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Abstract: The invasion of agricultural diseases and insect pests is a huge difficulty for the growth
of crops. The detection of diseases and pests is a very challenging task. The diversity of diseases
and pests in terms of shapes, colors, and sizes, as well as changes in the lighting environment,
have a massive impact on the accuracy of the detection results. We improved the C2F module
based on DenseBlock and proposed DCF to extract low-level features such as the edge texture
of pests and diseases. Through the sensitivity of low-level features to the diversity of pests and
diseases, the DCF module can better cope with complex detection tasks and improve the accuracy
and robustness of the detection. The complex background environment of pests and diseases and
different lighting conditions make the IP102 data set have strong nonlinear characteristics. The Mish
activation function is selected to replace the CBS module with the CBM, which can better learn the
nonlinear characteristics of the data and effectively solve the problems of gradient disappearance in
the algorithm training process. Experiments show that the advanced Yolov8 algorithm has improved.
Comparing with Yolov8, our algorithm improves the MAP50 index, Precision index, and Recall index
by 2%, 1.3%, and 3.7%. The model in this paper has higher accuracy and versatility.

Keywords: nonlinear characteristics; vanishing gradient; Mish; IP102; edge texture; robustness

1. Introduction

Agricultural pest and disease infestation is one of the major causes of decreasing
crop yield. The severity and impact of pests and diseases depend on the specific types
of pests/diseases and crop species. The outbreak of agricultural pests and diseases not
only affects crop productivity [1,2] but also leads to ecological damage due to the use
of pesticides.

Research on pest and disease datasets is mainly divided into two categories: classi-
fication and detection. Traditional machine learning algorithms such as Support Vector
Machines, Random Forests, and k-Nearest Neighbors are widely used for crop image clas-
sification, assisting farmers in distinguishing different crop varieties and pest and disease
types. Chaudhary et al. [3] proposed an improved Random Forest classifier to address the
multi-disease classification problem. The classifier consists of the Random Forest machine
learning algorithm, attribute evaluators, and instance filtering methods. It achieved promis-
ing classification results on the peanut disease dataset. Singh et al. [4] extracted texture and
color features using gradient histograms and other methods during the preprocessing stage.
They utilized binary particle swarm optimization to select mixed features and achieved
promising classification results using a Random Forest classifier. Panchal et al. [5] employed
K-means and HSV (Hue, Saturation, Value) to identify infected parts of leaves and utilized
GLCM (Gray-Level Co-occurrence Matrix) for feature extraction. This approach effectively
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classifies plant diseases. Meenakshi et al. [6] combined the Random Forest algorithm with
the InceptionV3 algorithm. They utilized the Random Forest algorithm to extract regions
of rice leaf diseases for classification, while the InceptionV3 algorithm was employed for
segmentation and achieved the most accurate feature representation. With the advance-
ment of deep learning technology, it has become increasingly feasible to learn complex
feature representations and leverage the strengths of deep learning in various domains such
as image, video, and sensor data analysis. Suitable deep learning algorithms can enable
precise identification and classification of crop pests and diseases, assisting farmers in de-
termining the type of pests/diseases and implementing appropriate prevention and control
measures. Ren et al. [7] proposed a feature reuse residual block for target classification.
They enhanced the representation capability by using half of the learning and half of the
reused target features. The model achieved excellent performance on the IP102 dataset [8]
and demonstrated strong generalization capability. Nanni et al. [9] proposed an automatic
classifier based on the fusion of saliency methods and convolutional neural networks. They
used three different saliency methods for image preprocessing and created three separate
images for each saliency method to train different neural networks. The model achieved
the best classification performance on the IP102 dataset. Kasinathan et al. [10] proposed a
pest detection algorithm consisting of foreground extraction and contour recognition. This
algorithm is used for classifying agricultural pests and diseases in highly complex back-
grounds, significantly improving classification accuracy and computational performance.
Feng et al. [11] optimized the IP102 dataset and proposed a two-stage insect recognition
algorithm, TIR, based on convolutional neural networks. By grouping insects according
to their similarity in appearance, the algorithm can better extract deep features, achieving
excellent detection performance on the IP102 dataset. Zhang et al. [12] proposed a hybrid
ResNet model that utilizes additive and multiplicative combinations of convolutional layers
to reduce computational performance. On the IP102 dataset, this model achieved a 2%
decrease in accuracy but reduced computational performance consumption by 40% in
detection. Zhou et al. [13] achieved promising detection performance on the IP102 dataset
with a relatively low parameter count by fusing the squeeze-and-excitation-bottleneck
block and the maximum feature expansion block.

Research on the IP102 dataset primarily focuses on object classification, with limited
studies on object detection. Traditional algorithms exhibit poor performance in feature
extraction, while deep learning-based algorithms often emphasize deep features and pa-
rameter quantity. This paper concentrates on low-level features and dataset environmental
conditions. The improved model effectively handles the dataset’s non-linear characteristics
and extracts features such as texture edges from pests and diseases. As a result, it achieves
high detection accuracy on the IP102 dataset.

Our contributions are summarized as follows:

• DCF (Low-level Feature Aggregation) module: The DCF (Low-level Feature Aggrega-
tion) module proposed in this paper aggregates low-level features from the dataset. In
the IP102 dataset, pests and diseases occupy a significant proportion of the images,
and each image contains a single category of pests and diseases. The model can better
learn the textures, edges, and other features of pests and diseases. Compared with the
Yolov8 algorithm, our proposed algorithm achieves higher detection accuracy.

• CBM (Channel-wise Mish) module: By analyzing the pixel distribution histograms
of images in the IP102 dataset, we observed strong non-linear characteristics in the
dataset. Additionally, the effects of lighting and environmental factors also exhibit
non-linear features. To better handle these non-linear characteristics in the dataset, we
replaced the CBS (Channel-wise Batch Normalization with Sigmoid) module with the
Mish activation function. This replacement effectively resolved the issue of gradient
vanishing during training, especially when the model depth is deep.

• Performance improvements: The improved Yolov8 algorithm effectively avoids the
problem of gradient vanishing during model training, compared with the original
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model, within the same number of training epochs. Our proposed algorithm achieves
a significant accuracy improvement of 2%, reaching an accuracy rate of 60.8%.

2. Related Work
2.1. Mosaic Data Augmentation

Mosaic data augmentation randomly selects four training images as input and ran-
domly selects a position as the center point of the mosaic image. The four images are
adjusted to the same size using operations such as scaling and cropping, and then con-
catenated into a mosaic object. The coordinates and sizes of the target bounding boxes are
updated based on scaling, cropping, and other operations to ensure their correspondence
with the mosaic image. The mosaic image generated by the Mosaic data augmentation is
shown in Figure 1.
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Figure 1. Mosaic data augmentation. The green box is the target box for random cropping and
zooming updates.

Mosaic data augmentation enables the generation of a larger variety of samples with
different scenes and backgrounds, thereby increasing the diversity of the training data. The
mosaic image provides more comprehensive contextual information, allowing the model
to extract more accurate contextual cues and improve its generalization capability. The
correspondence between the target bounding box coordinates and sizes and the mosaic
image enhances the prediction accuracy of the target bounding boxes during the model
training process.
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2.2. Yolov8

YOLOv8 is a leading-edge and state-of-the-art model that builds upon the improve-
ments and innovations of the previous YOLOv5 [14], which has been widely applied in
the agricultural domain [15–18]. YOLOv8 is designed to be fast, accurate, and easy to
use, making it suitable for a wide range of tasks including object detection and tracking,
instance segmentation, image classification, and pose estimation. Figure 2 illustrates the
architecture of the YOLOv8 model.
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The Darknet-53 [19] backbone network in YOLOv8, inspired by VGG, doubles the
number of channels after pooling operations. Additionally, it places 1 × 1 convolutional
kernels between 3 × 3 convolutional kernels to compress features and employs global
average pooling. Batch normalization layers are used to stabilize model training, accelerate
convergence, and provide regularization.

The CSP module is a feature extraction module that aims to enhance feature extrac-
tion effectiveness by utilizing cross-stage connections. It enables the sharing of features
across multiple stages and improves parameter and computational efficiency by partially
connecting features from different stages. The Neck part of the YOLOv8 model applies the
CSP idea to fuse the original features with features processed through multiple convolution
operations, thereby enhancing the feature extraction capability.
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The backbone network and Neck part of YOLOv8 draw inspiration from the design
principles of YOLOv7 ELAN [20] and introduce the C2F module. The C2F module aims to
reduce the parameter count while retaining rich gradient flow information. During the last
10 epochs of training, the Mosaic [21] data augmentation was disabled to improve accuracy.

The Head section of YOLOv8 separates the classification and detection heads. The
classification branch continues to use Binary Cross-Entropy (BCE) Loss, while the regression
branch incorporates the Distribution Focal Loss [22]. This loss function effectively addresses
issues such as class imbalance and difficulty classifying challenging samples.

In terms of positive and negative sample assignment strategies, YOLOv8 departs
from the static allocation strategy used in YOLOv5. Instead, it adopts the Task-Aligned
Assigner from the TOOD [23] algorithm. This assigner selects positive samples based on
the weighted scores of classification and regression tasks.

We chose the YOLOv8 algorithm as our baseline method for improvement due to its
high accuracy, fast execution speed, and strong generalizability. Based on the analysis of
the non-linear characteristics of the IP102 agricultural dataset and the distribution of the
true bounding boxes of the targets, we have proposed improvements to the CBS module.
These enhancements allow for better feature extraction and address the issue of gradient
vanishing. Furthermore, we have introduced the DCF module to retain more low-level
features of the targets. In the heatmap comparison presented in Section 4.2, we have
compared our improved DCF layer with the C2F layer in the Yolov8 algorithm. Our
algorithm exhibits superior feature extraction capabilities and achieves more accurate
target detection on the IP102 dataset.

3. Materials and Methods
3.1. IP102 Dataset

The IP102 dataset was proposed by the Institute of Automation, Chinese Academy
of Sciences. The dataset aims to provide a benchmark dataset for tasks such as image
classification, object detection, and object segmentation. It consists of 102 categories,
covering crops, fruits, vegetables, and other agricultural-related crops. The dataset has
been widely used in the fields of object classification and detection.

3.1.1. Centralized Distribution

The IP102 dataset, being an agricultural dataset, consists mostly of images with a small
number of pest categories and a relatively large proportion of the image occupied by pests,
as depicted in Figure 3.
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Figure 3. Distribution map of most pest targets in IP102 dataset.

Figure 4 presents the distribution of true bounding boxes for targets in the IP102
dataset. The x-axis and y-axis represent the x and y coordinates, while the height and
width of the targets are depicted along the y-axis. The concentration of targets is primarily
observed around the center of the images. The color intensity reflects the correlation
between different targets. By combining Figures 3 and 4, it can be concluded that the
targets in the images tend to be centrally located and exhibit a proportional relationship
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between their width and height. Additionally, low-level features such as texture and shape
demonstrate a significant advantage in the IP102 dataset.
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3.1.2. Non-Linear Features

We selected a subset of the training dataset to obtain the histogram of pixel values,
as shown in Figure 5. The histogram exhibits multiple sharp peaks in different intensity
regions, with varying frequencies and irregular and asymmetric shapes. Therefore, the
IP102 agricultural dataset exhibits nonlinear characteristics.
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The Yolov8 algorithm model is relatively deep, and during the training of the IP102
dataset, when the number of training iterations reaches 50, the presence of non-linear
features causes the gradients to decrease during the backpropagation process. As a result,
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the model struggles to converge and fails to learn meaningful feature representations. The
training process of the original algorithm is shown in Figure 6.
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3.2. Improved Model

In this paper, we propose improvements to the Yolov8 algorithm for the IP102 agricul-
tural pest dataset, introducing the DCF module and the CBM module. The DCF module
aggregates low-level features, enabling better feature extraction capabilities on the IP102
dataset. While the SiLU activation [24] function of the Yolov8 algorithm performs well
on other datasets, it suffers from the gradient vanishing problem on the IP102 dataset.
By replacing it with the Mish activation [25] function, our proposed model effectively
addresses the gradient vanishing issue in deeper models. The improved algorithm model
architecture is depicted in Figure 7. The DCF structure diagram is shown in Figure 9.
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3.2.1. Low-Level Feature Extraction Module DCF

The C2F module in Yolov8 draws inspiration from both the C3 module and the ELAN
approach. It aims to achieve a lightweight design while capturing richer gradient flow
information. Please refer to Figure 8 for a visual representation of the C2F module.
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As the network model reaches a certain depth, the accuracy gain diminishes when con-
tinuing to stack convolutional blocks, and the convergence deteriorates. The ELAN module
solves this problem by only increasing the longest gradient path in residual blocks. By
analyzing the shortest and longest gradient paths in each layer, the ELAN module controls
the gradient paths to learn more features when the network becomes excessively deep.

The outputs of different bottlenecks in Yolov8 have distinct receptive fields and resolu-
tions, which is advantageous for capturing multi-scale features and capturing details and
semantic information at different levels. The C2F module demonstrates high accuracy in
detection tasks involving multiple objects.

When there are fewer and larger objects in the detection images, low-level features are
often more beneficial for model training. Prominent edge, texture, and shape features can
be easily captured by low-level features, leading to accurate detection. High-level features
contain more object composition and contextual information. However, in cases with fewer
detection targets, high-level features do not exhibit significant advantages. Therefore, we
propose an improvement to the C2F module based on the DenseBlock concept [26], called
DCF, which retains its rich gradient flow information while emphasizing the low-level
feature information of the targets. The DCF module is illustrated in Figure 9.
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The DCF module allows each bottleneck to directly access the outputs of all previous
layers, enabling the propagation of low-level features to subsequent bottlenecks. DCF can
fully leverage previous low-level features and internally transmit them, so as the network
model deepens, each bottleneck can obtain feature information from preceding layers,
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enhancing the representation ability of low-level features. The “Split” operation transforms
channel-wise features into spatial-wise features, thus better capturing low-level features
such as edges and textures.

By employing cascaded connections, the low-level features extracted by earlier mod-
ules can be passed on to subsequent modules. The subsequent modules can consider
both low-level and high-level features simultaneously, enabling a more comprehensive
feature representation. Moreover, within the cascaded connections, the transmission and
interaction of information help address the issue of information disappearance within the
model, thereby improving the model’s performance. With the replacement of DCF, the
proposed algorithm in this paper achieves the best smoothness and the highest average
detection accuracy.

3.2.2. Mish Activation Function

The convolutional module structure in YOLOv8 consists of convolutional blocks,
normalization blocks, and the SiLU activation function.

The SiLU activation function approaches a linear function for input values that are
either small or large. This allows the model to learn linear relationships more quickly,
leading to faster convergence during the initial stages of training. In the case of using a
pre-trained model, the YOLOv8 algorithm can achieve the highest detection accuracy with
fewer epochs.

When training with the IP102 agricultural dataset, the training results for MAP50 are
depicted in Figure 6. During the last 10 epochs of training, the MAP of the Yolov8 algorithm
starts to decline and approaches saturation. Based on the nonlinear characteristics observed
in the IP102 dataset and the poor performance of the SiLU function in handling gradient
saturation, we replaced the CBS with CBM in Yolov8. Additionally, for the IP102 dataset,
we employed the Mish activation function, whose function graph is shown in Figure 10.

f(x) = x ∗
(e ln (ex+1)−e(ln (ex+1)−1)

)
(eln (ex+1)−e(ln (ex+1)∗−1))

(1)
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The Mish activation function exhibits good smoothness and possesses differentiable
continuity across the entire range of inputs. It effectively avoids the issues of gradients
vanishing and exploding during the training process. Although the SiLU and Mish ac-
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tivation functions have similar shapes, Mish has a higher curvature near zero in deeper
models, which helps to avoid the gradient vanishing problem. Compared with SiLU, Mish
can better capture the complex non-linear relationships present in the input data, which
aligns well with the characteristics of the IP102 agricultural dataset. By better handling
non-linear features, the Mish activation function enables Yolov8 to learn intricate features
in deep networks, thereby improving the model’s accuracy and generalization capabilities.
The training results are shown in Figure 11.
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During the training process, the Mish activation function outperforms SiLU in terms
of effectiveness. Mish training exhibits smoother performance in MAP50, enhancing
the algorithm’s detection results by better handling non-linear features. Please refer to
Section 4.2 for the details of the ablation study.

4. Results

In this paper, we conducted experiments using the IP102 agricultural dataset. The
IP102 dataset consists of image samples from 102 object categories, making it highly
versatile. With a total of over 75,000 images, this dataset provides abundant samples
for training and evaluation purposes. Additionally, the dataset encompasses multiple
viewpoints, which effectively enhances the model’s generalization and robustness.

The model evaluation metrics are as follows:
Precision: It measures the proportion of correctly detected targets among the ones

detected by the model. A higher precision indicates more accurate detection by the model.

Precision = TP
(TP+FP) (2)

In the equation TP represents the number of correctly detected targets. FP represents
the number of falsely detected targets.

Recall measures the ability of a model to correctly detect targets. A higher recall
indicates that the model can better capture the targets.

Recall = TP
(TP+FN) (3)

In the equation FN is the number of targets that were not detected correctly.
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AP: A comprehensive evaluation of the model’s performance at different recall levels
by calculating the average precision. It provides an overall assessment of the model’s
performance at various threshold values.

MAP50: The Average Precision (AP) at an Intersection over Union (IOU) threshold
of 0.5 is calculated to measure the model’s performance in predicting object locations
accurately. It quantifies how well the model performs in terms of precision when the
predicted bounding boxes have an IOU of at least 0.5 with the ground truth boxes.

MAP50-95: The Average Precision (AP) is calculated by considering the IOU values
ranging from 0.5 to 0.95. This comprehensive evaluation takes into account the performance
of the object detection model at different IOU thresholds and provides a more comprehen-
sive assessment of its accuracy. It measures the precision of the model’s predictions across
a range of IOU thresholds, reflecting its ability to accurately localize objects under varying
levels of overlap with the ground truth bounding boxes.

4.1. Model Training Results

The YOLOv8 algorithm, when using pre-trained weights, achieves optimal accuracy
within 60 epochs. In this study, the proposed improved algorithm is trained for 60 epochs
to perform ablation experiments and compared with the YOLOv8 algorithm. The training
results of the proposed algorithm are shown in Figure 12.
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Figure 12. Model training result.

Figure 12 illustrates the variation curves of the loss on the training and validation
sets, as well as the PR curves and MAP50 and MAP50-95 scores during the training of our
proposed model.

Figure 13a depicts the PR curve of the YOLOv8 algorithm, while Figure 13b illus-
trates the PR curve of the proposed algorithm. The PR curve of the proposed algorithm
encompasses the PR curve of the YOLOv8 algorithm, demonstrating that the proposed
model surpasses the YOLOv8 model. Moreover, in terms of the area under the PR curve,
specifically the MAP50 metric, the proposed algorithm exhibits a 2% improvement over
the YOLOv8 algorithm.
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4.2. Ablation Experiment

Table 1 shows the training metrics of the Yolov8 algorithm on the IP102 dataset. With
the use of a pre-trained model and the proposed improvements, including replacing CBS
with CBM and adding the DCF module, our approach achieves better results even with
fewer training epochs. The performance indicators clearly demonstrate the effectiveness of
the proposed enhancements compared with the baseline Yolov8 algorithm.

Table 1. Ablation experiment.

Algorithm MAP50 MAP50-95 P R

Yolov8 58.8 39.4 51.7 56.7
CBM 59.5 39.3 53.6 58.6

CBM + DCF 60.8 39.4 53 60.4

During the training process, after replacing the CBS module with CBM and adding
the DCF module, the training progress is shown in Figure 14. The SiLU activation function
exhibits limited accuracy improvement when the model depth reaches its critical point,
leading to the issue of gradient vanishing. By replacing it with the Mish activation function,
the model can better handle the nonlinear features in the dataset and extract target features
more effectively, resolving the gradient descent problem when the algorithm achieves
optimal performance. Furthermore, replacing the C2F module with the DCF module
further enhances the detection accuracy of the model trained with the Mish activation
function. The DCF module aggregates low-level features, which contain rich and detailed
information, to help the model better understand the data. Low-level features focus more
on the local details of the image, making them more robust in handling complex scenes
and large-scale images. In cases of model overfitting, an excessive reliance on high-level
features can lead to increased model complexity. By using the optimized DCF module to
extract low-level features, we can limit model complexity and reduce feature redundancy,
thereby mitigating the overfitting phenomenon.

The improved DCF module in this paper focuses on low-level features and is suitable
for the training dataset used in this study. A comparison between the heatmaps of the
C2F module in Yolov8 and the DCF module proposed in this paper is shown in Figure 15.
The heatmap is generated by utilizing the C2F layer from the original model and the DCF
layer from our proposed algorithm. The effective extraction of good low-level features
allows for better recognition of highly repetitive details in the image, resulting in superior
texture information within the heatmap. Each pixel in the heatmap corresponds to the
target or confidence score at the respective position. The more accurate the extraction of
low-level features, the higher the scores assigned to texture and other information, leading
to brighter and more prominent regions in the heatmap. The proposed algorithm achieves
a 2% improvement in terms of Mean Average Precision (MAP50) compared with Yolov8.
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4.3. Comparative Experiment

In our comparative experiments, we selected FPN, Yolox, Dynamic R-CNN, SSD300,
RefineDet, and ExquisiteNet as benchmark models. The experimental results are pre-
sented in Table 2. Our proposed algorithm demonstrates the best performance in terms
of MAP50 and MAP50-95. On the IP102 dataset, our model exhibits higher accuracy and
generalization capability compared with the other models.

Table 2. Comparative Experiment (* Represents coco data set training format indicators, backbone is
Resnet50 [27]).

Algorithm MAP50 MAP50-95 Params (M) FPS

Yolov8 58.8 39.4 25.8 130
* DRCNN [28] 50.7 29.4 41.8 154

YoloX [29] 52.1 31.1 9.0 376
* CenterNet [30] 40.2 24.3 32.3 156

* SSD300 [31] 47.2 21.5 37.2 320
* FPN [32] 45.3 24.9 45 156

ExquistiteNet [13] 52.32 / 0.98 1933
Yolov5 [14] 56.2 34.1 7.2 238

* TOOD [23] 43.9 26.5 32.2 155
Ours 60.8 39.4 25.8 125
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We conducted comparative experiments on the IP102 dataset, comparing our proposed
improved algorithm with the Yolov8, YoloX, and Yolov5 algorithms. The results of the
comparative experiments are shown in Figure 16. We specifically selected scenarios where
the target background was similar, the target background was blurred, and the target
had inconsistent lighting conditions for comparison. In different lighting conditions,
the edges and textures of the target are difficult to capture, and low-level features are
better at extracting these fine details. For complex scenarios with similar backgrounds
or blurriness, our improved algorithm preserves the rich gradient flow information of
the C2F model while aggregating low-level features. By fusing the detailed information
from low-level features and the global semantic information from high-level features, the
model gains a better understanding of the image. Additionally, it adjusts the weights based
on different features to suppress noise and redundancy in complex backgrounds. Our
proposed improved algorithm consistently achieved the highest score in all these scenarios.
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5. Discussion

This paper analyzes the characteristics of the IP102 agricultural pest dataset and
proposes the DCF low-level feature extraction module and the CBM module. During
training, the issue of gradient vanishing is effectively addressed, leading to more accurate
extraction of features such as texture and edges related to agricultural pests.
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Compared with YOLOv5, FPN, and YOLOX algorithms, the proposed DCF module in
this paper better handles the texture, edges, and other information related to agricultural
pests by transmitting low-level feature information. In Figure 15, the heatmap demonstrates
that the proposed algorithm achieves higher scores at positions corresponding to texture
edges. The Mish activation function exhibits advantages over SiLU in handling non-
linear features. With a deep network architecture and the fusion of low-level and high-level
features, the proposed model better understands agricultural pests, as depicted in Figure 16,
where it outperforms other algorithms in complex background environments, achieving
the best detection scores and the highest MAP50 accuracy. However, the IP102 dataset also
contains scenarios with dense small-scale pests, where the proposed algorithm performs
relatively poorly. Compared with algorithms such as AM-ResNet and ExquisiteNet, the
proposed model has a larger parameter count and also faces limitations in terms of inference
speed. The extraction of features from small objects and the development of lightweight
structures are the directions for our future work.

6. Conclusions

The IP102 dataset, with its diverse and extensive collection of agricultural pests and
diseases, is an ideal choice as the primary dataset for evaluating the proposed algorithm in
this paper. The Yolov8 algorithm, being the current state-of-the-art algorithm with excellent
performance, serves as the baseline for our improvements. Firstly, we conducted an analysis
of the IP102 dataset and identified relevant features along with the limitations of the Yolov8
algorithm when trained on agricultural pest and disease datasets. Secondly, we proposed
the CBM module to effectively handle the dataset’s non-linear features and address the
issue of gradient vanishing during model training. Thirdly, the introduction of the DCF
module provided the algorithm with an advantage in extracting low-level features, leading
to better representation of pest and disease textures, edges, and other characteristics. The
fusion of low-level and high-level features enhanced the model’s robustness in complex
environments, resulting in significantly improved detection scores across the board.
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