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Abstract: Climate change has challenged large-scale crop production at a global level. Global
temperature increases, water scarcity, and a further reduction in cultivable land resources due to
anthropogenic impacts have resulted in the need to redesign agricultural systems such as inter-
cropping to maximize the efficient use of natural resources. Arbuscular mycorrhizal fungi (AMF)
represent an underexplored area, not only in terms of an alternative to the heavy use of chemical
fertilizers, but also as a natural resource used to enhance physiological processes and mitigate the
variations in biotic and abiotic factors in plants. On the other hand, the combined use of AMF with
suitable but cheaper and environmentally friendly growth substrates is another way to maximize
crop production. A study was carried out in a tomato and onion intercropped pattern system to
analyze the above- and belowground implications of two AMF commercial products containing
Rhizophagus irregularis, propagated in soil and with an in vitro technique addition, with two different
mixed growth substrates (river sand and compost) under greenhouse conditions. Overall, both AMF
products overall showed significant promoting effects on plant growth (15–30%) and root parameters
(50%) in the tomato and onion plants on the sand-mixed substrate. Moreover, the soil-propagated
AMF also showed significant positive effects on chlorophyll content (35%), photosynthetic activity,
and the accumulation of macro- and micronutrients, especially the Fe and Mn contents (60–80%) in the
tomato plants. We present evidence of the benefits to plant performance due to the interactive effects
between AMF and the growth substrate, and these positive effects might be due to the intercropping
system. Hence, soil-propagated Rhizophagus irregularis is represented here as a promising candidate
for enhancing growth, sustainability, and productivity under greenhouse conditions.

Keywords: intercropping; Rhizophagus irregularis; growth substrate; micronutrients; root architecture

1. Introduction

Climate change and the constant exploitation of natural resources have been crucial
triggers in the search for alternate and innovative crop production systems. Greenhouses
have been helpful in growing off-season vegetables and fruits over the years as they provide
crops with a shield against climatic impacts and disasters, ensuring stable crop growth [1].
During the last decade, greenhouse production of high-value vegetables such as tomato and
onion under a controlled environment has shown tremendous potential to attain maximum
productivity [2]. Tomato and onion are two of the world′s most-consumed vegetables,
belonging to the Solanaceae and Amaryllidaceae families, respectively [3]. The chief tomato
producers are Asia (53.8%) and the Americas (17.9%) [4]. Meanwhile, Mexico is one of the
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largest tomato exporters in the world after Holland [5], producing 3780.95 thousand tons
of tomato during 2020, of which 37.6% were produced under protected conditions. On
the other hand, onion is produced globally as an important vegetable crop [6] for income
generation in many developing countries [7]. Global onion production was recorded at
more than 100 million tons on a total area of 5.2 million hectares in 2019, making it the
third-largest vegetable crop by production weight [8]. Tomato and onion crops can also
be grown together via intercropping, which favors the microclimatic conditions around
the canopy, adding organic matter and nitrogen to the soil, retaining water and nutrients,
and suppressing weeds in greenhouse crop production [9]. It has been reported that
choosing a suitable plant species for intercropping significantly reduces the environmental
footprint and increases crop yields markedly up to 15–25% compared with monoculture
cropping [10–12].

Many factors play critical roles in the successful crop production of tomato and
onion, such as traditional fertilization. However, the heavy use of chemical fertilizers
and less available fertile land has provoked environmental pollution and future food
safety risks in such horticultural crop production [13]. Among suitable practices for the
sustainable management of agricultural soils, the use of biostimulants, bioinoculants, and
biofertilizers is becoming increasingly common. Arbuscular mycorrhizal fungi (AMF) can
lead to successful plant growth, yield enhancement, and improvement in fruit quality [14].
The AMF provide symbiotic associations between plants and soil fungi [15] and belong
to the phylum Glomeromycota [16]. One of the identified AMF, Rhizophagus irregularis
(Błaszk., Wubet, Renker & Buscot) C. Walker & A. Schüßler [17–19] is widely used as
a biofertilizer in sustainable crop production to colonize plant roots and promote plant
growth and physiology with noticeable effects on shoots and fruit [20]. AMF-colonized
roots can promote plant growth and physiology with observable effects on shoots, roots,
and fruit quality [21]. Moreover, AMF are known to increase the bioavailability of P in the
rhizosphere and significantly enhance the utilization of N by the inoculated plant. The
AMF regulate the rhizosphere microenvironment of host plants by secreting substances
and influencing the species and proportion of plant-root secretions [22].

Furthermore, suitable growth substrates with different compositions of organic and
inert materials play a critical role in the efficient production of tomato and onion, helping
them to develop properly, rapidly, and uniformly until they are fully established [23]. Many
researchers started looking at the alternatives to peat that were being sought worldwide in
the late 1970s [24] by testing the viability of compost, coconut fiber, and volcanic rock as
components of substrate mixes for tomato seedlings [25,26]. Coconut fiber and volcanic
rocks are byproducts, and using these as a substrate component promotes sustainability and
reduces waste. Under different conditions and combinations, mixed or single materials can
be used to produce different substrates, keeping in mind the required physical, chemical,
and biological characteristics [27]. Sand-mixed substrates are known for their excellent
drainage properties due to the coarse texture of sand particles. When combined with
coconut fiber and volcanic rock, these substrates help prevent waterlogging, which can
lead to root suffocation and the development of root diseases [28]. The loose structure of
sand substrates, combined with the fibrous nature of coconut fiber, promotes root aeration,
facilitating proper respiration and nutrient uptake by the roots. Coconut fiber, also known
as coir, and volcanic rock, when mixed with sand substrates helps maintain a more stable
moisture level in the root zone, preventing the excessive drying out of the substrate [29].
Moreover, coconut fiber has a high cation-exchange capacity, enabling it to retain and
release essential nutrients to plants gradually. It acts as a reservoir for nutrients, preventing
leaching and ensuring their availability to plant roots over time. Combining coconut fiber
and volcanic rock with sand substrates helps create a nutrient-rich and well-balanced
growing medium for plants [29]. Additionally, the natural properties of coconut fiber
contribute to the overall eco-friendliness of the substrate mixture [29,30].

Previously research studies have shown that the application of AMF species on hor-
ticultural crops improves agronomic, physiological, and nutritional parameters. To the
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best of our knowledge, the current research work creates, for the first time, a sustainable
intercropping system using biostimulants such as R. irregularis along with eco-friendly
growing substrates, and reveals their effects on above- and belowground parameters in
tomato and onion under greenhouse conditions. Furthermore, we aim to examine if one of
these two mixed substrates is compatible with R. irregularis and whether it had an impact
on the root architectural parameters.

2. Materials and Methods
2.1. Plant Material

A pot experiment was conducted at the Center of Biological and Agricultural Sciences,
University of Guadalajara, Mexico. Tomato (cv. Josefina) and onion (cv. cebolla blanca)
seeds were obtained from Semillas Caloro, Guadalajara, Mexico. Both crop seeds were sur-
face sterilized by gently shaking in a 5% sodium hypochlorite (NaOCl) solution for 35 min
and then rinsed with sterile distilled water six times [31]. The seeds were pre-germinated on
moist sterile filter paper in Petri dishes and placed in an incubator (NOVATECH DBO-200)
at 21 ◦C.

2.2. Experimental Set Up and Crop Management

Eight-day-old tomato and onion plantlets were transplanted into 8 kg plastic pots
(21 cm × 27 cm) filled with two different growth substrates. These substrates, based on
volcanic rock and coconut fiber mixed either with river sand (SVC) or compost (CVC)
in a 2:1:1 proportion, were screened (≈2 mm) and autoclaved (Yamato sterilizer SM300)
at 0.10 MPa and 121 ◦C for 1 h (three times) using the moist heat method [32]. The
physicochemical properties of each substrate are shown in Table 1. Two commercial AMF
products (provided by Biosustenta®, Morelia, Michoacan, Mexico) were tested: (i) soil-
multiplied R. irregularis containing spores and root fragments (AMF+) and (ii) in vitro
R. irregularis (AMF++). AMF+ inoculation was carried out 3 cm below substrate in the
shape of bands, while AMF++ was applied as fertigation during transplanting, calculating
approximately 250–300 spores per pot. Later, inoculation was repeated three times during
different growth stages: 15 (root initiation), 40 (flowering stage), and 60 (fruit-development
stage) days after transplanting (DAT).

Table 1. Physical and chemical properties of growing substrates (mgL−1).

Substrate pH EC (dSm−1) NO3− NH4
+ PO43− Fe2+ Cu2+ Zn2+ Mn2+

SVC 7.4 0.2 5 3 0.70 0.46 0.1 0.03 0.03
CVC 7.6 1.2 3 5 13 0.73 0.2 0.2 1.3

The plants were transferred to a greenhouse keeping row–row and pot–pot distances
at 60 and 40 cm, respectively. The pots were organized in a completely randomized design
consisting of six treatments, and each treatment was replicated 10 times. The treatments
were arranged as follows: (i) SVC without AMF inoculation (control), (ii) AMF+ inoculation
with SVC, (iii) AMF++ inoculation with SVC, (iv) CVC without AMF inoculation (control),
(v) AMF+ inoculation with CVC, and (iv) AMF++ inoculation with CVC. Later, the pots
were maintained in the greenhouse under a day/night temperature of 25.3–32.5 ◦C, relative
humidity between 67% and 83%, and a photoperiod of 13/11 h. All plants were watered
daily with tap water for 20 min using drip irrigation (5 L h−1), and once a week with a
modified Steiner nutrient solution at each plant growth stage [33].

2.3. Root Colonization (%)

Roots (0.5 g) were carefully washed and cut into 1 cm segments. Root segments were
cleared with 10% potassium hydroxide (KOH) solution at 90 ◦C for 10 min and rinsed with
water prior to acidification with M/10 HCl overnight. The root segments were then stained
with 0.05% trypan blue [34]. The mycorrhizal colonization rate was measured at 65 DAT
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using the magnified intersection method [35]. The percentage of roots colonized by AMF
was calculated as follows:

root colonization =
number o f colonized root sections

total number o f root sections
× 100%

2.4. Root Morphology

Root samples of five plants from each treatment of both tomato and onion were
taken 65 DAT and carefully washed. The excised root system of each plant was digitized
using the WinRhizo LA2400 scanner (Regent instruments®, Québec, CA, Canada). The
analysis of the digitized root images was performed using WinRhizo TM Pro 2016a software
(2016) at a scanning resolution of 300 dpi. To describe the root architecture, the following
morphometric variables were measured: (a) root length (cm), (b) diameter (cm), (c) surface
area (cm2), (d) volume (cm3), (e) number of forks, (f) crossings, and (g) root tips [36].

2.5. Morpho-Agronomic Traits

Tomato and onion plant agronomic parameters were evaluated by selecting five ran-
dom plants per treatment and measuring the plant height above the substrate level (2 cm)
and the stem diameter using a digital Vernier (Steren HER-411, Steren Electronics Interna-
tional LLC, San Diego, CA, USA). The total number of flowers per plant from five randomly
selected tomato plants was recorded 40 DAT. Five onion plants per treatment were selected
to evaluate the total number of leaves at 60 DAT.

2.6. Chlorophyll Contents

Chlorophyll extraction of tomato and onion was carried out according to Bruinsma′s
method (1983) [37] at 60 DAT by grinding fresh leaves (2 g) in 10 mL of acetone (80%), fol-
lowed by centrifugation of homogenate (10,000× g; Hermle Z300) for 10 min. Chlorophyll
a, chlorophyll b, and total chlorophyll content was determined at absorbances of 645 and
663 nm using the spectrophotometric (VELAB mod VE-6000T) method.

2.7. Leaf-Mineral Contents

Three fully expanded tomato leaves were collected from all experimental treatments
(60 DAT) to estimate the effect of the AMF inoculum and substrate levels on the nutrient
status. The leaves were carefully washed with H2O and 4 N HCl solution, rinsed with
distilled water, oven-dried at 60 ◦C for 2 days, ground using a mortar, and passed through
a 2 mm mesh sieve. Subsequently, 2 g of dried powdered material was obtained from each
treatment. Nitrogen (N) was quantified using the Kjeldahl method (Hanon K9840 Kjeldahl
apparatus), as described by Yan et al., 2012 [38], and total carbon (Ct) was measured
according to Kalra, 1997 [39]. Iron (Fe), copper (Cu), zinc (Zn), and manganese (Mn) were
evaluated using the digestion method. For P, the UV–visible spectrophotometric technique
was used [40].

2.8. Photosynthetic Activities

The net photosynthetic rate (Pn), transpiration rate (E), CO2 internal concentration
(Ci), and stomatal conductance (gs) in the tomato plants were measured 60 DAT using
a portable photosynthetic system (Li-6400, PSC 1376, Inc., Lincoln, NE, USA) from 10:00
to 12:00 h under natural sunlight. The air temperature was 23 ◦C and the external CO2
concentration was 300–350 ppm. The third pinnate compound leaf below the growing
point was selected from five random plants in each treatment group [41]. When measuring,
the leaf was clamped in a standard leaf chamber of 3–2 cm, with the leaf surface facing up,
and the leaf chamber was flat. When the concentration of CO2 in the sample chamber was
stable, the data were recorded [42].
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2.9. Statistical Analysis

The normality of the replicated data was tested using the Shapiro–Wilk test. The data
that followed a normal distribution were compiled for further two-way analysis of variance
(ANOVA) by assuming the AMF as the first factor and the substrate as the second factor
using SPSS (IBM SPSS 22.0, IBM Corporation, New York, NY, USA). The significance of
the differences among treatments with regard to various factors were calculated at 5%,
and means were compared through the Tukey test (α = 0.05). To examine the data of
growth parameters, the root architecture and physiological parameters were based on
five replicates, whereas the determination of other parameters (mineral contents) was
performed using destructive methods based on three replicates.

3. Results
3.1. Root Colonization (%)

The tomato and onion plants grown together and inoculated with R. irregularis on
two different growth substrates showed average root colonization of 44% (AMF+) and 36%
(AMF++) on the SVC substrate, while the tomato plants revealed rates of 33% (AMF+) and
29% (AMF++) on the CVC substrate. AMF inoculation in the onion plants showed root
colonization of 48% (AMF+) and 46% (AMF++) on the SVC substrate and 35% (AMF+)
and 37% (AMF++) on the CVC substrate. No colonization was observed in non-inoculated
tomato and onion plant roots on either type of growth substrate.

3.2. Effects on Root Morphology

Photos of the root system showed that the non-inoculated tomato and onion plants
in both substrates had a lesser root development. The application of R. irregularis from
two different sources of propagation had a significant influence on the root architecture of
the intercropped tomato and onion system using a combination of two substrates (Figure 1).
The tomato and onion roots showed a significant increase in length (11%, 10%), diameter
(63%, 66%), surface area (45%, 26%), volume (44%, 55%), forks (27%, 39%), crossings (24%,
18%), and tips (21%, 68%) when using AMF+ in the SVC substrate compared with the non-
inoculated plants (Tables 2 and 3). Similar effects of AMF++ inoculation were observed in
the CVC substrate except for RV, RC, and RT in tomato and RSA, RV, and RC in onion roots.
Two-way ANOVA showed highly significant interaction effects of AMF inoculation and
growth substrate on RF and RC, and a significant difference on RT in tomato. Meanwhile,
all parameters except RSA showed significant interaction between AMF inoculation and
growth substrate in onion.

Table 2. Effect of two commercial products of R. irregularis on root architecture parameters in tomato
plants grown on two mixed substrates.

Treatments RL (cm) RD (cm) RSA (cm2) RV (cm3) RF RC RT

SVC
Control 5132 ± 65 b 0.66 ± 0.01 c 993 ± 18 c 30 ± 1.7 b 34,463 ± 152 c 3620 ± 93 b 7049 ± 131 b
AMF+ 5691 ± 73 a 1.08 ± 0.04 a 1440 ± 22 a 44 ± 1.6 a 43,923 ± 124 a 4509 ± 93 a 8578 ± 116 a

AMF++ 5483 ± 59 a 0.83 ± 0.01 b 1223 ± 33 b 33 ± 1.7 b 36,005 ± 109 b 3752 ± 96 b 7538 ± 98 b

CVC
Control 5013 ± 69 b 0.81 ± 0.01 b 1123 ± 14 c 28 ± 2.1 b 35,455 ± 199 c 3635 ± 87 a 7255 ± 92 a
AMF+ 5467 ± 48 a 1.10 ± 0.04 a 1284 ± 12 a 38 ± 1.4 a 38,375 ± 178 b 3945 ± 108 b 7275 ± 135 a

AMF++ 5318 ± 40 a 1.02 ± 0.03 a 1207 ± 18 b 33 ± 2.0 b 40,404 ± 174 a 3834 ± 131 a 7420 ± 107 a

AMF <0.05 <0.001 <0.001 <0.05 <0.001 <0.001 <0.001
S ns <0.05 <0.05 ns ns <0.01 <0.05

AMF × S ns ns ns ns <0.001 <0.001 <0.05

Means within a column followed by the same letter(s) are not significantly different (ns) at p > 0.05 based on the
Tukey test. The p-value indicates a significance level based on a two-way ANOVA. RL = root length, RD = average
diameter, RSA = surface area, RV = volume, RF = forks, RC = crossings, and RT = tips. AMF+, soil-multiplied
R. irregularis; AMF++, in vitro R. irregularis; AMF, arbuscular mycorrhizal fungi; S, substrate; AMF × S, indicates
interaction between AMF and substrate; CVC, compost; SVC, river Sand.
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Table 3. Effect of two commercial products of R. irregularis on root architecture parameters in onion
plants grown on two mixed substrates.

Treatments RL (cm) RD (cm) RSA (cm2) RV (cm3) RF RC RT

SVC
Control 636 ± 1.2 b 0.7 ± 0.09 c 269 ± 1.17 c 2.8 ± 0.03 b 3173 ± 0.93 c 925 ± 1.14 b 111 ± 0.81 b
AMF+ 1510 ± 1.2 a 1.2 ± 0.05 a 342 ± 0.98 a 4.4 ± 0.04 a 4438 ± 1.04 a 1099 ± 0.77 a 187 ± 1.12 a

AMF++ 1528 ± 1.5 a 1.1 ± 0.05 b 308 ± 1.28 b 4.1 ± 0.05 a 4249 ± 0.97 b 1107 ± 0.78 a 169 ± 1.04 a

CVC
Control 671 ± 1.0 c 0.86 ± 0.04 b 256 ± 1.14 a 3.0 ± 0.05 a 3325 ± 0.93 c 980 ± 0.87 a 120 ± 0.93 b
AMF+ 1241 ± 1.7 b 1.07 ± 0.06 a 264 ± 1.96 a 3.5 ± 0.05 a 3966 ± 0.86 b 997 ± 1.18 a 159 ± 0.96 a

AMF++ 1316 ± 1.0 a 1.1 ± 0.06 a 276 ± 2.28 a 3.5 ± 0.04 a 4137 ± 0.85 a 1022 ± 0.82 a 141 ± 1.00 a

AMF <0.001 <0.001 <0.05 <0.001 <0.001 <0.001 <0.05
S <0.001 ns <0.01 <0.001 <0.001 <0.05 <0.001

AMF × S <0.001 <0.001 ns <0.001 <0.001 <0.01 <0.001

Means within a column followed by the same letter(s) are not significantly different (ns) at p > 0.05 based on the
Tukey test. The p-value indicates a significance level based on a two-way ANOVA. RL = root length, RD = average
diameter, RSA = surface area, RV = volume, RF = forks, RC = crossings, and RT = tips. AMF+, soil-multiplied
R. irregularis; AMF++, in vitro R. irregularis; AMF, arbuscular mycorrhizal fungi; S, substrate; AMF × S, indicates
interaction between AMF and substrate; CVC, compost; SVC, river Sand.
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Figure 1. Effect of different AMF products on root system architecture in onion and tomato plants
grown on two mixed substrates. AMF+, soil-multiplied R. irregularis; AMF++, in vitro R. irregularis;
SVC, river sand: volcanic rock: coconut fiber; CVC, compost: volcanic rock: coconut fiber.

3.3. Effect of AMF on Morpho-Agronomic Parameters

In this study, both AMF+ and AMF++ inoculation resulted in a significant difference
in most of the measured agronomic parameters of both crops grown in the SVC substrate
compared with non-inoculated plants. For instance, AMF+ inoculation in the SVC sub-
strate resulted in an increase of 25% and 43% in tomato plant height and stem diameter,
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respectively; meanwhile, AMF++ inoculation resulted in an increase of 19% and 36%, re-
spectively, compared with the control treatments (Figure 2a,b). The number of flowers in
the tomato plants equally increased by 50% with AMF+ and AMF++ inoculation compared
with the non-inoculated plants (Figure 2c).
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Figure 2. Effect of AMF inoculation on the morpho agronomic traits of tomato (a–c) and onion
(d–f) plants grown in two different mixed substrates. Vertical bars show ± standard errors for mean
(n = 5). Different letters (capital letters for SVC and lowercase letters for CVC) indicate significant
differences according to the Tukey test (p < 0.05), and the p-value indicates a significance level based
on two-way ANOVA.

AMF+ inoculation significantly increased the onion plant height (18%) and stem
diameter (30%) in the SVC substrate. However, the plants inoculated with AMF++ in the
SVC and CVC substrates showed increases of 14% and 12%, respectively, in plant height
and increases of 24% and 14%, respectively, in stem diameter. No significant difference in
the number of leaves was found in the onion plants. Among all the morpho agronomic
traits, the stem diameter of both crops was significantly affected by the interaction between
AMF and the substrate (Figure 2d–f).

3.4. Chlorophyll Contents

Total chlorophyll in the tomato leaves was significantly increased by 89% and 54%,
while Chl a increased by 79% and 72% with AMF+ and AMF++, respectively, using the
SVC substrate (Figure 3a,b), compared with the non-inoculated plants. Furthermore, Chl
b content was doubled with AMF+ in the SVC substrate (Figure 3c). The application of
two different inoculums in the tomato plants showed similar effects in terms of chlorophyll
content in the CVC substrate. In contrast, the Chl total and the Chl a and Chl b contents
in the onion plants (Figure 3d–f) did not show a significant increase under both AMF
products on the sand- or compost-mixed substrate. Finally, the two-way ANOVA revealed
significant interaction between AMF and the growth substrate only in the Chl a pigment of
the tomato leaves.

3.5. Leaf Mineral Concentration

The AMF inoculum significantly favored the macronutrient contents of N and P in the
tomato leaves with SVC compared with the non-inoculated plants. However, the Ct did not
a show significant difference under any of the AMF inoculum. In the case of micronutrients,
a significant increase in Fe and Mn of more than two times was determined, followed
by Cu and Zn, with both AMF inoculations with SVC (Table 4) compared with the non-
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inoculated plants. Therefore, the micronutrient concentrations in the tomato leaves were
highly stimulated by R. irregularis inoculation along with the SVC substrate. The combined
analysis of variance revealed the significant effect of AMF and the growth substrate on N,
Fe, Mn, and Zn contents.

 

Figure 2. 

 

 

Figure 3. 

 

 

 

 

 

 

 

 

 

 

Figure 3. Effect of AMF inoculation on chlorophyll content in the tomato plant leaves (a–c) (Chl total,
Chl a, Chl b) and onion (d–f) plant leaves grown on two different mixed substrates. Vertical bars
show ± standard errors for mean (n = 3). Different letters (capital letters for SVC and lowercase
letters for CVC) indicate significant differences according to the Tukey test (p < 0.05), and the p-value
indicates a significance level based on two-way ANOVA.

Table 4. Effect of two commercial products of R. irregularis on macro- and micronutrients in tomato
plant leaves grown on two mixed substrates.

Treatments N (%) P (%) Ct (%) Fe (ppm) Cu (ppm) Zn (ppm) Mn (ppm)

SVC
Control 1.56 ± 0.07 b 0.34 ± 0.08 b 34 ± 0.67 a 38 ± 1.21 c 6 ± 0.45 c 15 ± 2.07 b 142 ± 0.20 b
AMF+ 3.25 ± 0.07 a 0.76 ± 0.05 a 42 ± 0.33 a 189 ± 0.34 a 12 ± 0.26 b 30 ± 0.35 a 637 ± 1.01 a

AMF++ 2.71 ± 0.04 a 0.51 ± 0.08 a 42 ± 0.13 a 129 ± 0.90 b 16 ± 0.54 a 21 ± 0.36 a 362 ± 0.78 b

CVC
Control 1.93 ± 0.03 b 0.47 ± 0.05 a 32 ± 0.60 a 56 ± 0.69 c 8 ± 0.31 b 11 ± 0.52 b 93 ± 0.65 c
AMF+ 3.06 ± 0.46 a 0.68 ± 0.05 a 39 ± 0.32 a 163 ± 0.66 a 19 ± 0.68 a 35 ± 0.47 a 124 ± 0.76 a

AMF++ 1.95 ± 0.11 b 0.46 ± 0.04 a 40 ± 0.14 a 77 ± 0.78 b 19 ± 0.43 a 21 ± 0.31 a 167 ± 0.55 b

AMF <0.001 ns ns <0.001 <0.001 <0.001 <0.001
S <0.05 ns <0.001 <0.001 ns <0.001 <0.001

AMF × S <0.01 ns ns <0.001 ns <0.001 <0.001

Means within a column followed by the same letter(s) are not significantly different (ns) at p > 0.05 based on
the Tukey test. The p-value indicates a significance level based on a two-way ANOVA. AMF+, soil-multiplied
R. irregularis; AMF++, in vitro R. irregularis; AMF, arbuscular mycorrhizal fungi; S, substrate, AMF × S, indicates
interaction between AMF and substrate.

3.6. Photosynthetic Activities

Generally, AMF inoculation of the SVC and CVC growth substrates favored photosyn-
thetic activity (Ci, Pn, E, and gs) in the tomato plants compared with the non-inoculated
plants. In particular, AMF+ inoculation significantly increased the Ci (37%), Pn (51%), E
(78%), and gs (48%) in the SVC growth substrate compared with the non-inoculated plants.
However, AMF++ inoculation showed a less significant increase in Ci (25%), Pn (33%), E
(63%), and gs (44%) in the CVC growth substrate (Figure 4).
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Figure 4. Effect of AMF inoculation in tomato: (a) CO2 internal concentration (Ci), (b) net photosyn-
thesis (Pn), (c) leaf transpiration rate (E), and (d) stomatal conductance (gs) grown in two different
mixed substrates. Vertical bars show ± standard errors for mean (n = 3). Different letters (capital
letters for SVC and lowercase letters for CVC) indicate significant differences according to the Tukey
test (p < 0.05) and the p-value indicates a significance level based on two-way ANOVA.

4. Discussion

The level of AMF colonization was slightly higher in the SVC substrate than in the
CVC substrate in both crops, and it was higher when using the AMF multiplied (AMF+) in
soil. This result is in accordance with previous works showing that the mycorrhization rate
varies with the fertility of the soil, especially with regards to the P content (Gamalero et al.,
2002). In this work, the SVC substrate had a lower content of P (Table 1) than the CVC
substrate, so the physical and chemical conditions in the SVC substrate could be related to
a better level of AMF colonization, as stated in other studies [43,44]. In the substrate, the
source of the inoculum caused a differential response, whereas the soil-multiplied inoculum
showed greater results in terms of the growth of the plants due to its acclimatization to the
specific substrate conditions, including pH and nutrient availability [45]. As a result, the
soil-multiplied inoculum is better suited to the local environment, leading to improved
colonization and the establishment of arbuscular mycorrhizal associations with plant roots
when compared with in vitro AMF.

The variation in the beneficial effect of R. irregularis on the above- (morpho-agronomic)
and belowground (root architecture) characteristics was well related to the level of myc-
orrhization. On one hand, it has been reported that root architecture can be changed in
response to AMF inoculation in a suitable growth substrate [46], and such effects might be
varied considerably with crop species, suggesting that the positive effect of AMF species
with a suitable growth substrate is likely related to crop species [47]. In this study, AMF
play a crucial role in promoting the root architecture of the tomato and onion plants, having
a favorable effect on their growth patterns, branching, and overall structure (Figure 4). Con-
sequently, the AMF R. irregularis (both in vitro and soil-multiplied) positively affected the
tomato and onion root development by enhancing several root parameters in both mixed
substrates compared with the control plants. The increases induced on several tomato and
onion root parameters by R. irregularis are in agreement with those recorded by Smith and
Read [15] in which AMF-inoculated tomato roots exhibited a higher number of lateral roots
and roots hairs (74), along with other plants and AMF species [20,43,48,49]. According to
our study, the influence R. irregularis on increasing the root system was shown, resulting
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in a better exploration volume of substrate, increased absorption, and the facilitation of
their transport and exchange within the root cells. Our results revealed that an enhanced
root system and AMF+ inoculation in the SVC substrate had a favorable impact on the
agronomical parameters in tomato and onion intercropping, whereas AMF++ also showed
some promising effects. In fact, both AMF commercial products were able to colonize the
tomato and onion plants, increasing the plant height and stem diameter. These results
are in accordance with previous studies in which R. irregularis inoculation was applied
to tomato [50–52] and onion [53] plants. On the other hand, the SVC substrate, with its
superior draining properties, provided greater plant height and stem diameter, and may
indirectly contribute to thicker stems [28,54].

In this study, despite the better root percentage shown by AMF R. irregularis coloniza-
tion in onion plants (35–48%), only a significant increase in the chlorophyll content of the
tomato plants was observed compared with the onion plants. The increase in chlorophyll
content in the AMF-colonized tomato leaves can be attributed to the extended hyphal
network of AMF in the soil, facilitating the absorption of nutrients [55], which are crucial
for chlorophyll synthesis [56], improving photosynthetic capacity [57], and collectively
contributing to improving plant growth and development. However, it is important to
consider that the specific effects on chlorophyll content shown by R. irregularis may vary
depending on factors such as the specific AMF species, plant genotype, environmental con-
ditions, and experimental design [58]. In this sense, it has been reported that some plants
have shown significant changes in chlorophyll content in response to AMF colonization,
while others may not exhibit such pronounced effects [59]. Some previous studies have re-
vealed that AMF may not have a significant direct impact on onion chlorophyll content [9],
with the same response obtained in our study, so it could be possible that onion plants
have a different level of interaction with AMF compared with tomato plants. The specific
physiological and biochemical responses of onions to AMF may differ, potentially resulting
in limited or no direct impact on chlorophyll content. It may be possible that AMF have
a more significant impact on onion growth and nutrient uptake under nutrient-limiting
or stressful conditions [60]. After obtaining these results regarding chlorophyll in onion
plants, it was decided to further evaluate the effect of R. irregularis on leaf macro- and
micronutrient status, and their impact on photosynthetic parameters in tomato plants.

It was observed that AMF colonization (29–44%) enhanced the root system architec-
tural parameters of the tomato plant, contributed to capturing minerals [61], and improved
the macronutrient and micronutrient status and overall nutritional health of the grow-
ing plants, as previous studies have reported [62–64]. In particular, in this research, an
increase in macronutrients (N and P), and especially in micronutrients (Fe, Mn, Zn, and
Cu), and even the root percentage, was observed as a result of AMF inoculation. It has
been reported that AMF enhances the availability of micronutrients by increasing their
solubility and uptake efficiency [65], producing organic acids and enzymes that can chelate
and release micronutrients from the soil, making them more accessible to the plant roots.
These elements are essential for various physiological processes, such as enzyme activities,
chlorophyll synthesis, and photosynthetic activities.

Previous studies have also shown that a greater chlorophyll content represents higher
rates of photosynthesis and carbon fixation, sustaining arbuscular plant symbiosis. In
our study, we found that AMF inoculation favored these key physiological parameters
in tomato leaves [66,67]. AMF colonization improves the carbon sink that stimulates the
plant to increase photosynthesis to fulfill the carbon demand [68]. It has been reported
that this increased sink strength of colonized roots helps with the faster removal of sugars
from leaves, enabling higher photosynthetic rates [69,70]. This results in an increased
concentration of sugars in inoculated plants compared with non-inoculated plants. The
higher root carbon favors the extra metrical mycelium that can improve the nutrient status
of plants. Research by Leventis et al. [71] demonstrated that AMF-inoculated tomato plants
exhibit increased stomatal conductance compared with non-inoculated plants, indicating
an enhanced gas-exchange capacity. In addition to influencing net photosynthesis, AMF
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colonization can also affect the transpiration rate in tomato leaves, which plays an important
role in water transport and overall plant physiology. On the other hand, these mixed
substrates, when supplemented with an appropriate nutrient plan, can provide an aerated
environment for roots, supporting essential physiological processes in plants [72].

5. Conclusions

The application of a commercial product, Rhizophagus irregularis, as soil-multiplied or
an in vitro inoculum, colonized the roots of intercropped tomato and onion to positively
stimulate plant growth and root architecture traits on SVC and CVC growth substrates.
In particular, the main effects of AMF and the growth substrate were also reflected in the
mineral and chlorophyll contents, improving the photosynthetic activity in the tomato
plants. The main findings of this study show highly significant increases in micronu-
trients such as Fe, Cu, Mn, and Zn in the tomato leaves. Furthermore, AMF positively
stimulated the root structure to facilitate water and mineral uptake from the substrate for
better plant development. However, both crops grew better in the sand-mixed growth
substrate compared with the compost-mixed substrate. Therefore, it can be speculated
that the sand-mixed growth substrate was the main driver in producing the beneficial
effects of AMF. Moreover, the potential combination of AMF use along with cheap and
environmentally friendly substrates can be used in commercial agriculture. The application
of AMF with suitable growth substrates could substantially promote sustainability efforts.
Consequently, greater collaboration between farmers, industrial sectors, researchers, and
governmental entities is required to improve production systems and AMF quality to create
and implement improved and environmentally friendly agricultural practices.
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