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Abstract: To enhance the efficiency of mechanical automatic picking of cherry tomatoes in a precision
agriculture environment, this study proposes an improved target detection algorithm based on
YOLOv5n. The improvement steps are as follows: First, the K-means++ clustering algorithm is
utilized to update the scale and aspect ratio of the anchor box, adapting it to the shape characteristics
of cherry tomatoes. Secondly, the coordinate attention (CA) mechanism is introduced to expand the
receptive field range and reduce interference from branches, dead leaves, and other backgrounds
in the recognition of cherry tomato maturity. Next, the traditional loss function is replaced by the
bounding box regression loss with dynamic focusing mechanism (WIoU) loss function. The outlier
degree and dynamic nonmonotonic focusing mechanism are introduced to address the boundary box
regression balance problem between high-quality and low-quality data. This research employs a self-
built cherry tomato dataset to train the target detection algorithms before and after the improvements.
Comparative experiments are conducted with YOLO series algorithms. The experimental results
indicate that the improved model has achieved a 1.4% increase in both precision and recall compared
to the previous model. It achieves an average accuracy mAP of 95.2%, an average detection time of
5.3 ms, and a weight file size of only 4.4 MB. These results demonstrate that the model fulfills the
requirements for real-time detection and lightweight applications. It is highly suitable for deployment
in embedded systems and mobile devices. The improved model presented in this paper enables real-
time target recognition and maturity detection for cherry tomatoes. It provides rapid and accurate
target recognition guidance for achieving mechanical automatic picking of cherry tomatoes.

Keywords: precision agriculture; YOLOv5; cherry tomato; maturity detection; CA; WIoU

1. Introduction

Cherry tomatoes, cherished by consumers for their richness in various nutrients, such
as lycopene, organic acids, and vitamins, hold a significant place in daily life. Mechanical
picking, as a crucial stage in fruit production, is still predominantly reliant on manual labor.
Nevertheless, manual picking proves to be labor-intensive and expensive. By adopting
mechanical picking, not only can costs be reduced and picking efficiency improved, but it
can also contribute to enhancing the economic benefits of fruit farmers [1,2]. However, the
growth characteristics of cherry tomatoes are intricate. The fruits exhibit diversity in terms
of size, maturity, and location, often overlapping with one another. The dense presence of
branches and leaves, coupled with complex lighting conditions, poses challenges for rapid
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and accurate identification of cherry tomatoes during the harvesting process [3]. Further-
more, cherry tomatoes are susceptible to post-picking storage difficulties, and exhibit high
perishability during transportation and sales. Consequently, it becomes necessary to pick
cherry tomatoes of varying maturity levels based on specific transportation and storage
requirements [4]. To effectively organize the labor force and pick at the opportune moment,
obtaining precise positioning information of cherry tomatoes and accurate distribution
details of different maturity levels quickly and accurately becomes an essential requirement
for realizing mechanized picking. It stands as a crucial step in the implementation of
precision agricultural technology [5,6].

In recent years, there has been a growing trend among domestic and international
experts to integrate computer vision technology into the agricultural sector. The explo-
ration of precise fruit recognition and fruit maturity classification algorithms has gained
momentum, encompassing both conventional feature-based recognition methods and deep
learning approaches like convolutional neural networks [7].

Traditional recognition methods based on digital image processing mainly match
target fruits by extracting features such as color, geometric shape, and texture from the
images. For example, Surya Prabha et al. [8] proposed a ripeness classification algorithm
based on color and size, using first-order to fourth-order moments of the R, G, B components
in banana images to identify the ripeness stages of bananas. Liu et al. [9] presented a color-
based method for grapefruit classification and detection, transforming the image from RGB
space to Y’CbCr space to recognize the ripeness of grapefruits. Lin et al. [10] used the
Hough transform based on color and texture information to identify fruits like citrus and
tomatoes using contour information. Bron et al. [11] introduced a chlorophyll fluorescence
analysis technique for papaya ripeness grading. Kurtulmus et al. [12] proposed a citrus
detection algorithm based on color images, using circular Gabor texture features and
feature aggregation to successfully recognize green citrus. Although traditional recognition
methods based on digital image processing have achieved some success in feature design,
they have certain limitations. They primarily rely on fixed color features to match target
fruits, and their adaptability to lighting variations and color shifts is limited, resulting in
suboptimal performance in dealing with color instability [13]. Additionally, when dealing
with complex background conditions, their reliance on geometric shape features such as
edge detection and contour extraction leads to poor robustness in matching target fruits [14].
Similarly, texture feature extraction methods are often limited by manually designed filters
and feature descriptors, which may cause computational inefficiency when processing
large amounts of texture samples [15].

Traditional methods require manual feature design, leading to low detection efficiency,
long processing times, and susceptibility to subjective factors, limiting their accuracy and
robustness in complex scenes. To overcome these limitations, in recent years, deep learn-
ing techniques based on convolutional neural networks (CNNs) have become a research
hotspot. Deep learning combines the processes of feature extraction, feature selection, and
feature classification, with deeper structures and stronger learning capabilities, resulting
in advantages such as efficiency, accuracy, and speed, making fruit recognition more in-
telligent and automated [16]. In related research, Gai et al. [17] proposed an improved
YOLOv4 deep learning algorithm combined with DenseNet, capable of detecting three
maturity stages of cherry fruits and performing well in the presence of overlapping and
occluded fruits. Wang L et al. [18] introduced an improved lightweight YOLOv4-Tiny object
detection algorithm, capable of recognizing and detecting three different maturity stages
of blueberry fruits. Additionally, Wang et al. [19] improved the YOLOv5s algorithm by
introducing the CBAM attention module to refine the effective feature information of lychee
fruits with three densities and two maturity stages, achieving a mAP of 92.4%. Moreover,
to address the recognition problem of unripe plums, Niu et al. [20] proposed a detection
algorithm named YOLOv5-plum, and employed multi-scale training to achieve good de-
tection performance for overlapping and occluded fruits. Furthermore, Chen et al. [21]
used a combination of ResNet34 and YOLOv5 to identify and determine the three matu-
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rity stages of citrus fruits with an accuracy of up to 95.07%. These studies demonstrate
the potential of deep learning-based object detection algorithms in fruit recognition, and
provide strong support for further improving the accuracy, robustness, and intelligence of
fruit maturity identification.

Currently, research on tomato ripeness detection both domestically and internationally
mainly focuses on color features, odor features, spectral features, and machine vision.
For instance, Syahrir et al. [22] used RGB color images of tomatoes and transformed
them into the color space format (L*a*b*). They then applied filtering and thresholding
techniques to classify the tomato ripeness based on color. However, color features are
susceptible to environmental influences, leading to limited accuracy in ripeness detection.
Gómez et al. [23] utilized a specific electronic nose device (portable electronic nose, PEN
2) equipped with ten different metal oxide sensors. They combined principal component
analysis (PCA) and linear discriminant analysis (LDA) to evaluate the volatile production
changes related to tomato ripeness, aiming to differentiate different ripeness stages of
tomatoes. However, the odor emitted by tomatoes at different ripeness stages can be
affected by environmental and storage conditions, thereby influencing the electronic nose’s
detection results. Huang et al. [24] established a support vector machine discriminant
analysis (SVMDA) model for each individual spatially resolved spectrum. They used
spatially resolved spectral technology within the wavelength range of 550 to 1650 nm to
assess six ripeness stages of tomatoes (i.e., green, breaker, turning, pink, light red, and red).
Nevertheless, spectral feature recognition technology requires complex algorithms and
models, and the instruments used are relatively expensive, making it difficult to implement
on a large scale in practical production. On the other hand, Su et al. [25] conducted tomato
ripeness classification using a lightweight YOLOv3 model and MobileNetV1 backbone
network. The model can accurately recognize tomato ripeness even under the obstruction
of leaves, and achieved a mAP (mean average precision) value of 97.5%. Li et al. [26]
proposed a tomato ripeness recognition model called YOLOv5s, with an average precision
of 97.42%. This improved model effectively addresses the problem of low recognition
accuracy caused by obstructed small target tomatoes.

In summary, the deep learning method based on convolutional neural networks
demonstrates clear advantages in fruit ripeness recognition. Applying a trained deep
learning algorithm model to the mechanical harvesting equipment for cherry tomatoes
enables high accuracy, as well as real-time and automated fruit recognition and ripeness
detection, providing an intelligent solution for fruit picking processes [27]. This study
focuses on the recognition and ripeness detection needs and challenges of cherry tomatoes
in natural environments, and conducts a series of improvements on the YOLOv5n model.
Our objective is to maintain model detection accuracy while minimizing the model’s
parameter quantity and computational resources to meet the requirements of the detection
task. Through experiments and testing, the recognition effectiveness of cherry tomatoes in
natural environments and the detection performance for ripe cherry tomatoes are evaluated,
providing valuable references for the rational allocation of labor and precise target locking
in the process of mechanized fruit harvesting.

2. Materials and Methods
2.1. Data Collection

Cherry tomato images were collected at the cherry tomato picking garden located
at No. 308 Xingkang Road, Conghua District, Guangzhou City, Guangdong Province,
China. The latitude and longitude of the location are 113.577071 and 23.609114, respectively.
The images were captured on 7 March 2023, under natural daylight conditions, using a
mobile phone camera at a shooting distance of approximately 10–60 cm. To mitigate the
risk of overfitting the network model due to limited diversity in the training samples, the
images were taken from left, right, and front angles. Two lighting conditions, representing
different intensities of light, were considered. The images also encompassed various real-life
growth postures of cherry tomatoes, including overlapping and adhering fruits. Figure 1
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showcases the samples from the cherry tomato dataset captured in different scenarios.
A total of 867 original cherry tomato images were collected and saved in .JPEG format
with a resolution of 4000 × 3000 pixels. The acquired images underwent data cleaning
and screening to remove low-quality pictures, such as those that were excessively blurry,
severely overexposed, heavily occluded, or unrelated. This process resulted in a cherry
fruit dataset consisting of 640 images.
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2.2. Data Processing

In order to accurately identify the ripeness of cherry tomatoes in their natural envi-
ronment, it is necessary to overcome the influence of external factors, such as obstructions
from branches, leaves, and overlapping fruits. Cherry tomatoes ripen in different batches,
and each batch may contain fruits at 1–3 different stages of ripeness, including mature,
semi-mature, and immature fruits. Among these, the degree of coloring on the fruit’s
surface is the most crucial indicator of the cherry tomatoes’ harvesting ripeness. Immature
fruits have a color similar to that of branches and leaves, appearing greenish, while mature
fruits display a bright red color. During the ripening process, the cherry tomatoes’ fruit
color changes gradually from greenish to bright red, with the degree of coloring becoming
deeper, and the colored area expanding from small to large.

Based on China’s national standard GH/T1193-2021 for tomatoes, cherry tomatoes
are categorized into four periods: unripe, green ripe, color turning, and red ripe. In
these periods, the pigmentation degree of immature and green ripe tomatoes is less than
40%, the pigmentation degree during the color turning period ranges from 40% to 70%,
and the pigmentation degree of red ripe tomatoes ranges from 70% to 100%. In practical
production, fruits are typically harvested during the color turning period. The use of
algorithm recognition to obtain this information can help achieve accurate target positioning
and reasonable allocation of labor, thus providing a reference basis for automatic fruit
picking work.

In this study, cherry tomatoes with less than 40% peel color are referred to as unripe
tomatoes, while those with more than 40% peel color are referred to as ripe tomatoes. Fig-
ure 2 provides examples of cherry tomatoes of different maturity. To reduce computational
load without affecting the feature extraction of cherry tomatoes, the OpenCV “resize” func-
tion was employed to compress the image resolution to 1200 × 900 pixels. The LabelImg
tool was used to manually annotate rectangular bounding boxes for cherry tomatoes in the
dataset following the VOC annotation format. The annotation rules were as follows: For



Agronomy 2023, 13, 2106 5 of 24

cherry tomatoes that were completely exposed, a rectangular bounding box covering the
entire fruit was annotated. For partially obscured or stuck-together cherry tomatoes, if the
obscured portion was less than 90%, the exposed part was annotated with a rectangular
bounding box. If a cherry tomato appeared partially outside the image boundary, or if
more than 90% of the fruit was obscured, it was left unannotated. After completing the
annotation process, we obtained a total of 640 images in XML format, containing the real
ground truth annotations of the target objects. To make these annotations suitable for
YOLO model training, we parsed the XML files in VOC format, extracted the target class
and bounding box information, and converted this information into YOLO format in TXT
files. Finally, we randomly split these TXT files according to a ratio of 7:1:2, resulting in
448 images for the training set, 64 images for the validation set, and 128 images for the
test set.
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3. Detection Method of Tomato Ripeness
3.1. Improved I-YOLOv5n Network Model Design

With the widespread application of computer vision and deep learning technology,
target recognition algorithms based on deep convolutional neural networks (CNN) have
become instrumental in the agricultural field. These algorithms can be categorized into two
main types. The first type is a two-stage object detection algorithm that relies on region
proposals, exemplified by the RCNN series [28], Fast R-CNN [29], and Faster R-CNN [30].
These algorithms generate candidate boxes for target regions, followed by the classification
and positioning of these candidates, resulting in high detection accuracy. However, the
multi-step process of these algorithms leads to relatively slower speeds. The second type
is a one-stage object detection algorithm based on regression, which includes the YOLO
series [31–36], SSD [37], and Efficient Det [38]. These algorithms directly output position
and category information for objects within a single network. They demonstrate remarkable
speed, enabling real-time object detection.

As a classic one-stage target detection algorithm, the YOLO series has gained widespread
adoption due to its excellent detection performance. YOLOv5, developed and released by
Ultralytics in June 2020, is faster and more accurate than its predecessors. The network
architecture of the YOLOv5 model consists of input, backbone, neck, and detect mod-
ules. The input module receives three-channel RGB images with an input feature size of
640 × 640 × 3. Various methods, like mosaic data augmentation, adaptive anchor frame
calculation, and adaptive image scaling, are used for image preprocessing. The backbone
module extracts features, such as edges, textures, and positions, from the input images,
transforming them into multi-layer feature maps. The backbone network utilizes CSPDark-
net53, which effectively improves feature extraction capability through residual structure
and feature reuse mechanisms. Key structures within the backbone include the Conv
module, C3 module, and SPPF module. The C3 module plays a crucial role in increasing
network depth and receptive field, enhancing the model’s feature extraction capabilities.
The neck module connects the backbone and head modules, utilizing the feature pyramid
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structure of FPN+PAN to fuse feature information from feature maps of different sizes.
This improves the network’s detection performance for targets of varying scales. The detect
module predicts detection frames and categories, incorporating a boundary frame loss
function and non-maximum suppression. The boundary frame loss utilizes the CIoU loss
function [39], while non-maximum suppression filters out redundant detection frames of
the same category, retaining high-confidence prediction frames.

The YOLO series models are characterized by complex network structures and nu-
merous parameters, demanding significant GPU computing power for real-time detection.
However, achieving real-time target recognition on embedded and mobile devices poses a
notable challenge [40]. Therefore, further improvements are necessary to enable real-time
target recognition on these devices. YOLOv5n is the smallest model in the YOLOv5 series,
characterized by small model parameters and relatively low hardware requirements. It is
particularly suitable for deployment on small embedded or mobile devices, although its
accuracy is subpar. This article proposes an I-YOLOv5n network model based on YOLOv5n,
aiming to enhance detection accuracy while preserving its smaller model size and faster
detection speed. The improved structure is illustrated in Figure 3.
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The I-YOLOv5n network model primarily focuses on three aspects of improvement:
anchor frame clustering, attention mechanism, and loss function. Firstly, the K-means++
clustering algorithm [41] is employed to optimize the selection of anchor boxes. This
approach ensures that the anchor boxes more accurately match the shape characteristics
of cherry tomatoes, thereby enhancing the model’s detection accuracy. Secondly, an atten-
tion module called CA [42] is added after the C3 module of the backbone network. This
module expands the receptive field, filters out redundant and irrelevant feature channels,
suppresses interference and noise in the model, and reduces the impact of complex back-
grounds on target recognition. Finally, the traditional IOU loss function is replaced with
the WIoU loss function [43]. Additionally, the outlier degree and dynamic nonmonotonic
focusing mechanisms are introduced to address the boundary box regression balance issue
between high-quality and low-quality data. These modifications collectively enhance the
overall performance of the detector. The subsequent sections will delve into the under-
lying theories and improved methods associated with anchor frame clustering, attention
mechanisms, and loss function in detail.

3.2. The k-Means++ Algorithm

Traditional target detection algorithms typically utilize a predefined set of anchor
boxes to represent targets with varying scales and aspect ratios. These anchor boxes act as
reference boxes during the training process, facilitating the generation of candidate boxes
and the calculation of losses. However, the predetermined anchor box sizes are derived
from clustering the Coco and VOC datasets. Given that the Coco dataset encompasses
80 different target types and the VOC dataset consists of 20 target types, each with varying
sizes and categories, the anchor boxes obtained from clustering may not be entirely suitable
for the current dataset. To address this issue, the YOLOv5 framework introduces the auto-
learning bounding box anchors feature. This feature enables the model to autonomously
learn and adjust anchor boxes that are better suited to the characteristics of the current
dataset, employing the K-means clustering algorithm [44]. Throughout the training process,
the model dynamically learns and updates the scale and aspect ratio of the anchor box,
thereby enhancing the model’s detection performance and generalization ability.

The main detection target of the object detection network in this study is the cherry
tomato, which comes in various shapes and sizes. Figure 4 visualizes the anchor box
size distribution and position distribution in the cherry tomato dataset used in this study.
Figure 4a represents the distribution of the anchor box center points’ position coordinates
after normalizing the image resolution. The anchor box’s position information is crucial for
the model to locate the targets accurately. By providing accurate anchor box positions in
the dataset, the model can learn the precise location of the targets in the images, leading
to more accurate object detection and localization. From Figure 4a, it can be observed
that the anchor box center points are uniformly distributed around the middle of the
image, reflecting a relatively even spatial distribution of the targets in the dataset, without
significant bias, and covering various locations effectively. Figure 4b shows the proportion
of anchor box sizes relative to the image dimensions. The distribution of anchor box sizes
reflects the range of target sizes in the images. A reasonable distribution of anchor box sizes
ensures that the model can adapt to different-sized targets, achieving accurate detection
and localization for various-sized objects. From Figure 4b, it is evident that the dataset
contains targets of different sizes, with varying anchor box sizes and aspect ratios close
to squares.
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The auto-learning bounding box anchors feature in YOLOv5 utilizes the traditional
K-means clustering algorithm to cluster anchor boxes in the dataset and obtain appropriate
anchor boxes. However, a potential issue arises in the first step of the K-means clustering
algorithm, which involves randomly selecting k cluster center points. This random selection
can result in an uneven distribution of cluster centers, causing the algorithm to converge to
local optima instead of the global minimum, and yielding incorrect clustering outcomes.
On the other hand, the K-means++ clustering algorithm tends to select distant data points
as the initial cluster center, enabling a better representation of the overall data structure. To
overcome the drawbacks associated with initializing the cluster center, this article adopts
an improved K-means++ algorithm for clustering the anchor boxes. The specific steps are
as follows:

1. Select a data point randomly from dataset χ as the initial clustering center, denoted
as C1.

2. Compute the shortest distance d(x) between every data point and the chosen cluster
center C1. Then, determine the next cluster center C2 using the roulette algorithm,
where its probability p(x) is directly proportional to the square of the distance. The
data point corresponding to the highest value of p(x) will be selected as the subsequent
cluster center C3.

p(x) =
D(x)2

∑x∈χ D(x)2 (1)

3. Repeating step 2, continue the process until k cluster centers have been selected.
Assign the data points to their closest cluster center, and then update the cluster
center’s location based on the assigned data points.

4. Continue to repeat steps 2 and 3 until either the cluster center remains unchanged or
a predetermined number of iterations is reached.

After conducting a series of continuous iterative experiments, the nine anchor boxes
ultimately selected for this study were (31,32), (43,46), (56,52), (54,65), (69,66), (78,81), (95,95),
(117,115), (147,149).

3.3. Coordinate Attention Mechanism

The attention mechanism plays a crucial role in guiding the model to focus on pertinent
“target” and “location” information. By incorporating attention mechanisms, the model
gains the ability to dynamically learn the significance of each channel and enhance attention
towards specific channels based on task requirements. This adaptive learning process filters
out irrelevant information, thereby enhancing the model’s representation ability and overall
performance. To achieve more precise localization and identification of cherry tomatoes,
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this study introduces the coordinate attention mechanism. This mechanism takes into
account attention in both channel and spatial dimensions, enabling the model to allocate
more attention to valuable channel information by learning adaptive channel weights. The
specific principle behind this mechanism is illustrated in Figure 5.
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The coordinate attention mechanism encodes channel relationships and long-term
dependencies by utilizing precise positional information. This mechanism is divided into
two steps: coordinate information embedding and coordinate attention generation.

1. Coordinate Information Embedding

The two-dimensional global pooling method is commonly employed to globally
encode spatial information through channel attention. However, the inclusion of position
information within the channel attention mechanism in CA makes it challenging to preserve
positional information. To mitigate the loss of positional information caused by two-
dimensional global pooling, and to enable attention modules to capture precise positional
information in remote spatial interactions, we propose decomposing the channel attention
into two one-dimensional feature encoding processes. This approach effectively integrates
spatial coordinates while addressing the issue of position information preservation.

For a given input X, each channel is encoded by applying pooling kernels of size (H, 1)
or (1, W) along the horizontal and vertical coordinates, respectively. Consequently, we can
express the output of the c-th channel with a height of h, as well as the output of the c-th
channel with a width of w, as follows:

zh
c (h) =

1
W ∑

0≤i<W
xc(h, i) (2)

zw
c (W) =

1
H ∑

0≤j<H
xc(j, w) (3)

The aforementioned transformations serve to aggregate features along two spatial
directions. Subsequently, these transformed feature maps are encoded into a pair of
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attention maps that possess direction awareness and sensitivity to position. This enables
the capturing of remote dependencies in one spatial direction while preserving precise
position information in the other. By applying these attention maps in conjunction with the
input feature maps, we can enhance the representation of objects of interest and achieve
improved accuracy in locating and recognizing target regions.

2. Coordinate Attention Generation

By incorporating coordinate information, we can effectively capture the global recep-
tive field and encode precise position information. Connect Formulas (2) and (3), and send
them to a shared 1 × 1 convolutional transformation F1:

f = δ
(

F1

([
zh, zw

]))
(4)

In the above equation, δ is the nonlinear activation function, [·, ·] is the concatenate
operation along the spatial dimension, and f is the intermediate feature mapping encoding
the spatial information in the horizontal and vertical directions.

Then, perform a split operation along the spatial dimension, using the other two 1 × 1
convolutional transformations Fh and Fw, transform fh and fw into tensors with the same
channel number as input X, and then use the sigmoid activation function to process them
to obtain attention vectors gh and gw.

gh = σ
(

Fh

(
fh
))

(5)

gw = σ(Fw(fw)) (6)

Finally, extend gw and gh, and the output formula of the coordinate attention Mecha-
nism is

yc(i, j) = xc(i, j)× gh
c (i)× gw

c (j) (7)

3.4. Bounding Box Regression Loss with Dynamic Focusing Mechanism

The loss function plays a crucial role in quantifying the discrepancy between the
predicted information and the ground truth. A smaller value of the loss function indicates
that the predicted information is closer to the actual information. In the case of YOLOV5, the
loss function comprises three components: location loss, classification loss, and confidence
loss. To acquire precise information about the location and maturity of cherry tomatoes in
a natural environment, it is essential to optimize the loss function. This optimization aims
to strike a balance in training errors related to prediction boxes, confidence scores, and
classification. By fine-tuning the loss function, the model can achieve improved accuracy in
detecting and classifying cherry tomatoes, thereby enhancing its overall performance in
the natural environment.

This study introduces an enhanced approach to bounding box regression loss with
dynamic focusing mechanism (WIoU) as the loss function. The WIoU method offers
three versions: WIoU v1, which establishes an attention-based boundary box loss, and
WIoU v2 and WIoU v3, which incorporate a focus mechanism through a gradient gain
calculation method. In this paper, we adopt the WIoU v3 loss function, and compare
it to the traditional intersection over union (IoU) loss function. WIoU v3 evaluates the
anchor frame quality by leveraging the dynamic nonmonotonic focusing mechanism and
outlier degree, addressing the challenge of achieving a balance in boundary box regression
(BBR) between high-quality and low-quality data. This mechanism effectively reduces
the influence of high-quality data competition and the adverse gradients generated by
low-quality data. By dynamically allocating smaller gradient gains to low-quality anchor
frames, the WIoU loss function enables BBR to prioritize processing an ordinary-quality
anchor box, minimizing the impact of low-quality data on BBR. Consequently, the overall
performance of the detector is significantly improved.
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Figure 6 shows the relationship between anchor box and target box. From the fig-

ure, it can be concluded that the anchor box is
→
B = [x y w h], and the target box is

→
Bgt =

[
xgt ygt wgt hgt

]
.
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The IoU is used to measure the degree of overlap between the predicted bounding
box and the actual bounding box, and the formula is

IoU =
WiHi

wh + wgthgt −WiHi
(8)

The IoU uses LIoU as the BBR loss and minimizes the gap between IoU by adjusting
the position of the bounding box. The formula is

LIoU = 1− IoU (9)

However, in cases where the predicted bounding box does not intersect with the
actual bounding box, the IoU value becomes 0. This can lead to divergence during the
training process, making it challenging to accurately assess the level of overlap between
the predicted and actual bounding boxes. Currently, most loss functions assume that the
training dataset consists of high-quality data, where the bounding box labels closely match
the actual target locations. These loss functions primarily focus on improving the fitting
capability of bounding box regression (BBR) losses. However, this assumption results
in an overemphasis on training low-quality data during the training process. Geometric
factors such as distance and aspect ratio amplify the impact of low-quality data, leading to
unreasonable outcomes and a decline in the model’s generalization performance. When
the anchor box and target box have a strong overlap, the WIoU loss function reduces the
penalty of geometric metrics. However, introducing multiple interventions during training
can enhance the model’s generalization ability. By doing so, the model becomes more robust
and less sensitive to geometric variations, thereby improving its overall performance.

When the anchor box and target box overlap well, WIoU weakens the penalty of
geometric metrics; based on this, we construct distance attention:

RWIoU = exp


(
x− xgt

)2
+
(

y− ygt

)2

(
W2

g + H2
g

)∗
 (10)

In the formula, RWIoU ∈ [1, e), which will significantly amplify LIoU of the ordinary-
quality anchor box.
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The outlier degree of the anchor box is characterized by the ratio of LIoU to LIoU:

β =
L∗IoU

LIoU
∈ [0,+∞] (11)

As LIoU is dynamic, the quality demarcation standard of anchor boxes is also dynamic.
This enables WIoU v3 to dynamically allocate gradient gains, aligning with the current
situation at every moment.

The quality of an anchor box is determined by its β value, where a smaller β indicates
higher quality, while a larger β suggests lower quality. By assigning a small gradient gain
to anchor boxes with smaller β values, the focus of boundary box regression can be directed
towards ordinary-quality anchor boxes. Simultaneously, allocating a small gradient gain
to anchor boxes with larger β values effectively prevents low-quality anchor boxes from
generating larger harmful gradients. The formula for constructing the nonmonotonic
focusing coefficient using β is as follows:

LWIoUv3 = rRWIoULIoU, r =
β

δαβ−δ (12)

In the formula, LIoU ∈ [0, 1], which will significantly reduce RWIoU of the high-quality
anchor box and its focus on the distance between central points when the anchor box
coincides well with the target box.

By setting the initial value of LIoU = 1, we can prevent low-quality anchor boxes
from lagging behind during the initial stages of training. This ensures that the anchor
box obtained with LIoU = 1 has the highest gradient gain. Additionally, to maintain this
strategy during the early stages of training, we introduce a momentum factor m to delay
the convergence of LIoU towards LIoU−resl:

m = 1− tn
√

0.05 (13)

This configuration facilitates the achievement of LIoU ≈ LIoU−resl after t-theory train-
ing. During the middle and later stages of training, WIoU v3 assigns small gradient gains
to low-quality anchor boxes to minimize harmful gradients. Simultaneously, WIoU v3
prioritizes ordinary-quality anchor boxes to enhance the model’s positioning performance.

4. Test Environment and Parameter Settings
4.1. Test Platform

In this study, the YOLOv5n network model was constructed and enhanced using
PyCharm. The experiment and training were conducted on a Windows 10 operating
system, utilizing a 12th Gen Intel (R) Core (TM) i5-12400F processor (Intel Corporation,
Santa Clara, CA, USA) with a clock speed of 2.50 GHz, 16 GB of memory, and an NVIDIA
GeForce RTX 3060 graphics card (NVIDIA Corporation, Santa Clara, CA, USA) with 8 GB
of dedicated graphics memory. To accelerate operations, the CUDA 11.7 (NVIDIA, Santa
Clara, CA, USA), cuDNN 8.5.0 (NVIDIA, Santa Clara, CA, USA), and Open CV 4.6.0
libraries (OpenCV, Menlo Park, CA, USA) were employed. The implementation of this
study was carried out using the Python programming language (version 3.9.12) on the
Keras deep learning framework.

4.2. Network Training Parameter Settings

The image input size is set to 640× 640× 3. The training process consists of 1000 cycles
with a batch size of 32 images. To accelerate the training of the neural network, the stochastic
gradient descent (SGD) optimizer is utilized. The initial learning rate is set to 0.01, the
momentum factor is 0.937, and the weight decay is 0.0005.

To enhance model performance and training efficiency, an early stopping strategy is
employed. Real-time monitoring of the model’s performance indicators takes place during
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training, and early stopping is triggered when no improvement is observed in the last
100 training cycles. This strategy helps conserve computational resources.

Additionally, pretrained weight files and mosaic data augmentation functions are
utilized to further improve the effectiveness of the model’s training. These combined
technologies and strategies contribute towards improved accuracy, generalization ability,
and accelerated training.

4.3. Model Evaluation Indicators

When it comes to identifying the maturity of cherry tomatoes in a natural environment,
it is crucial to take into account the accuracy and real-time performance of the detection
network. To provide an objective measure of the model’s detection effectiveness across dif-
ferent stages of cherry tomato maturity, this study employs several performance evaluation
criteria, including precision (P), recall (R), average precision (AP), mean average precision
(mAP), F1 score, and milliseconds (ms).

Precision refers to the proportion of correctly identified cherry tomatoes among the
total number of cherry tomatoes predicted. Recall refers to the proportion of correctly
identified cherry tomatoes among the actual number of cherry tomatoes. It is calculated
using the following formula:

P =
TP

TP + FP
(14)

R =
TP

TP + FN
(15)

In the formula, TP is the number of correctly identified cherry tomatoes, FP is the num-
ber of misdetected cherry tomatoes, and FN is the number of undetected cherry tomatoes.

Average precision represents the area enclosed by a precision–recall (PR) curve, which
is constructed using precision on the vertical axis and recall on the horizontal axis. It is
calculated using the following formula:

AP =

1∫
0

P(R)dR (16)

The average accuracy mAP is the average of all categories of APs used to evaluate the
performance of the network model. The calculation formula is

mAP =
1
M

M

∑
k=1

AP(k) (17)

In the formula, M is the total number of categories, and AP (k) is the k-th category
AP value.

The F1 score is an evaluation metric commonly used to measure the accuracy of binary
classification models. It can be regarded as a weighted average of the model’s precision and
recall, with a maximum value of 1 and a minimum value of 0. The F1 score is calculated
using the following formula:

F1 = 2
P·R

P + R
(18)

The detection time refers to the average time taken by the target detection network to
detect an image, typically measured in ms.

5. Experimental Results and Analysis
5.1. Improved I-YOLOv5 Object Detection Network

To validate the effectiveness of the improved network I-YOLOv5n based on YOLOv5n,
we conducted a comparative analysis on the cherry tomato dataset before and after the
enhancements. This analysis aimed to assess their performance differences in various
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environments and for different maturity levels of cherry tomatoes. During the comparative
analysis, we evaluated the accuracy, recall, average precision, and detection time of the
cherry tomato detection. As illustrated in Table 1, I-YOLOv5n showcased remarkable
advancements in accuracy and recall, surpassing YOLOv5n by 1.4 percentage points.
Additionally, the average accuracy exhibited a boost of 0.3 percentage points, while the
F1 score experienced a notable increase of 1.5 percentage points. It is important to note
that despite the introduction of additional computations and parameters, I-YOLOv5n still
outperformed YOLOv5n in terms of detection time. This indicates that the improved
network structure of I-YOLOv5n enhances detection performance while maintaining a
relatively fast detection speed.

Table 1. Comparison of test results of detection network before and after improvement.

Network P/% R/% mAP@0.5/% F1/% Test
time/ms

Model
Size (M)

I-YOLOv5n 95 92 95.2 93.5 5.3 4.4
YOLOv5n 93.6 90.6 94.9 92 6.5 3.9

Figure 7 showcases three selected samples, comparing the recognition results of the
YOLOv5n network and the improved I-YOLOv5n network for different maturity levels
of cherry tomatoes in diverse environments. These examples cover three lighting condi-
tions: dim backlight, bright front light, and normal standard lighting. The chosen errors
encompass four typical types: false detection, missed detection, duplicate recognition, and
misclassification. In the figure, detection boxes labeled in red represent detected mature
cherry tomatoes, detection boxes labeled in pink represent detected immature cherry toma-
toes, and detection boxes labeled in yellow indicate manually annotated ground truths for
the recognition results, highlighting the errors that occurred during algorithmic recognition.

The processing results of the original image and YOLOv5n are compared and analyzed
as follows:

Sample 1: Recognition and detection of cherry tomatoes in a dim backlight environ-
ment. Two false detections were observed. The first false detection occurred when the
algorithm incorrectly identified branches in the background as immature cherry tomatoes.
The second error involved repeated identification and missed inspection of densely adhered
cherry tomatoes.

Sample 2: Recognition and detection of cherry tomatoes in a bright smooth environ-
ment. A single false detection was observed, where the algorithm mistakenly identified the
leaves in the background as immature cherry tomatoes.

Sample 3: Recognition and detection of cherry tomatoes under normal standard
lighting conditions. Two false detections were identified. The first error involved a category
recognition mistake, where immature cherry tomatoes were incorrectly identified as mature
cherry tomatoes. The second error occurred when the algorithm identified branches in the
background as mature cherry tomatoes.

Through the analysis of these errors, it can be observed that in YOLOv5n, the majority
of errors were caused by occlusion from branches and environmental interference. To
address these issues, we made improvements to the original YOLOv5n model. Firstly, we
introduced CA (context aggregation) to enhance the model’s perception and understanding
of key information by removing background interference. This mechanism helps the
model accurately locate and identify the target regions. Secondly, we employed the K-
means++ algorithm to re-cluster the three sets of anchor boxes provided by YOLOv5n.
By generating anchor boxes that better match the target sizes and aspect ratios based on
the real distribution of objects in the dataset, the model can more comprehensively search
for target objects, reducing instances of missed detection. Additionally, we replaced the
traditional loss function with the WIoU (weighted intersection over union) loss function to
address the imbalance and weighting issues in the dataset. This allows for more effective
training and optimization of the model, improving its performance and generalization
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ability. These improvements enable I-YOLOv5n to handle occlusion and environmental
interference more effectively, enhancing its detection capability for cherry tomatoes of
different scales and maturity levels.
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By comparing the processing results of the original image, YOLOv5n, and the im-
proved I-YOLOv5n, it becomes evident that the improved I-YOLOv5n outperforms in
terms of reducing both false positives and false negatives. It demonstrates the ability
to accurately identify target areas, thereby enhancing the accuracy and recall of target
detection and improving the overall performance of the model. This indicates that the
improved I-YOLOv5n exhibits higher accuracy and robustness in object detection tasks,
positioning it as a superior model.

5.2. Ablation Experiments

In the ablation experiment, we employed the YOOv5n model as the baseline model
and introduced the K-means++ algorithm, CA attention module, and WIoU loss function as
enhancements. Comparing these improvements with the original model, the three proposed
enhancements had positive impacts on various aspects of the model. The experimental
analysis of these improvement measures is presented in Table 2.
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Table 2. Comparison of ablation experiment performance.

Network P/% R/% mAP@0.5 /% F1/% Model Size (M)

YOLOv5n 93.6 90.6 94.9 92 3.9
+ K-means++ 96.1 88.7 95.3 92.3 3.9
+ CA 95.2 90.1 95 92.6 4.4
+ WIoU 97 88 94.7 92.3 3.9
+ K-means++ + CA 94.2 90 94.3 92.1 4.4
+ CA+ WIoU 92.7 91.3 94.6 92 4.4
+ K-means++ + CA+ WIoU 95 92 95.2 93.5 4.4

Firstly, we introduced an enhanced K-means++ algorithm to improve the alignment
between anchor boxes and target objects. This enhancement resulted in a significant
increase in model accuracy and F1 score by 2.5 percentage points and 0.4 percentage points,
respectively. In Figure 8, we provide a comparison between the YOLOv5n model before
and after applying the K-means++ algorithm improvement. We have highlighted the areas
where the anchor box exhibits notable changes. It is evident that the re-clustering of anchor
boxes better conforms to the true distribution of cherry tomatoes. This enables the model to
capture more accurate size, position, and shape information of the cherry tomatoes, leading
to improved correspondence with the target object. As a result, the detection accuracy and
positioning accuracy of the target are enhanced.

Agronomy 2023, 13, x FOR PEER REVIEW 16 of 24 
 

 

+ WIoU 97 88 94.7 92.3 3.9 
+ K-means++ + CA 94.2 90 94.3 92.1 4.4 
+ CA+ WIoU 92.7 91.3 94.6 92 4.4 
+ K-means++ + CA+ WIoU 95 92 95.2 93.5 4.4 

Firstly, we introduced an enhanced K-means++ algorithm to improve the alignment 
between anchor boxes and target objects. This enhancement resulted in a significant in-
crease in model accuracy and F1 score by 2.5 percentage points and 0.4 percentage points, 
respectively. In Figure 8, we provide a comparison between the YOLOv5n model before 
and after applying the K-means++ algorithm improvement. We have highlighted the areas 
where the anchor box exhibits notable changes. It is evident that the re-clustering of an-
chor boxes better conforms to the true distribution of cherry tomatoes. This enables the 
model to capture more accurate size, position, and shape information of the cherry toma-
toes, leading to improved correspondence with the target object. As a result, the detection 
accuracy and positioning accuracy of the target are enhanced. 

Before 

 

After 

  
 (a)YOLOv5n (b)YOLOv5n + K-means++ 

Figure 8. Comparison before and after improving K-means++algorithm. 

Secondly, the incorporation of the CA attention module resulted in a 1.6 percentage 
point improvement in model accuracy. The CA module dynamically learns the signifi-
cance of each channel and enhances attention towards specific channels. In Figure 9, we 
present a comparison between the YOLOv5n model before and after the integration of the 
CA attention module. It is evident that the introduction of the CA attention module has 
led to an average increase of 0.03 points in confidence for recognizing unobstructed cherry 
tomatoes. Additionally, the module enables accurate recognition of semi-occluded cherry 
tomatoes that were previously unrecognizable. By focusing on essential feature channels, 
the model can effectively filter out irrelevant information and better extract cherry tomato 
features, thereby enhancing its ability to recognize and locate cherry tomatoes. 

Figure 8. Comparison before and after improving K-means++algorithm.

Secondly, the incorporation of the CA attention module resulted in a 1.6 percentage
point improvement in model accuracy. The CA module dynamically learns the significance
of each channel and enhances attention towards specific channels. In Figure 9, we present
a comparison between the YOLOv5n model before and after the integration of the CA
attention module. It is evident that the introduction of the CA attention module has led
to an average increase of 0.03 points in confidence for recognizing unobstructed cherry
tomatoes. Additionally, the module enables accurate recognition of semi-occluded cherry
tomatoes that were previously unrecognizable. By focusing on essential feature channels,
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the model can effectively filter out irrelevant information and better extract cherry tomato
features, thereby enhancing its ability to recognize and locate cherry tomatoes.
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Finally, the integration of the WIoU loss function resulted in a significant improvement
in model accuracy by 3.4 percentage points. By adjusting the gradient gain allocation
strategy, the WIoU loss function directs the model’s attention towards ordinary-quality
training samples while reducing the harmful gradients generated by low-quality data.
This enables the model to learn the characteristics of the target object more effectively and
consistently. Evaluating the effectiveness of model improvements involves analyzing the
loss curves during the training process. In Figure 10, we compare the loss curves before and
after modifying the loss function of the YOLOv5n model. It is evident that the introduction
of the WIoU loss function accelerates the fitting process, indicating that the model can
better capture the characteristics of the target object, thereby enhancing overall accuracy.
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5.3. Comparison of Different Attention Mechanisms

Attention mechanism plays an important role in computer vision tasks, as it can help
models focus on important information in images and improve model performance. This
article compares five common attention mechanisms: CA, the convolutional block attention
module (CBAM) [45], efficient channel attention (ECA) [46], squeeze and excitation (SE)
networks [47], and the similarity-based attention module (Sim AM) [48]. These attention
mechanisms are evaluated experimentally using the YOLOv5n model. The results are
shown in Table 3. Among them, CA captures the dependency relationship between channels
by modeling the correlation between channels in the feature map. CBAM is an attention
mechanism that combines spatial and channel attention. ECA introduces an efficient
channel attention module for extracting correlation information between channels. SE
adaptively adjusts the importance of channels by introducing compression and excitation
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operations. The Sim AM determines the attention weight of each position by calculating
the similarity between different positions in the feature map.

Table 3. Comparison of the attention mechanism of the model.

Attention
Mechanism P/% R/% mAP@0.5/% Layers Parameters Model

Size (MB)

CA 95.2 90.1 95 253 2,025,391 4.4
CBAM 94.3 90.9 94.5 257 1,936,343 4.2
ECA 93.5 90.5 94.7 229 1,761,883 3.9
SE 94.6 88.7 94.6 237 1,935,951 4.2

Sim AM 94.5 91.6 95.2 221 1,761,871 3.9

After conducting detailed data analysis and comparison, the model incorporating the
CA module demonstrated outstanding performance in terms of accuracy, achieving an
impressive 95.2%. Compared to the CBAM, ECA, SE, and Sim AM attention modules, the
CA module exhibited significant advantages, with accuracy improvements of 0.9, 1.7, 0.6,
and 0.7 percentage points, respectively. Moreover, the CA module also exhibited strong
performance in terms of mAP indicators, surpassing CBAM, ECA, and SE by 0.5, 0.3, and
0.4 percentage points, respectively, although its performance was slightly lower than that of
Sim AM. Furthermore, despite the slightly larger weight file size of the CA module compared
to the other four modules, there was no significant increase in parameters or computational
complexity. This implies that the CA module can be effectively utilized to enhance the
accuracy of cherry tomato detection without compromising overall performance.

In summary, based on the comprehensive analysis and practical considerations, the
CA module proves to be the most suitable choice for the cherry tomato detection task,
delivering remarkable accuracy improvements without introducing excessive complexity.

5.4. Comparison with Other Deep Learning Models

Based on the analysis of existing target detection algorithms, this research places
particular emphasis on real-time cherry tomato detection. Consequently, YOLO series
models have been selected due to their speed and suitability for real-time applications. This
article conducts a comprehensive comparison between the proposed I-YOLOv5n model and
other popular models such as YOLOv5n, YOLOv5s, YOLOv7, YOLOv8n, and YOLOv8s.
The evaluation metrics include precision, recall, F1 score, mAP, test time, and weight file
size using the optimal weight file. The results of these evaluations are presented in Table 4.

Table 4. Comparison of detection performance of different detection networks.

Model P/% R/% mAP@0.5/% F1/% Test
Time/ms

Model
Size (MB)

I-YOLOv5n 95.0 92.0 95.2 93.5 5.3 4.4
YOLOv5n 93.6 90.6 94.9 92.0 6.5 3.9
YOLOv5s 94.6 89.5 94.7 91.9 7.1 14.4
YOLOv7 94.3 88.9 94.0 91.8 27.8 74.8

YOLOv8n 93.8 88.7 94.5 91.2 6.4 6.2
YOLOv8s 94.1 90.4 95.1 92.0 8.1 22.5

Considering that the model will be used for embedded and mobile devices in the
development of an unmanned cherry tomato mechanical picking system, the model size
and test time of the model become one of the main considerations. After evaluating
multiple models, we found that YOLOv5n has the smallest model size, only 3.9 MB, and
a test time of 6.5 ms. In contrast, YOLOv7 has the largest model size, 19 times that of
YOLOv5n, reaching 74.8 MB, and it also has the longest test time among the five models,
which is 27.8 ms. YOLOv5s and YOLOv8s have relatively larger model sizes, 14.4 MB and
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22.5 MB, respectively, with test times of 7.1 ms and 8.1 ms, slightly slower than YOLOv5n.
As for YOLOv8n, its model size is 6.2 MB, its test time is 6.4 ms, which is almost the same
as YOLOv5n, but its recall rate has dropped by 1.9 percentage points. Taking all these
factors into consideration, we chose YOLOv5n as the baseline model because of its superior
performance in model size and test time. Its lower computational requirements make it
very suitable for real-time applications and resource-constrained scenarios on embedded
and mobile devices. The improved I-YOLOv5n has a model size of 4.4 MB, only 0.5 MB
larger than YOLOv5n, and the computational load remains within an acceptable range. The
test time of this model significantly improved to 5.3 ms, surpassing YOLOv5n, YOLOv5s,
YOLOv7, YOLOv8n, and YOLOv8s by 1.22, 1.34, 5.25, 1.2, and 1.53 times, respectively. The
model’s precision increased to 95%, exceeding YOLOv5n, YOLOv5s, YOLOv7, YOLOv8n,
and YOLOv8s by 1.4, 0.4, 0.7, 1.2, and 0.9 percentage points, respectively. The recall also
improved to 92%, which is 1.4, 2.5, 3.1, 3.3, and 1.6 percentage points higher than YOLOv5n,
YOLOv5s, YOLOv7, YOLOv8n, and YOLOv8s, respectively.

To sum up, the improved I-YOLOv5n model achieves a remarkable test time of 5.3 ms
while maintaining a 95.2% mAP, with a model size of only 4.4 MB. It offers a very fast
computation speed and provides high accuracy in object recognition. Therefore, this model
is highly suitable for embedded and mobile devices in the development of an unmanned
cherry tomato picking system.

Figure 11 compares the confusion matrices of different detection networks. Each
confusion matrix is presented in a tabular form, and divides the predicted results into four
different categories: true positive (TP), true negative (TN), false positive (FP), and false
negative (FN). The horizontal axis represents the true labels (actual categories), while the
vertical axis represents the predicted results (predicted categories). The color intensity
of the matrix entries indicates the quantity or proportion of the corresponding entries.
Generally, darker colors represent a higher quantity or proportion, while lighter colors
represent a lower quantity or proportion. This visualization scheme helps us observe the
differences between different categories and the prediction trends of the model.
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Based on the analysis of the confusion matrices, it can be observed that there are
relatively few false detections between the two maturity categories of cherry tomatoes,
with the false detection rate concentrated between 0 and 0.02. This can be attributed to
the distinct color differences between mature and immature cherry tomatoes, enabling
the model to accurately distinguish between them. However, due to the similarity in
color between immature cherry tomatoes and the branches and leaves in the background,
some immature tomatoes were mistakenly classified as background, resulting in a false
detection rate of 0.07–0.15. Among the tested models, the I-YOLOv5n model in Figure 11a
has the lowest error detection rate, and the TPs of mature cherry tomatoes and immature
cherry tomatoes reached 0.94 and 0.91, respectively, which are the highest values in the
comparison model.

In Figure 12, we visually analyze and compare the recognition results of different
detection networks. In the figure, detection boxes labeled in red represent detected mature
cherry tomatoes, detection boxes labeled in pink represent detected immature cherry
tomatoes, and detection boxes labeled in yellow indicate manually annotated ground
truths for the recognition results, highlighting the errors that occurred during algorithmic
recognition. In Figure 12a, YOLOv5n, YOLOv5s, YOLOv7, and YOLOv8n mistakenly
identified the half leaf on the left side of the image as an immature cherry tomato. In
Figure 12b, YOLOv5n and YOLOv5s missed one immature cherry tomato, while YOLOv8n
and YOLOv8s missed two immature cherry tomatoes. In Figure 12c, YOLOv5s mistakenly
detected two cherry tomatoes, while YOLOv5n, YOLOv7, YOLOv8s, and YOLOv8n also
made incorrect detections. However, the I-YOLOv5n model accurately identified both the
false positives and missed detections mentioned above.
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varying degrees of maturity, respectively. The first row displays the original images, while the second
to seventh rows depict the results obtained using the I-YOLOv5n, YOLOv5n, YOLOv5s, YOLOv7,
YOLOv8n, and YOLOv8s models, respectively.

Through comprehensive comparison, it is evident that the I-YOLOv5n model demon-
strates accurate identification of immature and mature cherry tomatoes under various
conditions, including different quantities, sparsity, branches and leaves, and maturity
levels. Compared to the other five object detection networks, the I-YOLOv5n model ex-
hibits higher recognition accuracy with fewer false positives and missed detections. This
demonstrates the strong robustness of the algorithm proposed in this study, making it
adaptable to various scenarios in different natural environments.

6. Conclusions

This research presents an improved YOLOv5n model, named I-YOLOv5n, for cherry
tomato maturity recognition and target location detection. The model incorporates the
CA module after the C3 module of the backbone to reduce the interference of complex
backgrounds on target recognition. It utilizes the WIoU loss function, along with the
outlier degree and dynamic nonmonotonic focusing mechanism, to address the challenge
of balancing boundary box regression between high-quality and low-quality data, thus
enhancing the overall performance of the detector. The model occupies only 4.4 MB of
memory, making it suitable for real-time applications and accurate target positioning and
maturity grading in the mechanical automatic picking of cherry tomatoes. This research
provides valuable insights for the field of agricultural automation, and holds promising
application prospects.

The present research aimed to develop a specialized dataset tailored specifically for
cherry tomato images captured in natural environments. This dataset was used to assess the
performance of the I-YOLOv5n model. The experimental results demonstrate that the model
achieves an average accuracy of 95%, a recall rate of 92%, a mAP of 95.2%, and a detection
speed of 5.3 ms, showcasing superior recognition accuracy and speed performance.
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In future work, we will further improve the dataset for cherry tomatoes and build a
more refined classification maturity detection method to meet the needs of mechanized
harvesting of cherry tomatoes in more complex environments. We will also strive to
enhance the robustness of the model, combining robotic arms and depth cameras, to apply
the model to more application fields.
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