and Cu
concentrations in the digestion solution were determined using a flame or graphite furnace
atomic absorption spectrophotometer.

For quality assurance, all tests were conducted in triplicate. Blanks, along with
certified soil (GBW07405, Nanjing, China) and plant (GBW10010, Nanjing, China) reference
materials, were analyzed, and the recovery rate ranged from 93% to 107%.
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2.5. Data Analysis

Statistical analysis was performed using IBM Statistical Product and Service Solutions
(SPSS) Statistics 26.0. All results were expressed as mean ± standard error. The signifi-
cant differences among the treatments were identified by Duncan’s honestly significant
difference test (p < 0.05) via one-way ANOVA. All figures were created using Origin 2021.

3. Results and Discussion
3.1. Characterizations of FA and MFA

The surface of FA exhibited a loose structure and was primarily composed of smaller
spherical powder particles with varying sizes and relatively smooth appearances
(Figure 1A). However, the glass-phase structure in MFA was disrupted and resulted in
some irregular agglomerates with rough external morphology (Figure 1B). Consistent
with the SEM results, the specific surface area of MFA (18.6 m2 g−1) was increased by
1.94 times compared to that of FA (9.57 m2 g−1). The increase in specific surface area for
MFA may have been due to the destruction of the silica–aluminate structure of FA through
the dissolution of the surface glass under Ca(OH)2 [34].
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Figure 1. The SEM images of FA (A) and MFA (B). Note: FA: fly ash; MFA: modified fly ash.

FA and MFA mainly consisted of mullite (3Al2O3·2SiO2), quartz (SiO2), and hematite
(Fe2O3) (Figure 2A). A broad characteristic diffraction peak appeared between 25◦ and 30◦,
indicating the presence of vitreous humor in FA and MFA [34,35]. The diffraction peaks
of mullite and quartz decreased after modification, demonstrating that stable substances
such as SiO2/Al2O3 were activated. The reason is that the Si-O and Al-O were broken
down by the high concentration of OH−, which released the active negatively charged
groups [36]. Furthermore, numerous diffusive peaks with diminished diffraction intensity
were observed, and their intensity was decreased compared to that of the original FA,
indicating that a portion of the glass structure in FA was disrupted during the modification
process [37]. The active Al2O3 and SiO2 in MFA can act as adsorbents, thus increasing
the adsorption capabilities of MFA [38]. Unlike in FA, new peaks of calcite (CaCO3)
appeared between 25◦ and 30◦ in MFA, which may have been due to the reaction of carbon
dioxide (CO2) with alkaline material present in the FA [39]. However, phosphate minerals
(Ca3(PO4)2) were not determined in MFA. This was mainly due to the concentration of
phosphate being below 2–5%, which is less than the detection limit of XRD [40].
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The main functional groups in FA included -OH (3462 cm−1), C=O (2354 cm−1), -OH
(1640 cm−1), Si-O-T (T=Si, Al) (1092 cm−1), [AlO6]9− octahedral structure (568 cm−1),
and T-O (T=Si, Al) (453 cm−1) (Figure 2B). Unlike in FA, two strong and broad peaks
appeared at 1640 cm−1 and 3462 cm−1 in MFA, which were related to -OH stretching
vibration [41]. In addition, the peak of the asymmetrical stretching vibration of Si-O-T
(T=Si, Al) in MFA became sharper and red-shifted from 1092 cm−1 to 1041 cm−1. This result
indicates that the glassy compositions of FA (SiO2 and silica–alumina compounds) were
successfully modified and formed some alkaline aluminosilicate gels [42]. Moreover, the
O-C-O stretching vibration peak was increased at 1467 cm−1 for MFA, indicating that the
modification procedure increased the species of oxygen-containing functional groups [43].

The XPS spectra indicated that C, O, Al, Si, Ca, and P were mainly present on the
surface of MFA (Figure 3). The shifts in the O (1s), Ca (2p), P (2p), and Si (2p) peaks indicate
that there were variations in the speciation of oxygen, phosphate, iron oxides, phosphate
minerals, and quartz [44]. The Ca (2p) peak was detected after modification, indicating
that Ca2+ was retained in MFA [31]. After modification, the Si/Al binding energies of the
corresponding spectral bands in MFA were 102.48 eV and 74.11 eV, which were reduced by
0.50 eV and 0.47 eV more than in FA, respectively (Figure S1). The stronger Si/Al peaks
in MFA than in FA suggest that the dissolution of the Si/Al functional group in the glass
phase resulted in the formation of amorphous Si/Al [44,45].

3.2. Soil pH, CaCl2-Extractable, and Chemical Speciation of Pb and Cu

During the incubation process, the application of FA and MFA significantly increased
soil pH by 0.07–0.30 and 0.35–1.11 units compared to the control (p < 0.05) (Figure 4A).
Compared to FA, soil pH was significantly increased by 0.23–0.86 units with an MFA
dosage from 0.2% to 0.6% and continuously increased with time. For example, MFA-4
significantly increased soil pH by 0.39–0.5 units from the 7th to the 30th day. FA can
interact with carboxyl functional groups and consume protons, thereby increasing the soil
pH [46]. MFA was more effective at enhancing the soil pH than FA with the same dosage
due to the incorporation of Ca(OH)2. Furthermore, higher amounts of aluminosilicate
were released since the glassy structure of FA was destroyed after modification, which
resulted in the increase of soil available Si in MFA-treated soils (Figure S2). A significant
positive relationship was found between soil pH and soil available Si (p < 0.01) (Figure S3),
indicating that the Si compounds may have been hydrolyzed in the soil and decarboxylated
and released alkaline substances to enhance the buffering capacity of the soil [47,48].
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Figure 4. Changes in soil pH (A) and CaCl2-extractable Pb (B) and Cu (C) in contaminated soil
amended with FA or MFA. Note: CK, control soil; FA-2, 0.2% FA-treated soil; FA-4, 0.4% FA-treated
soil; FA-6, 0.6% FA-treated soil; MFA-2, 0.2% MFA-treated soil; MFA-4, 0.4% MFA-treated soil; MFA-6,
0.6% MFA-treated soil. Different letters above the error bar indicate significant differences between
the treatments (p < 0.05).
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Moreover, the CaCl2-extractable Pb and Cu were significantly decreased with the
increasing dosages of FA and MFA (Figure 4B,C). Compared to FA-treated soils, all
MFA-treated soils significantly decreased CaCl2-extractable Pb and Cu by 25–97.1% and
13.5–75%, respectively. Arenas et al. [49] indicated that amorphous Ca3(PO4)2 exhibits a
notable adsorption effect for heavy metals. Although the phosphate minerals (Ca3(PO4)2)
were not identified in MFA by XRD, the immobilization efficiencies of Pb and Cu by MFA
were higher than that of FA and the other alkline modification FA reported by previous
studies [15,50,51]. For example, Hu et al. [50] used a alkali-modified FA with 4% dosage
only decreased the soil available Pb and Cu by 62.7% and 48.1%, respectively. Furthermore,
CaCl2-extractable Pb and Cu in all soils decreased with time, which may have been due to
the continuous enhancement of soil pH (Figure 4A).

The Pb in the control soil was mainly presented in EXC and RES speciation, account-
ing for 59.7% and 23.6% of the total Pb, respectively (Table 1). FA and MFA significantly
decreased the EXC-Pb compared to the control soil, and MFA significantly reduced EXC-
Pb by 12.5–32% compared to FA. Meanwhile, 0.2–0.6% FA did not significantly change
Pb in CA, OM, and RES speciation, but 0.4–0.6% MFA treatments significantly increased
the Pb in CA, Fe-Mn, OM, and RES speciation by 9.31–27.1%, 52.5–98.7%, 69–97.9%, and
23.8–45.9%, respectively, compared to the control soil. Unlike Pb, Cu was mainly concen-
trated in RES (225 mg kg−1, 34.8%) and Fe-Mn (212 mg kg−1, 32.9%) speciation in the
control soil, followed by EXC (119 mg kg−1, 18.4%), CA (45.7 mg kg−1, 7.1%), and OM
(43.9 mg kg−1, 6.8%) speciation. In addition, no FA treatments influenced EXC-Cu, but MFA
significantly decreased EXC-Cu by 11.4–35.2% compared to FA. Compared to FA, 0.4–0.6%
MFA treatments significantly increased Cu in CA and Fe-Mn speciation by 19.2–31.8% and
19.7–26%, respectively, but did not change Cu in OM or RES speciation.

Table 1. Chemical speciation of Pb and Cu in contaminated soil amended with FA and MFA.

Treatment EXC CA Fe-Mn OM RES

Pb

CK 807 ± 4.98 ab 116 ± 0.04 cd 95.2 ± 3.14 d 15.1 ± 0.99 c 318 ± 0.71 d
FA-2 797 ± 5.26 bc 109 ± 0.26 ef 75.4 ± 3.15 f 10.3 ± 0.70 d 324 ± 1.69 d
FA-4 792 ± 11.92 c 115 ± 5.10 cde 78.1 ± 0.49 f 13.2 ± 0.70 c 323 ± 2.89 d
FA-6 749 ± 7.60 d 113 ± 0.04 de 76.0 ± 1.35 f 12.8 ± 0.45 c 385 ± 4.28 b

MFA-2 697 ± 0.52 e 122 ± 3.39 bc 120 ± 4.64 c 13.9 ± 0.54 c 374 ± 3.89 c
MFA-4 631 ± 0.35 f 127 ± 2.79 b 145 ± 1.65 b 25.6 ± 2.14 b 394 ± 4.94 b
MFA-6 510 ± 6.31 g 148 ± 3.85 a 189 ± 0.79 a 29.9 ± 1.14 a 464 ± 3.21 a

Cu

CK 119 ± 1.03 ab 45.7 ± 0.07 c 212 ± 0.94 b 43.9 ± 3.09 a 225 ± 4.40 cd
FA-2 123 ± 2.12 a 43.1 ± 0.34 cd 190 ± 0.78 cd 36.5 ± 2.72 ab 228 ± 0.80 bcd
FA-4 115 ± 4.78 b 44.6 ± 1.78 cd 190 ± 0.69 cd 40.0 ± 5.55 ab 234 ± 15.49 abcd
FA-6 113 ± 1.87 bc 43.6 ± 0.47 cd 185 ± 3.20 d 41.4 ± 1.28 ab 248 ± 10.98 a

MFA-2 108 ± 6.92 c 44.9 ± 0.71 cd 206 ± 3.55 b 35.6 ± 2.26 ab 244 ± 6.59 ab
MFA-4 102 ± 1.65 d 53.2 ± 1.97 b 228 ± 7.48 a 33.5 ± 4.65 b 236 ± 10.06 abcd
MFA-6 73.4 ± 1.73 e 57.4 ± 2.20 a 233 ± 7.39 a 43.4 ± 4.24 a 240 ± 2.35 abc

Note: CK, control soil; FA-2, 0.2% FA-treated soil; FA-4, 0.4% FA-treated soil; FA-6, 0.6% FA-treated soil;
MFA-2, 0.2% MFA-treated soil; MFA-4, 0.4% MFA-treated soil; MFA-6, 0.6% MFA-treated soil. EXC, exchangeable;
CA, bound to carbonate; Fe-Mn, iron and manganese oxide; OM, organic matter; RES, residual. Mean (n = 3) and
standard error followed by different letters indicate significant differences (p < 0.05).

The above results indicate that MFA was more effective at decreasing the availability of
Pb and Cu in soils than that of FA, which may be due to the following reasons. First, higher
specific surface area in MFA can provide more adsorption sites than in FA [52]. Second,
MFA was more effective at increasing soil pH, which can facilitate the passivation of heavy
metals [15]. The significant negative correlation between soil pH and CaCl2-extractable and
exchangeable Pb and Cu further verified the key role of soil pH (p < 0.001) (Figure S3). Third,
amorphous Si/Al was formed, accompanied by the destruction of the glass-phase structure
after modification of FA, which can enhance the adsorption capacities for Pb and Cu [53].
Previous studies have reported that amorphous Si can reduce the availability of heavy
metals by transforming the metal speciation in soil solution into silicate complexes [54,55].
Fourth, phosphate could easily complex with heavy metals [56]; in particular, Ca3(PO4)2



Agronomy 2023, 13, 2194 8 of 12

and CaCO3 were newly formed in MFA, resulting in the formation of phosphate and
carbonate precipitates of Pb and Cu [57]. Fifth, the stronger -OH and O-C-O functional
groups in MFA would promote the formation of hydroxide and carbonate precipitate with
Pb and Cu [58].

3.3. Ryegrass Growth and Heavy Metal Accumulation

Compared with the control, the application of both FA and MFA with 0.2–0.4% did
not influence the dry biomass of the shoots of ryegrass, and only FA-6 and MFA-6 signif-
icantly increased the dry biomass of the roots of ryegrass by 25% and 30%, respectively
(p < 0.05). Compared with the control soil, only FA-6 and MFA-6 significantly decreased the
concentrations of Pb in the shoots of ryegrass by 22.7% and 35.9%, respectively (p < 0.05).
All FA and MFA significantly decreased the concentrations of Pb in the roots of ryegrass by
22.7–26.9% and 30.1–31.3%, except for FA-2 and MFA-2, respectively (p < 0.05). MFA-4 and
MFA-6 slightly decreased the concentrations of Pb in the shoots and roots of ryegrass by
9.97–17.1% and 6.1–9.55% compared to FA-4 and FA-6, respectively (Figure 5B). Moreover,
no FA and MFA applications changed Cu uptake by the shoots of ryegrass compared to the
control soil except for MFA-6. Similarly, only FA-6 significantly decreased the Cu in the
roots of ryegrass by 32.6%, and MFA decreased the Cu in the roots of ryegrass by 30.6–53.6%
compared to that of the control soil (Figure 5C). The results indicate that MFA slightly
increased the biomass of ryegrass and decreased the uptake of Pb and Cu compared to
those of FA. This may be due to the shorter time of the indoor incubation experiment and
the application rates of MFA being significantly less than the rates reported by previous
studies [48,50,59].
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Figure 5. Effects of amendments application on the dry biomass of shoots and roots in ryegrass (A)
and shoot and root Pb (B) and Cu (C) in ryegrass. Note: CK, control soil; FA-2, 0.2% FA-treated soil;
FA-4, 0.4% FA-treated soil; FA-6, 0.6% FA-treated soil; MFA-2, 0.2% MFA-treated soil; MFA-4, 0.4% MFA-
treated soil; MFA-6, 0.6% MFA-treated soil. Different letters above the error bar indicate significant
differences between the treatments (p < 0.05).
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As shown in Figure S4, the biomass of the shoots and roots of ryegrass were both
significantly positively correlated with soil pH and available Si (p < 0.05). There was a
significant negative correlation between soil pH and the uptake of Pb and Cu, except for the
Pb in the roots of ryegrass (p < 0.05), which suggests that FA and MFA could significantly
inhibit the Pb and Cu uptake in shoots of ryegrass by increasing soil pH [60,61]. Cu uptake
by shoots and roots was positively correlated with soil available and exchangeable Pb and
Cu (p < 0.05). Nevertheless, no significant relationships were observed between Pb uptake
in ryegrass and soil available Pb (p > 0.05). Additionally, there were negative relationships
between Pb and Cu uptake of ryegrass and soil available Si (p < 0.05). In general, the
increase in available Si was facilitated by the decrease in available Pb and Cu in soil. This
may be due to the co-precipitation of Si with metals and the increase in soil pH, which
could decrease metal transport from root to shoot [55,62]. Nevertheless, the definite impact
mechanisms of Si on the availability of heavy metals need to be further studied.

4. Conclusions

Compared with FA, MFA had more irregular agglomerates, which enhanced the
specific surface area by 1.94 times. The modification process destroyed the glass-phase
structure and destroyed the Si-O and Al-O active functional groups compared to the original
FA. In the incubation experiment, MFA significantly increased soil pH by 0.23–0.86 units
and was more effective at passivating Pb and Cu than FA by transforming the metals from
active speciation to stable speciation. Moreover, SEM, BET, XRD, FTIR, and XPS showed
that MFA could enhance the passivation of heavy metals by increasing specific surface
area, functional groups, and the activation of Si. Besides, the increase in soil pH and the
metal–phosphate precipitate were beneficial for metal passivation. Moreover, MFA slightly
increased the dry biomass of shoots and roots and inhibited the accumulation of Pb and
Cu in ryegrass compared to FA. Overall, MFA can be considered a potential passivation
material for Pb- and Cu-contaminated soil, which has great significance for the utilization
of FA.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/agronomy13092194/s1, Text S1: Characterization analysis;
Text S2: Soil lead (Pb) and copper (Cu) sequential extraction procedure; Figure S1: Si2p and Al2p
spectrum of FA (A) and MFA (B). Note: FA: fly ash; MFA: modified fly ash; Figure S2: Changes
in available silicon (Si) in contaminated soil amended with FA or MFA. Note: CK, the control soil;
FA-2, 0.2% FA treated soil; FA-4, 0.4% FA treated soil; FA-6, 0.6% FA treated soil; MFA-2, 0.2% MFA
treated soil; MFA-4, 0.4% MFA treated soil; MFA-6, 0.6% MFA treated soil. Different letters above the
error bar indicate significant differences between the treatments (p < 0.05); Figure S3: Correlations
coefficients among soil pH, available Pb (A) and Cu (B), available Si, and Pb and Cu speciation.
available Pb and Cu: CaCl2-extractable-Pb and Cu, EXC, exchangeable; CA, bound to carbonates;
Fe-Mn, bound to iron and manganese oxide oxides; OM, bound to organic matter; RES, residual.
Note: ***: Significant correlation at the 0.001 level (p < 0.001). **: Significant correlation at the 0.01 level
(p < 0.01). *: Significant correlation at the 0.05 level (p < 0.05); Figure S4: Correlation coefficients
among soil pH, soil CaCl2-extractable and exchangeable Pb and Cu, available Si, dry biomass in shoot
and root ryegrass, accumulation of Pb and Cu in shoot and root ryegrass. C-Pb, CaCl2-extractable-Pb;
C-Cu, CaCl2-extractable-Cu; EXC-Pb, exchangeable Pb; EXC-Cu, exchangeable Cu; A-Si, available
Si; S-biomass, shoot dry biomass of ryegrass; R-biomass, root dry biomass of ryegrass; S-Pb, shoot
Pb in ryegrass; R-Pb, root Pb in ryegrass; S-Cu, shoot Cu in ryegrass; R-Cu, root Pb in ryegrass.
Note: ***: Significant correlation at the 0.001 level (p < 0.001). **: Significant correlation at the
0.01 level (p < 0.01). *: Significant correlation at the 0.05 level (p < 0.05).
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