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Abstract: Glutathione transferases (GSTs) are enzymes that catalyse modifications and conjugations
of a range of organic and often cytotoxic compounds. GST enzymes with many functions—such
as their conjugation activity against herbicides and their metabolites—can be induced and show
light and circadian determination. The enzyme family, which is widespread in its function, also
shows great diversity in its structure, which has been linked to its enzyme kinetic characteristics and
physiological role at many points. In this study, we aimed to find out the role of different glutathione
transferases in the herbicide responses to flumioxazin, as well as to determine how the antioxidant
and detoxification response to herbicide treatment changes in the presence and absence of light. One
of the herbicide treatments was carried out during the light period in the morning (9:00 a.m.), and the
other before the end of the dark period (4:00 a.m.). The decrease in the maximal quantum efficiency
of PS II and the reduction in the chlorophyll concentration supported the effect of the herbicide on
Papaver rhoeas. In the guaiacol peroxidase POD and GST activity, there were large differences between
the cultivated plants and the weed; both enzyme activities were much higher in the case of wheat.
According to the activity of the antioxidant defence enzymes and GST gene expression data, the
application of the photosynthesis inhibitor herbicide, flumioxazin, in the dark could allow the wheat
antioxidant defence to switch on before the herbicide effect could appear in the light period. Phi
and tau group GSTs were transcriptionally upregulated by the treatments in wheat plants (especially
TaGSTU1B), while fewer changes were detectable in poppy weed (PrGSTU4). Based on our results, in
the background of the greater and more successful response to flumioxazin may be—among other
things—the higher degree of variability of the GSTU genes of wheat compared to poppies.

Keywords: flumioxazin; glutathione transferases; light; Papaver rhoeas; Triticum aestivum

1. Introduction

The success of photo-inhibitory herbicide treatments can vary based on the presence
and absence of light and on the circadian rhythm-controlled defence reaction of plants
during the day or night, or under different light availability. It has been reported that
phytotoxicity is less dominant when plants are exposed to low light levels compared to
intense sunlight [1–3].

Among the several herbicides that influence photosynthesis, flumioxazin (WSSA
Group 14) is a soil-applied pre- and post-emergence herbicide used to inhibit the de-
velopment of dicotyledonous weeds, such as common poppy (Papaver rhoeas), redroot
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pigweed (Amaranthus retroflexus), lambs quarter (Chenopodium album), and jimsonweed
(Datura stramonium) [4–6]. According to the original mode of action of Group 14, flumiox-
azin inhibits the protoporphyrinogen oxidase. This enzyme is involved in the biosynthesis
of chlorophylls and cytochromes [6–8]. There are many possible uses for the active ingredi-
ent: in certain industrial areas, it is also used as a non-selective herbicide, which is made
possible by the fact that it can inhibit germination of a wide range of weeds, depending on
soil moisture and other environmental factors [9,10]. The effectiveness as PRE treatment has
been reported on many plant groups, including grasses [11] and crops, such as peanuts [12].

Flumioxazin is an herbicide that inhibits protoporphyrinogen IX oxidase; the enzyme
catalyses the formation of protoporphyrin IX from protoporphyrinogen IX, which results
in protoporphyrinogen IX accumulation. Oxygen accepts an electron from reduced pro-
toporphyrinogen IX under light conditions, resulting in the formation of ROS, such as
hydrogen peroxide. This herbicide treatment and ROS formation results in an oxidative
burst, which causes damage to lipids, carbohydrates, and nucleic acids, and thus, may
lead to cell death of plants [13,14]. In the detoxification of ROS and neutralisation of its
harmful effect, the antioxidant system plays a role, thus protecting the plant from fatal
damage [15,16]. However, the activity of antioxidant enzymes is significantly dependent
on the presence or absence of light, and also on the circadian clock [17,18].

The antioxidant system of plants keeps reactive oxygen species (ROS) below the
harmful level [15,16]. Among others, the superoxide dismutase (SOD) activity is at peak
before the beginning of the dark period, and this activity continuously declines through
the night [19].

In addition to the fluctuation of antioxidant enzymes during the day, the activity of
certain detoxifying enzymes also follows a daily rhythm: the activity and expression levels
of glutathione transferases (GSTs) reached their peak at the end of the light period, before
both reduced under darkness in tobacco, tomato, and wheat [20–22].

The diverse group of plant GSTs (EC 2.5.1.18; GSTs) catalyse several different reactions,
including the conjugation of glutathione (GSH) with electrophilic compounds to transform
them to less toxic byproducts, which can be conveyed to the vacuole for subsequent
metabolic processes [23,24]. Plant GSTs can be divided into at least fourteen distinct
classes [22]. The tau and phi classes, which are the largest and the most diverse groups
found in plants, play essential roles in mitigating environmental pollution caused by
organic xenobiotics, such as herbicides [24–27].

The connections between tau class GST protein structures and their kinetic characteris-
tics were analysed in soybean and sweet orange [28]. In soybean, an enzyme variant was
reported to exhibit higher CDNB- and fluorodifen-conjugating activities [28,29]. Analysis
of this enzyme variant revealed that the Trp114Cys point mutation was responsible for the
altered properties, as the replacement of the bigger Trp residue by the smaller Cys induced
conformational changes in the active site. Similar results were obtained in the case of sweet
orange tau group GSTs, where changing a single mismatched residue (Glu117Lys) resulted
in significant differences in the kinetic parameters [30].

The enzymatic conjugation of GSH with herbicides catalysed by the GSTs was re-
ported to play an important role in the detoxification of selective herbicides in hexaploid
bread wheat [31–33]. In the case of some active herbicide ingredients (chloroacetamide,
dimethenamid, and sulphonylurea flupyrsulfuronmethyl), the decisive step of the process
is the rapid conversion by GSH conjugation [33–37]. Phi and tau class GSTs are the most
significant in terms of herbicide tolerance; certain members of both classes can be induced
by safeners [37]. It was earlier reported that GSTs are frequently highly abundant in crops,
which resulted in 20-fold more effective detoxification of selective herbicides in the crop
than in the competing weeds [38].

The fate of the active ingredient flumioxazin in plant cells is not known in all details,
so the role of GSTs in this process can only be inferred. Based on the detailed review of
the transformation of herbicides that inhibit the enzyme protoporphyrinogen oxidase in
plants, certain members of the active ingredient group are neutralised by GSTs [39,40]. In a
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previous study, the degradation of flumioxazin by aquatic plants was investigated, and
the role of phase II detoxification in pesticide degradation was emphasised, including in
the form of GSH conjugation [41]. Furthermore, safener-induced GST activity increase was
reported to have a protective role in cotton [42]. However, it is still not completely clear
whether GSTs exert their protective effect through direct detoxification or whether they
have a greater role in the elimination of secondary stress metabolites.

The involvement of GSTs in light-dependent cellular processes is multifaceted: some
of these proteins turn out to be transducers of signalling pathways regulated by UV and
red light [24,43–46]. Darkness or low light mostly reduced the conjugating activity of GSTs,
while high light significantly increased GST activity and expression, and GSH contents [24].

The aim of our present study was to find out the role of different glutathione trans-
ferases in the herbicide responses to flumioxazin, as well as to determine whether the
presence of light during spraying influences the intensity and course of the antioxidant and
detoxification defence responses to the herbicide in the case of wheat crop and poppy weed.

2. Materials and Methods
2.1. Plant Materials and Treatments

During the experiment, common poppy (Papaver rhoeas) and two wheat Triticum aestivum
L. cultivars were used. The cv. GK Ígéret is an improving quality (A2-A1) wheat line, while
the cv. GK Arató is a forage quality (B1-A2) type. Both wheat lines were bred in the Cereal
Research Non-Profit Ltd., Szeged, Hungary (https://www.gabonakutato.hu/en/ accessed
on 2 August 2023).

Sixty healthy wheat grains and about one hundred healthy poppy weed seeds were
sown in a 10 kg mixture of 9:1 soil and sand (Bioland Tőzegfeldolgozó Kft., Biatorbágy,
Hungary) containing N (200–500 mg L−1), P2O5 (200–500 mg L−1); K2O (300–600 mg L−1),
black peat (50%), white peat (50%), and CaCO3 (2 kg m−3), pH 5.5–7.5. The sampling
was designed so that the phenophases corresponded to the early post-emergent treatment:
wheat plants were 12–14 days old at the time of sampling (at least 3 leaves), and poppies had
3 leaf layers (suitable age for field spraying). Plant growth took place under the controlled
conditions 12 h light/12 h dark and 23/20 ◦C with 50–60% humidity (6:00 a.m.–6:00 p.m.
light period, 6:00 p.m.–6:00 a.m. dark period).

The leaves of wheat and common poppy were sprayed with Pledge 50 WP (flu-
mioxazin) herbicide solution with a concentration of 3 mg/10 mL of formulation and
1.5 mg/10 mL active ingredient, which was diluted in sterile water. To be able to study
the light-dependent effect of the herbicide, we treated the plants at two times: at dawn
(4:00 a.m.) and morning (9:00 a.m.). After each treatment, samplings were performed in the
second light cycle at 9:00 a.m. (Figure 1). The experiments were repeated three times, with
independent plant generations. (Samples treated at 4:00 a.m. received an extra 3 h of light).
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Figure 1. Time of treatments and sampling in two wheat (Triticum aestivum L.) cultivars and in
common poppy (Papaver rhoeas) plants.

2.2. Determination of Antioxidant Activities

A total of 250 mg of leaf tissue of wheat and poppy weed were ground and mixed with
1.25 mL of 100 mM phosphate buffer (pH 7.0) containing 1 mM phenylmethylsulfonyl fluo-
ride (PMSF) and 1% polyvinyl poly pyrrolidone (PVPP). After centrifugation (12,000× g,
4 ◦C, 20 min), the supernatant was used for the detection of superoxide dismutase (SOD; EC

https://www.gabonakutato.hu/en/
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1.15.1.1), catalase (CAT; EC 1.11.1.6), and guaiacol-dependent peroxidase (POD; EC 1.11.1.7)
activities at 560, 240, and 470 nm, respectively, using a spectrophotometer (KONTRON,
Milan, Italy).

The activity of SOD shows the ability of the enzyme to catalyse the reduction of NBT
in the presence of riboflavin and light. One unit of SOD is equal to the enzyme amount
used to inhibit fifty percent NBT reduction [47]. Catalase activity was determined by the
decomposition of hydrogen peroxide and was followed spectrophotometrically, following
the decrease in absorbance at 240 nm. One unit of CAT is equal to the amount of enzyme
required to consume 1 µmol min−1 H2O2 [48].

The POD activity was determined following the increase in absorbance at 470 nm due
to the oxidation of guaiacol. ε470 = 26.6 mM−1 cm−1. The amount of enzyme catalysing the
formation of 1 µmol min−1 30 of oxidised guaiacol was defined as 1 U [48].

Glutathione transferase activity was determined spectrophotometrically using the
1-chloro-2,4-dinitrobenzene (CDNB, Sigma-Aldrich, St. Louis, MO, USA) artificial substrate.
The reaction was started by the addition of CDNB; the increase in absorbance at 340 nm was
determined. One U is equal to the amount of enzyme that produces 1 µmol of conjugated
product in 1 min; ε340=9.6 mM−1 cm−1 [49].

The protein contents of the leaf extracts were measured by the method of Bradford [50].

2.3. Measurement of Maximal Quantum Yield of PSII Photochemistry

To measure the maximal quantum yield of PSII in leaves of wheat and common poppy
plants, a chlorophyll fluorometer (pulse amplitude modulation, PAM-2000; Heinz-Walz,
Effeltrich, Germany) was used. The minimal fluorescence yield in a dark-adapted state
(F0) was determined after leaves were kept in dark for 15 min. After this, the maximal
fluorescence in the dark-adapted state (Fm) was measured, which allowed the calculation
of the maximal quantum efficiency of PSII photochemistry (Fv/Fm = (Fm − F0)/Fm) [51].

2.4. Determination of Photosynthetic Pigment Concentration

A total of 25 mg of leaves of wheat and common poppy were ground using 750 µL of
100% (v/v) acetone (cold) and incubated for one day at 4 ◦C. After a centrifugation step
(12,000× g for 20 min at 4 ◦C), the pellet was washed with 750 µL of cold acetone/Tris
buffer (80:20 v/v, pH = 7.8) for one more day at 4 ◦C. After centrifugation (12,000× g,
20 min, 4 ◦C), the absorbance of the supernatants was measured by spectrophotometer in a
glass cuvette at 470, 537, 647, and 663 nm (KONTRON, Milan, Italy). Concentrations of
photosynthetic pigments were calculated according to Sims and Gamon [52].

2.5. Determination of H2O2 Concentration

The amount of H2O2 in leaves was measured spectrophotometrically, as described
by Velikova et al. [53]. After the homogenisation of 0.2 g of leaf tissue with 1 mL of
ice-cold 0.1% trichloroacetic acid, the samples were centrifuged (10.000× g for 20 min at
4 ◦C). The reaction mixture contained 0.25 mL of 10 mM phosphate buffer (pH 7.0), 0.5 mL
of 1 M potassium iodide (KI), and 0.25 mL of the supernatant. The absorbance of the
samples was measured after 10 min at 390 nm. The amount of H2O2 was calculated using
a standard curve prepared from H2O2 stock solution, and using the extinction coefficient
0.28 µM−1 cm−1.

2.6. RNA Extraction, cDNA Synthesis, and Expression Analysis by Quantitative Real-Time PCR

The changes in the transcript amounts of wheat and common poppy GST genes were
determined by quantitative real-time PCR (RT-qPCR). RNA was isolated from 100 mg plant
material, following the description of Chomczynski and Sacchi [54] and Csiszar et al. [55].
The RT-qPCR oligonucleotides (and the Papaver rhoeas GST-like sequences) are listed in Table
S1. The changes in the transcript amounts of GST genes were monitored as published ear-
lier [56]. The Maxima SYBR Green/ROX qPCR Master Mix (Thermo Scientific™, Waltham,
MA, USA) reaction mixture was used for the quantitative PCR (qRT-PCR; qTOWER Real-
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Time qPCR System, Analytik Jena, Jena, Germany) reaction, following the manufacturer’s
instructions. We used the 18S and EF sequences as high and low internal controls, respec-
tively. Data were calculated using the 2−(∆∆Ct) method [57]. Data were normalised using
the control ∆Ct values of common poppy and the GK Ígéret cultivar on a log2 scale, and
the results were shown on a heat map.

For our experiments, several common poppy and wheat sequences were chosen
(Table S1). One partial poppy weed GST sequence is available in GenBank (MW306747.1).
Other Papaver rhoeas GSTs were selected using the dataset of Subramaniyam et al. [58]. The
used datasets contained the sequenced transcriptomes of Papaver rhoeas. BLAST Searching
was performed using Papaver somniferum GSTs or GST-like sequences (XM_026567272,
XM_026567096, AF118926, AF118925, AF118924, and XM_026527770, XM_026561865 led to
searching results) in Papaver rhoeas (SRR7345724 and SRR7345723) transcriptome sequence
libraries. Wheat sequences were chosen according to the enzyme properties, and previous
data were obtained from Cummins et al. [32], Thom et al. [37], Gallé et al. [56], and
Pelsőczi et al. [22].

According to Thom et al. [37], the TaGSTU1-1 protein shows outstanding conjugation
activity against fluorodifen and metolachlor, and among the four tau group GSTs they
examined, the CDNB conjugation activity was the second highest, and the activity against
crotonaldehide (stress metabolite analogue) was the highest. TaGSTU3-3 shows conjugation
activity towards Fenoxaprop and is characterised by higher GPOX activity. According
to Cummins et al. [32], among the six phi group GSTs, TaGSTF1 protein showed the
highest CDNB conjugating activity; TaGSTF3 exhibited the highest conjugating activity
against benzylisothiocyanate and metolachor, and outstandingly high GPOX activity; while
TaGSTF6 showed activity towards ethacrynic acid, which was a unique feature of the tested
phi group GSTs [32]. Red light upregulates the expression of some genes of the mentioned
protein, namely, TaGSTU1B, TaGSTU3, TaGSTF3, and TaGSTF6 [22].

2.7. Alignment of the Secondary Structure

Amino acid sequences of TaGSTU1B, TaGSTU3, PrGST1, PrGST2, PrGST3, and PrGST4
were submitted to Proteus2 [59] in order to obtain the secondary structures. An align-
ment was created using Clustal Omega [60,61], and 2dSS was used for the visualisation
(http://genome.lcqb.upmc.fr/2dss/index.html accessed on 14 June 2023) [62].

2.8. Statistical Analysis

Antioxidant enzymes activities and hydrogen peroxide and pigment concentrations
were determined with at least three parallel samples. In the case of qPCR sampling, three to
six individual plants were sampled per biological replicate per treatment, and we worked
with three technical replicates. In the figures, mean values are presented with standard
deviation bars. Sigma Plot 11.0 software (SPSS Science Software, Erkrath, Germany) was
used for statistical analysis. Analysis of variance (ANOVA) was performed to determine
the difference among different treatments by Duncan’s test, and a significant difference
was found if p ≤ 0.05.

3. Results

First, the daytime- and nighttime-dependent effects of flumioxazin were tested on
the maximal quantum yield of the PSII photochemistry (Fv/Fm) of monocotyledonous
wheat (GK Arató and GK Ígéret) and dicotyledonous poppy weed plants based on the
measurements of chlorophyll fluorescence (Figure 2).

The maximal quantum yield of the PSII photochemistry (Fv/Fm) of wheat (GK Arató
and GK Ígéret) and poppy weed plants showed a larger impact of herbicide treatments
on poppy: both the 4:00 and 9:00 application of flumioxazin reduced Fv/Fm only in
poppy weed. It was in correspondence with the chlorophyll a+b concentration: treatments
decreased it in poppy weed, while there were no changes in carotenoids concentrations
(Figures 2 and 3).

http://genome.lcqb.upmc.fr/2dss/index.html
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Figure 2. Changes in the maximal quantum yield of PSII photochemistry Fv/Fm in leaves of wheat
(Triticum aestivum cv. GK Ígéret and cv. GK Arató) and poppy weed (Papaver rhoeas) treated with
sterile water (white columns) and flumioxazin at dawn (4:00 a.m., grey columns) and in the light
period (9:00 a.m., dark-grey columns). Sampling was performed in the second light cycle at 9:00 a.m.
Means ± SE, n = 3. Means denoted by different letters indicate statistical difference at p ≤ 0.05 as
determined by Duncan’s test.
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Figure 3. Differences in the chlorophyll a + b (A) and carotenoids concentration (B) in leaves of wheat
(Triticum aestivum cv. GK Ígéret and cv. GK Arató) and poppy weed (Papaver rhoeas) with sterile water
(white columns) and flumioxazin at different times: at dawn (4:00 a.m., grey columns) and in the light
period (9:00 a.m., dark-grey columns). Sampling was performed in the second light cycle at 9:00 a.m.
Means ± SE, n = 3. Means denoted by different letters indicate statistical difference at p ≤ 0.05 as
determined by Duncan’s test.

The hydrogen peroxide amounts were increased in all plants, especially in com-
mon poppy leaves (ca. 3 times) (Figure 4). The constitutive level of H2O2 in wheat was
three times higher than that of poppy.
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Figure 4. Differences in the H2O2 concentration in leaves of wheat (Triticum aestivum cv. GK Ígéret
and cv. GK Arató) and poppy weed (Papaver rhoeas) treated with sterile water (white columns) and
flumioxazin at different times: at dawn (4:00 a.m., grey columns) and in the light period (9:00 a.m.,
dark-grey columns). Sampling was performed in the second light cycle at 9:00 a.m. Means ± SE,
n = 3. Means denoted by different letters indicate statistical difference at p ≤ 0.05 as determined by
Duncan’s test.

There were large differences in POD activity between the untreated samples of wheat
and poppy; the activities were significantly higher in wheat lines. SOD, CAT, and POD
activity measurements further emphasised the differences between the responses to the
herbicide of wheat and common poppy plants and showed even decreases in the enzymatic
antioxidant activity of poppy weed. Spraying in the dark induced stronger measurable
SOD and CAT, but not POD, activity in wheat cultivars (Figure 5).

GST activity in control conditions showed large differences between wheat and com-
mon poppy plants: the activity was higher and the treatments caused larger inductions in
the two wheat lines (Figure 6).

In GK Ígéret, the treatments upregulated the gene expression of all the measured GSTs;
higher values were detected when the herbicide was sprayed during the light period. The
highest value was shown by the tau group TaGSTU1B. We were able to measure much
smaller changes in GK Arató; in two cases (TaGSTU1B 4:00 a.m. and TaGSTF6 9:00 a.m.),
the treatment resulted in a decrease in the relative expression of GSTs. In poppy weed,
the expression of tau group GSTs was slightly enhanced by the treatment at nine o’clock,
while spraying in the dark reduced it. The lowest measurable value was shown by the phi
group PrGSTF in the case of the 4:00 treatment. Both treatments induced the expression of
PrGSTU4 (Figure 7).

Comparing the secondary structures of the detected tau group GSTs (according to the
poppy sequences available in the SRR7345723 dataset and wheat sequences available in
NCBI), surprising features were revealed. The amino acid and secondary structure compo-
sition of the substrate binding site (H-site) of the tau group GSTs TaGSTU3, PrGSTU3, and
PrGSTU4 were more similar to each other than the two wheat tau group GSTs (TaGSTU1B
and TaGSTU3) (Figure 8).
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Figure 5. Differences in the activity of superoxide dismutase (SOD; (A)), catalase (CAT; (B)), and
peroxidase (POD; (C)) in leaves of wheat (Triticum aestivum cv. GK Ígéret and cv. GK Arató) and
poppy weed (Papaver rhoeas) treated with sterile water (white columns) and flumioxazin at different
times: at dawn (4:00 a.m., grey columns) and in the light period (9:00 a.m., dark-grey columns).
Sampling was performed in the second light cycle at 9:00 a.m. Means ± SE, n = 5. Means denoted by
different letters indicate statistical difference at p ≤ 0.05 as determined by Duncan’s test.
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(white columns) and flumioxazin at different times: at dawn (4:00 a.m., grey columns) and in the light
period (9:00 a.m., dark-grey columns). Sampling was performed in the second light cycle at 9:00 a.m.
Means ± SE, n = 5. Means denoted by different letters indicate statistical difference at p ≤ 0.05 as
determined by Duncan’s test.
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Figure 7. The relative expression level of 5-5 glutathione transferase (GSTF, GSTU) genes in leaves of
wheat (Triticum aestivum cv. GK Ígéret and cv. GK Arató) and poppy weed (Papaver rhoeas). Relative
transcript amounts of genes were determined by qPCR in leaf samples treated with sterile water and
flumioxazin at different times: at dawn (4:00 a.m.) and in the light period (9:00 a.m.). Sampling was
performed in the second light cycle at 9:00 a.m. Log2 of 2−(∆∆Ct) data are presented as a heat map.
Green colours show repression, while red colours show activation, as it is indicated on the upper
colour scale bar.
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4. Discussion

Weed control is of economic significance; thus, optimisation of herbicide utilisation has
become one of the most important agricultural issues today [63]. In order to successfully
control weeds in the future, it is necessary to develop new, innovative solutions. According
to previous studies [64], the time of application can influence the effect of herbicides whose
mode of action is related to the photosynthesis of plants. It is known that the phytotoxicity
of some herbicides is higher in strong sunlight than in low light [2,3]. Due to this property,
the optimal time of herbicide application—especially in the morning, when the activity
of antioxidant enzymes is relatively low—can be one of the keys to the optimisation of
herbicides [64].

The maximal quantum yield of the PSII photochemistry (Fv/Fm) of wheat (GK Arató
and GK Ígéret) and poppy weed plants underlined the selective effect of herbicide treat-
ments: the application of flumioxazin at both 4:00 a.m. and 9:00 a.m. reduced Fv/Fm only in
poppy weed. At the same time, the values of Fv/Fm parameters revealed that the various
flumioxazin treatments did not cause irreversible damage to the PSII reaction centres after
24 h [47], but the quantum yield decreased due to the herbicide-induced oxidative stress,
which was in correspondence with the chlorophyll a+b concentration.

The antioxidant system of plants keeps ROS below harmful levels [15,16]. A possible
first step of this process is the dismutation of superoxide radicals into molecular oxygen
and H2O2, which is catalysed by the enzyme SOD [65]. H2O2 can be further utilised by
CAT or by Class III peroxidases (PODs), which contribute to maintaining low levels of
hydrogen peroxide [66–68]. It was reported that SOD activity is the highest at the end of
the light period and decreases during the night in tomato plants [19]. In common poppy
plants, the significant decreases in SOD, CAT, and POD activities indicate an herbicide
caused the reduced antioxidant defence potential of the weed plant. The early application
of the herbicide caused changes in wheat SOD and CAT enzyme activities; in this case,
the 4:00 a.m. application of flumioxazin was a little more effective. The changes in the
amount of hydrogen peroxide can be caused by large differences measured in the activity
of the POD enzyme and reductions in its activity due to treatments (in the case of common
poppy). The effect of the treatment in the concentration of hydrogen peroxide was also
shown in the case of wheat, but assuming an effective antioxidant defence mechanism
(e.g., high peroxidase activity) or effective harmful secondary metabolic product detoxifica-
tion (e.g., by GST), there was no large difference in the photosynthetic pigment content and
Fv/Fm value change. In addition, a correlation can be assumed between the higher POD
activity measured in untreated wheat and the higher hydrogen peroxide level.

In addition to the generally estimated antioxidant enzymes, GST plays an impor-
tant role in the plant detoxification system. This enzyme also exhibits circadian- and
light-dependent activity, with maximum activity in the light period and in the early dark
period [21]. In the two cultivars of wheat, GST activity was multiple times higher than
that of the common poppy. Both herbicide treatments caused a significant GST activ-
ity increase (measured with CDNB substrate) in common poppy and wheat cultivars.
Edwards et al. [69] reported that enhanced GST expression in wheat and its relatives is not
the result of modern breeding, but is rather a characteristic of all the ancestral Triticum
species used in its domestication.

The herbicide treatments caused several GST expression changes in wheat and com-
mon poppy plants: in wheat lines, the chosen all tau and phi group GST genes were
induced, while in common poppy, higher inductions were only detectable in the case of
one tau group gene (PrGSTU4). The highest elevation in the transcript amounts in wheat
was connected to the tau group in wheat also (TaGSTU1B).

It was reported that the H-site in wheat TaGSTU1B contains Trp in the 117th position,
while in the same positions, there is Leu in TaGSTU3 and Ala in all of the poppy GST
proteins. In the case of some wheat GSTs (including TaGSTU1B and TaGSTU3), the enzyme
activities (nkat mg−1 protein) were determined by Thom et al. [37]. Despite the fact that
the Leu side chain in TaGSTU3 is smaller than that of the Trp117 of TaGSTU1B, the activity
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of TaGSTU1B was 66 times higher than that of TaGSTU3. Among the previously described
conserved structures of tau class GSTs [70], the residue Phe153 (position in TaGSTU4) [37]
is part of the loop region between helices 5 and 6 present in all of the selected poppy and
wheat tau class GSTs measured in this study (Phe148 in TaGSTU1B).

According to Thom et al. [37], TaGSTU3, among the wheat tau group sequences, has
an unusual sequence including a unique three-amino-acid (residue) insertion before the Ser
in the catalytic place. These, together with other differences in the amino acid sequence,
led to the conclusion that this enzyme may not have a role in detoxification via glutathione
conjugation [37]. The amino acid residues before the catalytic Ser differed in TaGSTU3
compared with the common poppy GSTs.

The second and third amino acids in the H-site are Tyrosine and Aspartic acid in
TaGSTU1B, while in TaGSTU3 and the entire tau group GSTs in poppy, it is Phenylalanine
and Proline. According to previous analysis of their secondary structure, these changes in
the H-site (especially the Tyrosine—Phenylalanine), together with the changes in the 4th
and 5th amino acids of the H-site, significantly influence the nature of the hydrophobic
pocket of the H-site [37], which can lead to changed substrate (herbicide or stress metabolite)
acceptance. Differences are presented in Figure 8.

The high degree of GST variability difference between wheat and poppy, which was
also reflected in the secondary structure, can be observed even after the tau-group GST
subgroup determination of poppy. Monticolo et al. [71] reported that the large and variable
group of tau GSTs can be divided into subclasses in Arabidopsis and tomato. Their results
highlighted that Arabidopsis tau call can be divided into four subclasses, and five subclasses
were identified in tomato. Using homology searching of protein and cDNA sequences,
we managed to classify the selected wheat and poppy GST sequences. TaGSTU1B and
TaGSTU3 were found to be similar to tomato subclass 3 proteins and subclass 1, while all of
the tau GST sequences were found to be similar to subclass 1. These data, confirmed by the
differences in the secondary structures of GSTs, led to the conclusion that the GSTs of the
tau group in wheat show greater diversity: they have at least one more subgroup (based
on the poppy sequences available so far). Wheat TaGSTU1B, which represents the group
missing in poppies, is light-regulated and drought- and senescence-induced, based on our
previous data [22,56].

5. Conclusions

As a conclusion to the antioxidant defence and GST gene expression data, the applica-
tion of the photosynthesis inhibitor herbicide flumioxazin in the dark could allow the wheat
defence to switch on before the herbicide effect could appear in the light period. Based on
our results, in the background of the greater and more successful flumioxazin response
may be—among other things—the interspecies differences in GST and POD activity and
the higher degree of variability of the tau GST genes of wheat compared to poppies: based
on data so far, a tau GST subgroup is missing in poppy plants.
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