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Abstract: The vegetation drought phenomenon will reduce the amount of water available to the
vegetation system, change the ecological and hydrological cycles of plants, and affect the aquatic
and terrestrial ecosystem in various forms. Therefore, research on the dynamic variation and driving
mechanism of vegetation drought will help us recognize and predict the response of vegetation
under drought stress conditions, implement appropriate policy measures to deal with the drought
crisis, and provide technical support for implementing vegetation protection and alleviating the
increasing risk of vegetation drought. However, the dynamic variation of vegetation drought and
its dynamic propagation mechanism are still undefined across China. In this study, the spatio-
temporal evolutions and pixel-scaled trends of vegetation drought were analyzed during the period
between 1999 and 2020. Additionally, the propagation features were investigated between vegetation
drought and meteorological drought. Finally, the relationships between vegetation drought and
atmospheric teleconnection were explicitly clarified using multivariate cross wavelet transform
technology. The results highlighted five key findings: (1) the vegetation drought presented an
overall decreasing trend across China in 1999–2020; (2) the most serious vegetation drought occurred
in the year 2000, with the average vegetation condition index (VCI) values ranging from 0.36 to
0.46; (3) vegetation droughts were alleviating at the pixel scale for each season; (4) the propagation
time from meteorological drought to vegetation drought was shorter in summer (1.26 months) and
longer in winter (2.26 months); and (5) the three-factors combination of Pacific North American
(PNA), El Niño-Southern Oscillation (ENSO), and Trans Polar Index (TPI) can satisfactorily explain
the variations of vegetation drought. This study sheds new viewpoints into the identification of
vegetation drought variation across China, which can also be applied in other areas.

Keywords: vegetation drought; dynamic variations; atmospheric teleconnection; multivariate cross
wavelet transform technology; China

1. Introduction

Droughts are defined as complex phenomena with continuous and abnormal precip-
itation deficits, which can be divided into four categories, i.e., meteorological drought,
agricultural drought, hydrological drought, and socio-economic drought [1–3]. Recently,
vegetation drought has been defined as the inability of plants to absorb sufficient water to
meet their requirements, which will lead to a change in the terrestrial vegetation growth
state and soil moisture condition and will place multiple pressures on the ecological en-
vironment [4]. Crausbay et al. further proposed a framework for vegetation drought,
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which was composed of several components, i.e., exposure, sensibility, and fragility [5]. In
addition, the enhancement of anthropogenic water demand reduces the available water in
the vegetation ecosystem, changes the hydrological and ecological process, and affects the
aquatic and terrestrial ecosystem in various ways. Traditional drought indicators rarely
focus on the response of surface vegetation to a drought process, and have different perfor-
mances in ecological, hydrological, and vegetational drought monitoring [6,7]. Based on
the spectral reflection information of ground objects, the remotely sensed drought indica-
tors can reflect the vegetation structure under drought circumstances and are practical for
large-scale vegetation drought monitoring [8–12].

For aquatic ecosystems, McEvoy et al. analyzed five drought planning measures at
the basin scale in southwestern Montana using a vegetation drought framework, in order
to estimate the ecological effects of drought [13]. For terrestrial ecosystems, a remotely
sensed vegetation index is usually employed to portray the status of vegetation under
drought stress, with simple, effective, and empirical measurement of terrestrial vegeta-
tion and ecological conditions [14–16]. Remote sensing satellites can provide valuable
information for drought monitoring in visible, near-infrared, thermal-infrared, and other
bands. Additionally, vegetation dynamic change monitoring based on the vegetation index
is used to identify the internal and external state changes of plants by using the differ-
ent spectral characteristics reflected by the calibrated remote sensing images in different
periods [17,18]. As one of the sensitive indicators of global eco-environmental change, vege-
tation growth signal plays an important role in environmental change detection, ecosystem
maintenance, and agricultural production guidance [19–21]. Under drought stress, the
changes in vegetation apparent characteristics and growth activity will cause significant
changes in vegetation reflectance in different spectral bands [22]. The dynamic monitoring
of vegetation can reflect the ecosystem change trend. Therefore, monitoring the dynamic
change of vegetation and analyzing the relationship between this change and the terrestrial
ecosystem has become an important field of global drought change research [23–26].

In the 21st century, droughts have characteristics of long duration, wide coverage,
and serious detriment, increasing the vulnerability of vegetation ecosystem [27,28]. In
the past, people mostly focused on the hydrological, agricultural, and socio-economic
impact of drought, and paid less attention to its impact on vegetation growth status. More
recently, with the aggravation of drought frequency and intensity, and the increase in
adverse drought effects on vegetation and the ecosystem, more ecologists began to focus on
the ecological aspects within vegetation drought [29,30]. For example, the severe drought
in Australia from 2002 to 2010, as strong as the 1000-year event, caused vegetation losses
of more than 800 million dollars in the ecosystem over the Murray–Darling region [31].
From the 21st century, droughts have brought about vegetation degradation and ecological
environment deterioration in the Qilian Mountains [32]. Frequent droughts lead to vegeta-
tion losses at different levels and hinder flourishing growth of vegetation, accompanied
by different drought trigger thresholds in eight divisions of vegetation across China [33].
Thus, vegetation drought investigation is an effective and important means of controlling
ecological degradation, restoring ecosystem function, and improving environment quality.

Drought propagation is a dynamic evolution process of water deficit in the time di-
mension, which involves water deficiency in any procedure of the hydrologic cycle [34].
The meteorological drought that mainly manifests through insufficient precipitation is
generally the first phase of rapid development of drought, and it will cause a reduction
in crop yield [35]. Additionally, long-term precipitation deficit will arouse surface water
drought and groundwater drought, which has properties in the lack of supplement of sur-
face or underground runoff [36,37]. In the study of drought transmission, the propagation
time between meteorological drought and hydrological drought is shorter in spring and
summer than that in autumn and winter, with obvious seasonal characteristics [38]. The
propagation time was shorter in the sub-basin dominated by grassland (1–5 months) than
in the sub-basin dominated by forest (4–7 months) in northern China [39]. The propagation
of agricultural drought was slow in autumn and relatively fast in summer [40]. Existing
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studies mainly focus on the propagation dynamics between meteorological drought and hy-
drological drought, while paying less attention to the mechanism of meteorological drought
driving vegetation drought. Generally, it is difficult for humans to affect rainfall patterns,
but we can adjust water and soil resources management strategies to alleviate or reduce
drought losses by clarifying the complex responses between vegetation drought and mete-
orological drought. Furthermore, relevant investigations [41–44] have demonstrated that
the large-scale circumfluence factors played important roles in the occurrence of drought.
However, the relationship between vegetation drought and atmospheric teleconnections
has not been reported yet on a national scale.

Therefore, this study aims to (1) identify the temporal variations and spatial distri-
butions of vegetation drought; (2) investigate the pixel-scaled vegetation drought trends;
(3) reveal the propagation dynamics from meteorological drought to vegetation drought;
and (4) determine the dynamic relations between vegetation drought and atmospheric
teleconnections.

2. Study Area and Dataset
2.1. Study Area

China is located in the southeast of the Eurasian continent, bordering the Pacific Ocean
in the East. Western China is dominated by plateaus, mountains, and the Tarim basin, and
eastern China is dominated by plains and hills. On the whole, the annual precipitation
exhibits a gradient trend from the southeast coast to the northwest inland, accompanied
by more precipitation in coastal areas and southern areas. The vegetation and ecological
environment have a strong regional conjugation and dynamic stability in China. Therefore,
strengthening the investigation of vegetation drought is conducive to controlling ecological
degradation, restoring ecosystem function, improving ecological environment quality,
and ultimately maintaining the integrity of the ecosystem and realizing the harmonious
development of humans and nature. On account of regional vegetation types, there are
eight major vegetation sub-zones across China (Figure 1). The detailed sub-zones are listed
in Table 1.
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Table 1. List of regions in this study.

Region Abbreviation Area (104 km2)
Number of

Meteorological Stations

Temperate Desert TD 218.06 47
Temperate Grassland TG 116.41 87

Alpine Vegetation AV 160.59 34
Subtropical Evergreen Broad-leaved Forest SEBF 267.08 259

Tropical Monsoon Forest and Rainforest TMFR 28.96 19
Warm-Temperate Deciduous Broad-leaved Forest WDBF 97.07 120
Coniferous and Deciduous Broad-leaved Forest CDBF 40.84 35

Cold-Temperate Coniferous Forest CTCF 20.79 6
Mainland China MC 949.80 607

2.2. Dataset
2.2.1. In Situ Data

The in situ data were derived from a surface climatic monthly dataset for 613 me-
teorological stations covering 1960–2020, including the monthly precipitation, average
temperature, extreme temperature, vapor pressure, average wind speed, and sunlight
duration (http://data.cma.cn (accessed on 6 March 2022)). Through strict extreme value
tests, homogeneity tests and screening, we selected 607 meteorological stations data that
met the quality requirements.

2.2.2. Remote Sensing Satellite Dataset

The Normalized Difference Vegetation Index (NDVI) dataset was obtained from
SPOT/VEGETATION satellite during 1999–2020 (1 km resolution), and has been re-processed
by means of radiometric calibration, geometric rectification, and noise reduction. As a dis-
tinctive spectral signal extracted by using the optical parameters of the leaf crown, NDVI is
a powerful and dimensionless vegetation metric suitable for multiple biological populations
and the fields related to vegetation dynamic variation, vegetation cover classification, and
macro ecological aspects [16,45–47].

2.2.3. Atmospheric Teleconnection

Large-scale circumfluence indices were selected covering 1999–2020, i.e., El Niño-
Southern Oscillation (ENSO), Arctic Oscillation (AO), Southern Oscillation Index (SOI),
Pacific North American (PNA), Sunspot Index (SI), Dipole Mode Index (DMI), Trans Polar
Index (TPI), and North Pacific Index (NPI) (https://psl.noaa.gov/data/climateindices/
list/) (accessed on 5 December 2021). The atmospheric teleconnections used in this study
are listed in Table 2.

Table 2. The atmospheric teleconnections used in this study.

Atmospheric Teleconnections Acronym Period

El Niño-Southern Oscillation ENSO 1999–2020
Arctic Oscillation AO 1999–2020

Southern Oscillation Index SOI 1999–2020
Pacific North American PNA 1999–2020

Sunspot Index SI 1999–2020
Dipole Mode Index DMI 1999–2020
Trans Polar Index TPI 1999–2020

North Pacific Index NPI 1999–2020

2.2.4. Digital Elevation Model Data

The spatial distribution of elevation was derived from the Shuttle Radar Topography
Mission (SRTM) dataset in the American space shuttle Endeavour. The dataset is generated
using WGS84 ellipsoidal projection and resampled based on the latest SRTM V4.1 data,

http://data.cma.cn
https://psl.noaa.gov/data/climateindices/list/
https://psl.noaa.gov/data/climateindices/list/
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which has a strength of strong reality and free access and is used for ecological environment
analysis [48].

3. Methodology
3.1. Vegetation Condition Index

VCI can reflect an arid ecological environment formed by the interaction between
vegetation and its living environment, and has a good representational ability for the
physiological response of vegetation under drought stress [10,49]. Additionally, VCI is
a reliable measurement of vegetation coverage and crop growth status in the terrestrial
areas, which can reflect the fluctuation of ecosystem productivity caused by differences in
meteorological conditions. Meanwhile, VCI is sensitive to drought stress and can weaken or
even eliminate the impact on vegetation due to different geographical location, ecosystem,
and soil conditions [11]. In this study, in order to quantitatively evaluate the applicability
of VCI across China, the calculated VCI (VCIs) from the SPOT/VEGETATION satellite
was compared with the VCI product (VCIp) from the Advanced Very-High-Resolution
Radiometer (AVHRR). Four evaluation indicators were used to validate VCI, including
Correlation Coefficient (r), Root Mean Square Error (RMSE), Mean Absolute Error (MAE),
and Nash–Sutcliffe Efficiency (NSE).

The VCI and evaluation indicator calculation is as follows:

VCI =
NDVIi − NDVImin

NDVImax − NDVImin
(1)

r =
∑n

i=1 (Ci − C)(Hi − H)√
∑n

i=1 (Ci − C)2
√

∑n
i=1 (Hi − H)

2
(2)

RMSE =

√
1
n∑n

i=1 (Ci − Hi)
2 (3)

MAE =
1
n∑n

i=1|Ci − Hi| (4)

NSE = 1− ∑n
i=1 (Ci − Hi)

2

∑n
i=1 (Hi − H)

2 (5)

where Ci and Hi represent the VCIs and VCIp, C and H represent the mean values of VCIs
and VCIp, and n represents the number of samples.

3.2. Meteorological Drought Index

The standardized precipitation evapotranspiration index (SPEI) is a robust meteoro-
logical drought index in light of multi-time scale and spatial comparability, which has the
advantages of simple and convenient calculation, sensitive drought response, and flexible
time scale [50,51]. The regional potential evapotranspiration is calculated on the basis of
the meteorological data for multiple years with long sequences, and then the SPEI values
are obtained based on the probability distribution of water loss time series.

3.3. Extreme-Point Symmetric Mode Decomposition (ESMD)

ESMD method can progressively decompose and identify large-scale circulation and
non-linear trends of time series [52]. With the advantages of local signal variation and
adaptability, ESMD optimizes the last residual component into a series of extreme points
and diminishes the problems of complex screening times and rough trend function. More
descriptions of the ESMD method can be found in [52].
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3.4. Pixel-Scaled Trend Analysis Method

The nonparametric Mann–Kendall method is often used to diagnose the trend changes
of precipitation, runoff, temperature, and other time series. However, the trend item is
often disturbed due to the significant high-order autocorrelation component in the original
sequence. The pixel-scaled Mann–Kendall (PMK) compresses the trend characteristic value
of the spatio-temporal matrix into a graph and finally obtains the spatial variation trend.
More procedures about the PMK method are referred to in [37].

3.5. Rescaled Range (R/S) Analysis

The R/S diagnostic method is usually used to investigate fractal characteristics and
long-term memory processes within the time series [19,53]. During the R/S analysis, the
Hurst index is used to predict future trends, which can reflect extended the persistence
characteristics and memory degree of time series. The procedures applying the R/S analysis
can be found in [19].

3.6. Bivariate and Multivariate Cross Wavelet Transform Technology

Bivariate cross wavelet transform can explain the similarity of periodic characteristics
between two variables, while multivariate wavelet can describe the common characteristics
within multiple variables [54–56]. Wavelet coherence can not only provide a spectrogram
similar to Fourier analysis, but also capture the interaction between signals, which can re-
flect the local correlation in the time–frequency range. In addition, cross wavelet transform
is a beneficial instrument used to detect the instantaneous coherence variation by obtaining
the amplitude and phase information of a signal [55].

4. Results
4.1. The Validation of VCI

In order to quantitatively evaluate the performance of VCI across China, the evaluation
indicators r, RMSE, MAE, and NSE were used to validate VCI (Figure 2). After calculation,
the average r value was 0.62 in China, and the r value in the TG (0.66) and WDBF (0.67)
was higher than 0.60. The average RMSE value was 0.27, with a relatively high RMSE value
(0.31) in the TD. Similarly, the average MAE value was 0.22, with a high MAE value (0.25)
in the TD. For the NSE, the average NSE value was 0.60 in China, and the higher NSE
values occurred in the WDBF (0.72) and TG (0.70). Overall, VCI showed good consistency
across China, implying that it is suitable for vegetation drought assessment.

4.2. Temporal Variations of Vegetation Drought

Figure 3 shows the eigenmode function component (EFC) and a trend item (TI) of VCI
from 1999 to 2020 based on ESMD. When the optimal screening times reached 40 times, the
TI could represent an overall fluctuation of the original VCI sequence. Furthermore, the con-
tributions of variance in EFC1, EFC2, and TI were 48.18%, 6.87%, and 44.95%, respectively,
suggesting that the EFC1 contributed to most variations in vegetation drought in China. On
an inter-annual scale, vegetation drought has a 7-year period that can be reflected by EFC1.
On an inter-decadal scale, a 10.5-year period can be obtained from EFC2. As shown in
Figure 3, the original VCI sequence and trend component TI showed a consistent tendency
of rising first and then falling during 1999–2020, and reached the minimum value (0.41)
in 2000 and the maximum value (0.64) in 2013, respectively. Additionally, based on R/S
analysis, the Hurst index was 0.60 (>0.50) in VCI time series, indicating a consistent trend
between future and previous droughts. The VCI linear tendency rate was 0.044/10a with
a minimum of 0.41 occurring in 2000, indicating that vegetation drought was generally
decreasing from 1999 to 2020.
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During 1999–2020, the variation characteristics of VCI were different in each sub-region.
Among them, the VCI manifested a downward trend in the TD and AV, indicating an
increase in drought trend within these two sub-regions. Conversely, the VCI showed a
significant upward trend, demonstrating that drought was significantly decreasing in the
TG, SEBF, TMFR, WDBF, CDBF, and CTCF. In each sub-region, the most obvious upward
trend appeared in the SEBF, with a 0.137/10a linear tendency rate of VCI, followed by
the TMFR with a 0.129/10a linear tendency rate of VCI. Additionally, a severe drought
emerged in the year 2000 in the TG, SEBF, TMFR, WDBF, CDBF, and CTCF, with a mean
VCI-value of 0.35, 0.37, 0.38, 0.34, 0.34, and 0.32, respectively. Severe drought occurred in
2015 in the TD and AV, with a mean VCI-value of 0.25 and 0.35, respectively.

Agronomy 2023, 13, x FOR PEER REVIEW 8 of 21 
 

 

emerged in the year 2000 in the TG, SEBF, TMFR, WDBF, CDBF, and CTCF, with a mean 

VCI-value of 0.35, 0.37, 0.38, 0.34, 0.34, and 0.32, respectively. Severe drought occurred in 

2015 in the TD and AV, with a mean VCI-value of 0.25 and 0.35, respectively. 

 

Figure 3. Two EFCs and a trend item TI of VCI during 1999–2020 based on ESMD. 

 

Figure 4. Temporal variations of VCI during 1999–2020 in each region (a) TD, (b) TG, (c) AV, (d) 

SEBF, (e) TMFR, (f) WDBF, (g) CDBF, and (h) CTCF. 

Figure 4. Temporal variations of VCI during 1999–2020 in each region (a) TD, (b) TG, (c) AV, (d) SEBF,
(e) TMFR, (f) WDBF, (g) CDBF, and (h) CTCF.

4.3. Spatial Distributions of Vegetation Drought

Since the minimum VCI appeared in 2000 during 1999–2020, we selected 2000 as a
typical drought year to explore the spatial patterns of vegetation drought in China (Figure 5).
From a monthly scale perspective, the minimum and maximum VCI appeared in August
(0.36) and November (0.46), respectively (Table 3). From a seasonal-scale perspective, the
minimum and maximum VCI occurred in summer (0.40) and winter (0.44), respectively. In
summer and autumn, droughts were mainly concentrated in the CTCF, with a mean VCI-
value of 0.25, and 0.33, respectively. Moreover, spring drought was mainly concentrated in
the SEBF, with a mean VCI-value of 0.34, and winter drought was mainly concentrated in
the CDBF, with a mean VCI-value of 0.28.
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Table 3. The minimum, maximum and mean VCI values in the year 2000.

VCI Value Jan. Feb. Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. Dec. Spr. Sum. Aut. Win.

Min. 0.22 0.22 0.27 0.25 0.13 0.16 0.23 0.18 0.32 0.21 0.26 0.30 0.22 0.22 0.27 0.27
Max. 0.50 0.48 0.57 0.51 0.56 0.56 0.48 0.41 0.50 0.50 0.57 0.48 0.51 0.44 0.49 0.55
Mean 0.41 0.37 0.44 0.39 0.41 0.43 0.40 0.36 0.40 0.39 0.46 0.40 0.41 0.40 0.42 0.44

Figure 6 illustrates the spatial patterns of vegetation drought in different months
and seasons across China. For all VCI pixels, the average VCI ranged from 0.49 (April)
to 0.52 (November). Additionally, from a monthly scale perspective, the minimum VCI-
values occurred in the CDBF (0.38), CDBF (0.38), CTCF (0.38), CDBF (0.39), CDBF (0.44),
AV (0.44), CTCF (0.44), AV (0.45), AV (0.45), TD (0.45), AV (0.46), and CTCF (0.46) for
January, February, March, December, April, May, October, June, July, August, September,
and November, respectively (Figure 6a–l). Generally, from spring to summer, the average
VCI gradually improved from 0.50 to 0.51. Then, the vegetation drought had an ascending
intensity from summer to winter, with the average VCI decreasing from 0.51 to 0.49. In
winter, summer, spring and autumn, the minimum VCI values occurred in the CDBF (0.38),
AV (0.45), AV (0.47), and CTCF (0.49), respectively (Figure 6m–p). Apparently, the three
vegetation-drought-prone areas were the CDBF, CTCF, and AV.
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and seasons, (l) December, (m) Spring, (n) Summer, (o) August, and (p) Winter across China.

4.4. Vegetation Drought Trend Identification at the Pixel Scale

The pixel-scaled VCI trend characteristics are depicted in Figure 7. Figure 8 signifies
the trend characteristic Z-values of VCI based on the PMK method across China from 1999
to 2020. From a monthly scale perspective, the average Z-values were −0.02 (January),
–0.01 (February), 0.05 (March), 0.27 (April), 0.49 (May), 0.48 (June), 0.68 (July), 0.68 (August),
0.52 (September), 0.44 (October), 0.07 (November), and 0.02 (December), respectively
(Figure 8). By and large, vegetation drought showed an increasing trend in January and
February, and a decreasing trend from March to December. For all sub-regions, Z > 0
expressed an alleviating trend of vegetation drought in July and August. As Figure 9
shows, for the rising trend of drought, the percentage of area ranged from 30.7% (August)
to 57.9% (December). Additionally, the maximum percentage of area (0.49%) was found
in March (Figure 7), with an expanding trend of drought (p < 0.01). From a seasonal-scale
perspective, the average Z-values were 0.41 (spring), 0.79 (summer), 0.50 (autumn), and
0.11 (winter), indicating that vegetation droughts were decreasing for each season across
China (Figure 8). For all sub-regions except the TD, Z > 0 suggested a descending trend of
vegetation drought in summer. In terms of the upward trend of drought, the percentage
of area in each season was 44.3% (spring), 30.9% (summer), 39.1% (autumn), and 52.8%
(winter), respectively. Furthermore, the maximum percentage of area (0.77%) was found in
spring (Figure 7), with an expanding trend of drought (p < 0.01). In the CTCF, the alleviation
trend of vegetation drought was observed in July at p < 0.05. In addition, the increasing
vegetation drought mainly occurred in the TD, TG, and AV (Figure 8).
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4.5. Propagation Features from Meteorological to Vegetation Drought

Since precipitation needs to be reflected in the growth of vegetation through slow soil
infiltration and vegetation root absorption, the vegetation communities cannot respond
to climate change instantaneously. In view of the response effects in vegetation drought
and meteorological drought, it is necessary to investigate the propagation features from
meteorological to vegetation drought. Previous studies demonstrated that the lag times of
vegetation responses to climate were less than 3 months [6,8,21,45]. Accordingly, the r was
calculated between the monthly VCI and the meteorological indicator SPEI (0–3-month
scales) in each region of China (Figure 10). This study used the cross-correlation to analyze
the hysteresis effect, and the lag time of vegetation drought to meteorological drought was
determined [36,37,57]. In MC, the propagation time was 1—month in July (r = 0.65) and
September (r = 0.42) and 0—month in August (0.70). Meanwhile, the propagation time was
2—month in January (r = 0.62), February (r = 0.53), April (r = 0.56), June (r = 0.69), October
(r = 0.61), November (r = 0.67), and December (r = 0.74) and 3–month in March (r = 0.58)
and May (r = 0.53), respectively. For the entire period, the number of 0—, 1—, 2— and
3—month propagation time was 7, 28, 46, and 27, respectively. Additionally, the ratio of
r values was 89.81% and 58.33% at the significant level of 0.05 and 0.01. In summary, the
time lag was shorter in summer (approximately 1.26 months) with an average r-value of
0.65, and longer in winter (approximately 2.26 months) with an average r-value of 0.48
(Figure 10).
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5. Discussion
5.1. Dynamic Relations between Vegetation Drought and Atmospheric Teleconnection
5.1.1. Bivariate Wavelet Coherence

The bivariate wavelet coherence (BWC) and multivariate wavelet coherence (MWC)
were used to reveal the dynamic relations between vegetation drought and atmospheric
teleconnection across China. Figure 11 depicts the BWC-based internal relations between
the monthly VCI and eight teleconnection data (ENSO, AO, SOI, PNA, SI, DMI, TPI,
and NPI) during 1999–2020. There are four common periods with negative relations
in VCI-ENSO (Figure 11a), with signals of 10–14 (2001–2002), 16–20 (2009–2010), 30–40
(2011–2013), and 10–14 months (2016–2018). There are two common periods with negative
relations in VCI-AO (Figure 11b), with signals of 12–14 (2001–2002), and 10–14 months
(2014–2015). Figure 11c indicates that VCI is negatively correlated with SOI with a signal
of 10–16 months (2014–2017). Figure 11d shows that there are three common periods in
VCI-PNA, which are 10–16 in 2000–2003 and 10–14 months in 2007–2008 with negative
relations, and 10–16 months in 2012–2018 with positive relations. Meanwhile, the relations
between VCI and the other four atmospheric teleconnections (SI, DMI, TPI, and NPI) are
illustrated in Figure 11e–h. Furthermore, there is a short-term mutual period (1–8 months)
between VCI and atmospheric teleconnection from 1999 to 2020. In general, the results
show that PNA has the strongest influence on vegetation drought across China.

Also, we explored the common features between vegetation drought and atmospheric
teleconnection within the low-energy areas based on the BWC (Figure 12). There are two ob-
vious negative relations in VCI-ENSO (Figure 12a), with signals of 14–16 (2000–2001), and
14–20 months (2009–2010). There is an obvious positive relation in VCI-AO (Figure 12b),
with a signal of 14–24 months (2007–2014), and two negative correlations with signals of
8–14 (2001–2003), and 8–12 months (2009–2010). There are two obvious positive relations
in VCI-SOI (Figure 12c), with signals of 10–16 (2001–2004) and 8–12 months (2006–2007),
and two negative relations with signals of 24–32 (2007–2010) and 8–14 months (2014–2017).
Figure 12d indicates that VCI is positively correlated with PNA with a signal of 8–14 months
(2001–2004), and negatively correlated with PNA with a signal of 48–96 months (2007–2014).
In addition, there are obvious relations between vegetation drought and other atmo-
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spheric teleconnections (SI, DMI, TPI, and NPI) in both frequency and temporal domains
(Figure 12e–h).
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Figure 11. The relations between the monthly VCI and (a) ENSO, (b) AO, (c) SOI, (d) PNA, (e) SI,
(f) DMI, (g) TPI, and (h) NPI data during 1999–2020 across China, respectively. The thick contour
denotes a 95% confidence level. The colors in the legend indicate wavelet energy.
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Figure 12. The BWC in VCI and (a) ENSO, (b) AO, (c) SOI, (d) PNA, (e) SI, (f) DMI, (g) TPI, and
(h) NPI data during 1999–2020 across China, respectively. The thick contour denotes a 95% confidence
level. The colors in the legend indicate wavelet energy.

5.1.2. Multivariate Wavelet Coherence

Since PNA has the most obvious impact on vegetation drought, we adopted MWC
between VCI-PNA and other atmospheric teleconnections (ENSO, AO, SOI, SI, DMI, TPI,
and NPI) to clarify the simultaneous influence of multiple atmospheric teleconnections on
vegetation drought (Figure 13). VCI-PNA is closely related to ENSO (Figure 13a), with
signals of 8–14 (2001–2003) and 24–96 months (2005–2016). There are three common periods
in VCI-PNA-AO (Figure 13b), with signals of 8–14 (2001–2006), 48–96 (2010–2013), and
24–40 months (2011–2015). There are four common periods in VCI-PNA-SOI (Figure 13c),
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with signals of 8–14 (2000–2004), 8–14 (2005–2008), 48–96 (2005–2014), and 8–14 months
(2013–2018). VCI-PNA is closely related to SI (Figure 13d), with signals of 8–12 (2001–2004),
48–64 (2009–2013), and 8–16 months (2012–2018). Meanwhile, the relations between VCI-
PNA and the other three atmospheric teleconnections are depicted in Figure 13e–g. In
general, the combination of PNA and ENSO has the strongest coupled effects on vegetation
drought across China.
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Figure 13. The MWC in VCI-PNA and (a) ENSO, (b) AO, (c) SOI, (d) SI, (e) DMI, (f) TPI, and (g) NPI
data during 1999–2020 across China, respectively. The thick contour denotes a 95% confidence level.
The colors in the legend indicate wavelet energy.

In view of the obvious impact of PNA and ENSO on vegetation drought, the relations
between the VCI-PNA-ENSO and other atmospheric teleconnections (AO, SOI, SI, DMI,
TPI, and NPI) were also explored (Figure 14). For one factor, PNA has the closest relation
to vegetation drought, with an average wavelet coherence (AWC) of 0.81 and a percent
area of significant coherence (PASC) of 16.04%. For two factors, PNA-ENSO has the most
obvious effect on vegetation drought (AWC = 0.94, PASC = 25.60%). For three factors, PNA-
ENSO-TPI has the strongest impact on vegetation drought (AWC = 0.98, PASC = 26.62%).
When three factors are involved, the AWC and PASC values are no less than 0.97 and
20%, respectively (Table 4). Thus, the combination of three factors (PNA-ENSO-TPI) can
elucidate the vegetation drought variations across China.

Table 4. The AWC and PASC between vegetation drought and atmospheric teleconnections.

One-Factor AWC PASC (%) Two-Factors AWC PASC (%) Three-Factors AWC PASC (%)

ENSO 0.77 3.79 PNA-ENSO 0.94 25.60 PNA-ENSO-AO 0.97 24.66
AO 0.78 6.18 PNA-AO 0.91 11.75 PNA-ENSO-SOI 0.98 25.38
SOI 0.78 6.17 PNA-SOI 0.92 15.10 PNA-ENSO-SI 0.97 23.04

PNA 0.81 16.04 PNA-SI 0.91 13.16 PNA-ENSO-DMI 0.97 21.79
SI 0.81 15.14 PNA-DMI 0.90 8.77 PNA-ENSO-TPI 0.98 26.62

DMI 0.77 2.22 PNA-TPI 0.93 17.62 PNA-ENSO-NPI 0.97 20.58
TPI 0.78 7.87 PNA-NPI 0.93 16.75
NPI 0.79 9.43
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5.2. Uncertainties

In this study, there are several aspects of uncertainty. For example, although some
uncertainties may have occurred during the process of interpolating station-derived SPEI
to different spatial resolutions, we obtained an SPEI dataset with the same resolution as
the remote sensed-based vegetation dataset [51,58]. Another uncertainty was in the remote
sensing datasets because of poor atmospheric conditions and cloud contamination, and
it was a commonly existing phenomenon for satellite images [24,26,59]. Nonetheless, this
problem may be diminished by filtering, re-processing, and de-noising. Additionally, while
taking VCI to reflect vegetation greenness change, other indices are considered to be a
better alternative, such as the vegetation health index (VHI), which can reflect vegetation
growth status and land surface temperature [16,46]. Since it was still a non-deterministic
work for quantifying and determining the weights of VHI components, we applied VCI to
investigate the vegetation ecosystem responses to drought in an operational manner [15].
However, despite several uncertainties, our findings provided a reference for vegetation
drought planning and management across China.

5.3. The Possible Influence Factors

The applicability of VCI was quantitatively evaluated from a different sensor, and
the results indicated that it is suitable for identifying vegetation drought across China.
Meanwhile, the consistency in the TD is lower than that in the TG and WDBF, which may be
due to the scarcity of vegetation in the TD [60,61]. The increase in global temperature and
the change in the precipitation pattern can accelerate the development progression of vege-
tation drought [29]. In China, the least annual precipitation occurs in the TD (213.10 mm),
AV (363.34 mm) and CDBF (568.74 mm), while the lowest annual temperature occurs in the
AV (4.11 ◦C), CDBF (4.17 ◦C) and TD (7.16 ◦C), resulting in relatively serious vegetation
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drought in these three regions. Specifically, the TD is located in the arid inland areas with
desertification land, and the AV is located in the high-altitude areas with less precipitation,
which may be the reason for the serious vegetation drought in these two areas [18,25]. As
for the vegetation drought in the CDBF, it may be caused by monsoon climate, forest fires,
and excessive deforestation [62]. In recent years, ecological management measures in the
SEBF have resulted in an exuberant vegetation coverage on the originally bare land surface,
and improved ecological and environmental health in this area [63,64]. Moreover, in addi-
tion to some direct impacts of climate change, the increase in crop planting has improved
the multiple-crop index and grain yield, leading to the expanding agricultural cultivation
scope, rising vegetation growth and descending vegetation drought trend [20,65]. In addi-
tion to meteorological conditions, anthropogenic factors (e.g., grain for green, tree planting,
and afforestation) and topographic conditions will also affect the propagation process of
drought [35,38,39]. Since the SPOT/VEGETATION satellite was launched in April 1998,
the period 1999–2020 was selected to ensure the completeness of data in a natural year. In
Figure 7, the trends without statistical significance may be associated with a relatively short
cycle time.

Previous studies [41–43] have shown that drought is vulnerable to circumfluence index
variation, and the relationship between drought and large-scale circumfluence factor has
attracted widespread attention from decision makers. As one of the most obvious patterns
of low-frequency variation, PNA is related to the intense fluctuations in the jet stream
intensity [66,67]. ENSO is a wind field oscillation over the equatorial eastern Pacific and
is regarded as an ocean–atmosphere interaction phenomenon and an important influence
factor in climate prediction [2,54]. Furthermore, TPI is a significant climate variability
with a basin scale, which has an obvious function in climate anomalies [68]. In this paper,
it is recognized that the combination of PNA, ENSO, and TPI is most closely related to
vegetation drought, which is new evidence that can explain vegetation drought variations
across China (Figure 14). Therefore, PNA-ENSO-TPI, which affects vegetation drought, can
be considered as the input factor for improving the prediction ability of vegetation drought.

5.4. Advantages and Limitations

In this study, VCI was adopted to reflect the ecological response capacity of vegetation
under drought stress [16,17,59]. Due to the vast geographical scope and differentiated
climatic patterns, the whole of China was classified into several large vegetation sub-
zones [57]. Substantially, the rising vegetation drought was mainly distributed in the TD
and AV. The trend item identified by ESMD can reflect the overall fluctuation characteristics
of time series and has significant advantages in drought investigation [69]. As presented in
Figure 4, the ESMD results also showed that the trend items were decreasing in the TD and
AV, which was consistent with the pixel-scaled trend identification. Besides, consistent with
the description in Figure 4, the SEBF was an area with the most obvious VCI upward trend.
The pixel-scaled trend features showed that the vegetation drought was slowing down
during 1999–2020, which could be concluded from the variations of vegetation drought in
Section 4.2. The finding was consistent with other studies [19,20,64,65], which investigated
vegetation growth conditions in each sub-region of China.

In addition, the lag-time characteristics between meteorological drought and veg-
etation drought can help us predict the occurrence of vegetation drought, with great
significance for maintaining a benign cycle in the ecosystem, promoting harmonious devel-
opment of ecology and economy, and optimizing the ecological environment. Similarly,
some researchers [36,70] have found that the propagation dynamics were non-linear and
time-variant. The discovery of complex and different propagation relationships also sup-
ported this result. Meanwhile, the propagation time had seasonal characteristics and spatial
differences (Figure 10). Ding et al. reported a stronger drought transmission in summer
(r = 0.5–0.7), which was similar to the results of the present study [57].

In terms of limitations, given the availability of remote sensing products, only the
data for the past 22 years were adopted. Moreover, limited by the lack of observation data
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on ecological vegetation growth and water consumption, it is also a future development
tendency to propose a comprehensive vegetation drought index reflecting meteorological,
hydrological, and ecological vegetation information based on multi-source remote sensing
inversion data [4].

6. Conclusions

In this study, the spatial–temporal evolution of vegetation drought and their relation-
ships with atmospheric teleconnection were analyzed during 1999–2020. Additionally, the
propagation characteristics were explored between vegetation drought and meteorological
drought. According to the analysis results, the major conclusions of the study are:

(1) In 1999–2020, the vegetation drought presented an overall decreasing trend, while the
performance was different in each subzone. Noticeably, the minimal VCI-value (0.41)
was found in 2000, and the average monthly VCI was 0.36–0.46.

(2) From spring to winter, the worst vegetation drought with minimal VCI-values ap-
peared in the AV (0.47), AV (0.45), CTCF (0.49), and CDBF (0.38), respectively. Addi-
tionally, the three vegetation-drought-prone areas in China were the CDBF, CTCF and
AV.

(3) The pixel-scaled drought trend identification indicated that vegetation droughts were
increasing in January and February and were decreasing from March to December on
a monthly scale. On a seasonal scale, vegetation droughts were alleviating in each
season across China.

(4) The influence of atmospheric teleconnection on the formation of drought cannot be
ignored. The results showed that PNA-ENSO-TPI had the strongest effects on the
vegetation drought evolution process.
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