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Abstract: Nitric oxide (NO) plays an important role in plant stress responses. However, the mech-
anisms underlying NO-induced stress resistance to cadmium (Cd) stress in rice remain elusive. In
this study, rat neuron NO synthase (nNOS)-overexpressing rice plants with higher endogenous NO
level showed higher cadmium stress tolerance than the wild-type plants. The results showed that
nNOS-overexpressing rice plants accumulated less cadmium in the roots and shoots by downregulat-
ing the expression of Cd uptake and transport related genes including OsCAL1, OsIRT2, OsNramp5,
and OsCd1. Moreover, nNOS-overexpressing rice plants accumulated less hydrogen peroxide (H2O2),
accompanying with higher expression of antioxidant enzyme genes (OsCATA, OsCATB, and OsPOX1)
and corresponding higher enzyme activities under cadmium stress. Furthermore, the transcription of
melatonin biosynthetic genes, including OsASMT1, OsTDC1, OsTDC3, and OsSNAT2, was also upreg-
ulated in nNOS-overexpressing plants, resulting in increased content of melatonin under cadmium
treatment compared with the wild-type controls. Taken together, this study indicates that nNOS
overexpression improves Cd tolerance of rice seedlings through decreasing cadmium accumulation
and enhancing the antioxidant capacity and melatonin biosynthesis of the plants.

Keywords: nitric oxide; cadmium stress; reactive oxygen species; melatonin

1. Introduction

Rice is one of the most important crops in Asia. However, rice production safety is
threatened by the toxic heavy metal cadmium (Cd), due to the increasing problem of Cd
pollution. When rice plants are grown in Cd-polluted soil, they can absorb Cd through
their roots, which is then transported to the shoots and grains. The excessive accumulation
of Cd in soil not only inhibits rice growth, it also endangers human health through the
food chain [1]. In order to resist Cd toxicity, rice has evolved many resistance strategies.
On the one hand, rice reduces Cd accumulation by affecting Cd uptake, transport and
chelation. In recent years, many Cd uptake- and transport-related genes, including OsCAL1
(cadmium accumulation in leaf 1), OsIRT2 (iron-regulated metal transporter2), OsNramp5
(natural resistance-associated macrophage protein 5), and OsCd1 (cadmium transporter
gene 1), have been identified [2]. On the other hand, rice can reduce cell damage caused
by Cd-induced overexpressed reactive oxygen species (ROS) by activating antioxidant
enzymes such as superoxide dismutase (SOD), catalase (CAT) and peroxidase (POX) [1].
Thus, improving the cadmium tolerance and decreasing the cadmium accumulation in rice
through biotechnology has become an urgent task given the increasing problems related to
cadmium pollution.

It has been reported that many signaling molecules in plants are involved in the Cd
stress response. Nitric oxide is a signaling molecule that is involved in plant growth and
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development processes, as well as in responses to environmental stresses [3–5]. Recently,
researchers have increasingly been reporting that NO modulates the resistance of plants to
Cd stress by affecting physiological metabolic processes such as reactive oxygen species
(ROS), photosynthesis, chlorophyll synthesis, and cadmium uptake [6–8], but the role of
NO in response to Cd stress is still disputed. The Cd-stress-induced change in NO levels in
many plants is influenced by Cd concentration, treatment time, and plant species [9–11].
For example, the NO level was substantially increased in the roots of barley and rice under
Cd treatment [12,13], while Cd stress inhibited endogenous NO generation in peas and
rice [14,15]. Additionally, NO may play different roles in the same biological process in
different plants. For instance, inhibition of NO accumulation by means of NO scavenger 2-
[4-carboxyphenyl]-4,4,5,5-tetramethylimidazoline-1-oxy-3-oxide (c-PTIO) or NOS inhibitor
Nω-nitro-L-arginine-methylester(L-NAME) was shown to result in the prevention of Cd-
stress-induced oxidant damage in Arabidopsis and yellow lupine [16,17], but application
of the NO donor sodium nitroprusside (SNP) decreased ROS accumulation in Cd-stressed
Brassica juncca and rice seedlings [18,19]. In addition to the above-mentioned NO-mediated
Cd tolerance in plants, NO also serves as a gas messenger, and is involved in signaling
transduction by regulating relevant gene expression and S-nitrosylation modifications of
target proteins [20,21].

Moreover, NO can also regulate hormone homeostasis such as indole-3-acetic acid
(IAA) or melatonin (N-acetyl-5-methoxytryptamine), so as to alleviate Cd toxicity in
plants [22,23]. In recent decades, an increasing number of studies have reported that
Cd stress can induce melatonin accumulation, and exogenous melatonin can improve
Cd tolerance in different plants [24]. Melatonin is synthesized via four continual enzy-
matic reactions from tryptophan, requiring at least six enzymes: tryptophan decarboxylase
(TDC), tryptophan hydroxylase (TPH), tryptamine 5-hydroxylase (T5H), N-acetylserotonin
methyltransferase (ASMT), and serotonin N-acetyltransferase (SNAT) [24]. Many results
have been reported showing that exogenous melatonin can alleviate Cd-induced oxidative
damage by activating antioxidant systems [25,26], and can decrease Cd accumulation by
regulating the transcription of iron-transport genes [25,27]. Although melatonin and NO
play similar roles in response to Cd stress in plants, the relationship between them is
still unclear.

Knowledge about the roles of NO in plants has largely been obtained through the
exogenous application of NO donors such as SNP, the NO scavenger c-PTIO, and the NOS
inhibitor L-NAME, which might be affected by differences in the concentration and time
point of application of chemical treatments [3]. In addition, whether the application of
NO donors or scavengers reflects the physiological status of NO is still unclear [28,29].
Therefore, plant materials with different endogenous NO contents should be used to assess
the function of NO in response to Cd stress. Although many reports indicate that higher
plants possess arginine-dependent NO synthase (NOS) activity, no NOS coding gene has
yet been found in higher plants. Lin et al. (2012) reported a rice mutant Osnoe1 that showed
increased NO levels. OsNOE1 encodes a rice catalase OsCATC, but whether its role arises
from H2O2 or NO accumulation—or their crosstalk—remains elusive [30]. Therefore, it
may be more accurate to investigating in the vivo roles of NO in plants through specific
modulation of endogenous NO levels with no significant effect on plant development.

Overexpression of rat nNOS increases both NOS activity and NO content in transgenic
Arabidopsis, tobacco, and rice plants, thus increasing tolerance to stresses from drought,
salt and pathogens [31–33]. To assess the role of endogenous NO in response to Cd stress,
nNOS-overexpressing rice plants are used in the current study. Our results indicate that
the nNOS overexpression in rice plants improves Cd tolerance and decreases cadmium
accumulation. Furthermore, the transgenic rice plants show enhanced antioxidant capacity,
higher melatonin content, and changed expression of related genes under Cd stress.
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2. Materials and Methods
2.1. Plant Materials and Growth Conditions

Rice (Oryza sativa L. cv. Zhonghua11) was used both as the wild type and for the
generation of nNOS transgenic plants. Rice seeds were sterilized with 70% (v/v) ethanol for
5 min and subsequently with 5% (w/v) NaClO for 30 min, washed at least three times with
sterile water, and then plated on agar medium containing 1/2 MS medium in plant growth
chambers (50% humidity, 200 µmol m–2s–1, 14 h light/10 h dark cycle, and 28–30 ◦C).

2.2. Stress Treatments and Plant Sampling

To determine a suitable Cd treatment concentration, we transferred 2-day-old wild-
type (WT) rice seedlings germinated on half-strength Murashige and Skoog (1/2 MS) plates
to new plates containing 0, 50, 100, or 200 µM CdCl2, and the seedlings were photographed
and root and shoot lengths were measured using Image J software (Version 8.0) at 1, 2, 3, 4,
and 5 days after transfer.

To test the effects of exogenous SNP treatment on the root and shoot growth under
normal and cadmium-stress conditions, we transferred germinated rice seedlings to 1/2
MS medium containing 0, 20, 50, or 100 µM SNP with or without 200 µM CdCl2, and the
seedlings were photographed and root and shoot lengths measured at 1, 2, 3, 4, and 5 days
after transfer.

To evaluate the plants’ tolerance to cadmium stress, rice seeds were plated on agar
medium containing 1/2 MS medium for 2 days in a plant growth chamber. Uniformly
germinated rice seedlings were then transferred to 1/2 MS medium supplemented with
200 µM CdCl2. After 1, 2, 3, 4, and 5 d of growth, the seedlings were photographed and
root and shoot lengths were measured. At least 24 seedlings were analyzed per treatment.

To measure the transcript levels of selected genes and physiological parameters in-
cluding H2O2 content, CAT and POX activity, chlorophyll content, cadmium content, and
melatonin content under Cd stress, the roots, shoots, or whole seedlings of the tested
plants under the different treatment conditions were sampled at the designated time for
further analysis.

2.3. Measurement of NO Content

One-week-old wild-type rice seedlings were treated in 200 µM CdCl2, and the NO
content in the roots was assayed using the specific fluorescent probe DAF-FM DA at 24
h post treatment [33]. For DAF-FM DA imaging, the primary roots of the seedlings were
incubated in 2 mL EP tubes with 10 µM DAF-FM DA in 20 mM HEPES-NaOH, pH 7.5,
for 1 h, and rinsed three times with sterile water. Then, the samples were examined under
an Olympus BX60 (Olympus, Tokyo, Japan) differential interference contrast microscope
equipped with a CCD Olympus dp72 camera (Olympus, Tokyo, Japan) with an excitation
of 488 nm and an emission of 515 nm. At least 24 seedlings per treatment were analyzed.

2.4. Measurement of NOS Activity

NOS activity was measured as previously described [33]. Briefly, approximately 0.5 g
of rice seedlings was frozen and ground with liquid nitrogen, and then extracted with
2 mL buffer (50 mM Tris-HCl, pH 7.4, 1 mM EDTA, 1 mM dithiothreitol, 1 mM leupeptin,
1 mM pepstatin, and 1 mM phenylmethylsulfonyl fluoride). After centrifuging at
12,000× g for 15 min at 4 ◦C, the supernatant was used as the enzyme extract. NOS
activity was assayed using the NOS assay kit (Beyotime, Shanghai, China), following the
manufacturer’s instructions.

2.5. Measurement of H2O2 Content, CAT Activity and POX Activity

The rice seedlings treated with or without 200 µM CdCl2 for 5 days were used for
the measurement of H2O2 content, CAT activity and POX activity. H2O2 content was
measured using the Hydrogen Peroxide Assay Kit (Beyotime, Shanghai, China), following
the manufacturer’s instructions.
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To measure the activities of CAT and POX, the total protein from seedlings was ex-
tracted using 0.05 M potassium phosphate buffer (pH 7.0), and the extract was centrifuged
at 12,000× g for 15 min at 4 ◦C. Subsequently, the supernatant was used as the enzyme ex-
tract. CAT activity was detected using a Catalase Assay Kit (Beyotime), in accordance with
the manufacturer’s instructions. POX activity was measured as described previously [33].
The reaction mixture contained 0.1 mL of enzyme extract, 0.029 M potassium phosphate
buffer (pH 5.5), 0.1% (v/v) H2O2 and 0.01 M guaiacol as substrates. The oxidation of
guaiacol was monitored by the absorbance measured at 470 nm every 10 s.

2.6. Quantitative Real-Time PCR

Rice seedlings treated with or without 200 µM CdCl2 for 5 days were sampled for
qRT-PCR as previously described [33]. The total RNA was extracted from rice leaves
using TRIzol reagent (Invitrogen, CA, USA). We used 1 µg of total RNA treated with RQ1
RNase-free DNase (Promega, Beijing, China) for cDNA synthesis with an RT kit (Toyobo,
Shanghai, China) in accordance with the manufacturer’s instructions. Quantitative real-
time PCR assays were performed on a Bio-Rad CFX96 apparatus with the dye SYBR Green
I (Invitrogen). The rice gene eEF1α was chosen as the internal control for the following
analysis. The gene-specific primers are listed in the Supplemental Data, Table S1.

2.7. Measurement of Cd Content

The Cd content was analyzed according to a method described previously [34]. Briefly,
rice seedlings treated with or without 200 µM CdCl2 for 5 days and roots and shoots were
sampled; then, the samples were washed with sterile water and then dried at 80 ◦C for
1 d. The dried samples were digested with HNO3/HClO4 (4:1, v/v) at 180 ◦C and then the
digested solution was diluted with sterile water for determination of Cd content using an
atomic absorption spectrometer.

2.8. Measurement of Chlorophyll Content

The chlorophyll content was determined according to a previously described method [35].
Briefly, 0.5 g fresh leaves of plants from different lines which treated with or without 200
µM CdCl2 for 5 days were collected and incubated in 20 mL of 80% (v/v) acetone and kept
in darkness for 24 h. After centrifugation, the extracted solutions were used for the total
chlorophyll content determination.

2.9. Measurement of Melatonin Content

The melatonin content in rice tissues was determined as described previously [36].
Briefly, after treatment with or without 200 µM CdCl2 for 5 days, root and shoot samples
were extracted with acetone: methanol: water (v:v:v = 89:10:1) and centrifuged. Sub-
sequently, the supernatant was used for the melatonin content determination using a
melatonin enzyme-linked immunosorbent assay (ELISA) kit.

2.10. Statistical Analysis

All experiments were performed in at least three independent biological replicates and
three technical repetitions. The significance of differences was determined with ANOVA or
Student’s t-test, as indicated in the figure legends.

3. Results
3.1. Exogenous NO Donor Alleviated Cd Toxicity in Rice Seedlings

To elucidate how NO mediates cadmium stress in rice, we examined the root and
shoot growth in different Cd concentrations. As shown in Supplementary Figure S1A,B,
the root and shoot length were markedly inhibited by 200 µM CdCl2 compared with the
untreated control. Therefore, 200 µM CdCl2 was used in the subsequent experiments based
on the above results.
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Nitric oxide may regulate plant growth in a dose-dependent manner. We tested
this hypothesis through experiments employing the exogenous application of different
concentrations of NO donor SNP. As shown in Figure 1A,B, the root and shoot lengths
were markedly reduced in the 50 and 100 µM SNP treatment groups compared with the
untreated controls, whereas the plants treated with 20 µM SNP showed no significant
changes compared with those in the control group. Moreover, the application of Cd in the
50 and 100 µM SNP treatment groups abrogated this effect, whereas Cd and 20 µM SNP
alleviated the inhibitory effects on the growth of the roots and shoots compared with Cd
treatment alone (Figure 1C,D). Therefore, 20 µM SNP was used in subsequent experiments.
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Figure 1. Effects of exogenous SNP treatment on root and shoot growth under normal and cadmium-
stress conditions. Two-day-old seedlings germinated on 1/2MS plates were transferred to new
plates new plates containing 0, 20, 50, or 100 µM SNP, and then root (A) and shoot (B) lengths were
measured at 1, 2, 3, 4, and 5 days after transfer. (C,D) The root (C) and shoot lengths (D) of rice
seedlings were measured after 5 days of growth on the medium (1/2 MS containing 0, 20, 50, or
100 µM SNP with 200 µM CdCl2).The results shown are the means ± SD. Values were derived from
three independent biological experiments. Different letters indicate significantly different values
(p < 0.05 by Tukey’s test). Cd, 200 µM CdCl2; 20 SNP, 20 µM NP; 50 SNP, 50 µM SNP; 100 SNP,
100 µM SNP.
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To verify whether Cd changed the NO level in rice seedlings, 1-week-old wild-type
rice seedlings were treated in 200 µM CdCl2, and the NO level in the roots was assayed at
24 h post treatment. The results of fluorescence analysis showed increased NO levels induced
by cadmium, which were strongly reduced by an NOS inhibitor (L-NAME) (Figure 2A),
suggesting that Cd stress can modulate NO content, possibly through NOS activity.
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Figure 2. Endogenous NO level in response to Cd stress and the effect of exogenous NO donor on
Cd toxicity in rice seedlings. (A) Effect of cadmium stress on the endogenous NO level in the roots of
wild-type rice plants. One-week-old wild-type plants were treated with 200 µM CdCl2 combined
with or without 1 mM L-NAME for 24 h, and then NO production was measured. NO fluores-
cence in roots of the nNOS-overexpressing lines and wild-type plants examined using DAF-FM DA.
(B,C) Effects of SNP or L-NAME on the root (B) and shoot (C) growth under cadmium stress. The re-
sults shown are the mean ± SD. Values were derived from three independent biological experiments.
Different letters indicate significant differences using Tukey’s multiple comparison test at p < 0.05.
Bars = 50 µm; Cd, 200 µM CdCl2; SNP, 20 µM SNP; L-NAME, 1 mM L-NAME.
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Then, the effects of exogenous NO treatment on Cd resistance in rice seedlings were
examined. Germinated wild-type rice seedlings were transferred to 1/2 MS medium
containing 200 µM CdCl2 with or without 1 mM L-NAME or 20 µM SNP, and then root and
shoot lengths were measured 5 d after transfer. As shown in Figure 2B,C, the combined
application of CdCl2 and SNP reduced the inhibitory effect of cadmium treatment on the
root and shoot lengths, whereas CdCl2 and L-NAME treatment abrogated the inhibitory
effect on the growth of roots and shoots compared with cadmium treatment alone. Taken
together, NO is induced by Cd stress and exogenous NO donor can alleviate Cd toxicity
in rice seedlings. These findings suggest that NO plays a positive role in the cadmium-
mediated inhibition of the growth of rice seedlings.

3.2. nNOS-Overexpressing Rice Plants Demonstrated Improved Tolerance to Cadmium Stress

Due to the lack of materials with altered NO levels, the role of endogenous NO in
rice responses to Cd stress is still limited. As such, in this study, the tolerance of nNOS-
overexpressing rice plants 35S:nNOS (#2, #8 and #20), which had higher NOS activity
and NO content, to Cd stress was investigated (Figure 3A,B). For this purpose, 2-day-old
seedlings of both wild-type and transgenic lines were transferred onto 1/2 MS medium
with or without supplementation with 200 µM CdCl2, and both shoot and root lengths were
assayed at 5 days after transfer. Although all the tested transgenic lines exhibited shoot and
root lengths similar to those of the wild-type lines when grown in normal 1/2 MS medium,
the transgenic lines were less sensitive to cadmium stress in terms of changes in shoot and
root lengths (Figure 3C–F). Under Cd stress, the chlorophyll content of the wild-type plants
decreased remarkably, whereas that of the nNOS-overexpressing rice plants remained
relatively higher (Figure 3G). These results indicate that nNOS overexpression in rice can
improve cadmium tolerance at the seedling stage.

3.3. nNOS-Overexpressing Rice Plants Accumulate Less Cadmium under Cadmium Stress

To determine whether the improved Cd tolerance of nNOS-overexpressing plants was
associated with Cd accumulation in plant tissues, we transferred 2-day-old seedlings of both
the wild-type and transgenic lines onto 1/2 MS medium with or without supplementation
with 200 µM CdCl2, and then the Cd contents of the shoot and roots were assayed 5 days
after transfer. Under Cd stress, the Cd contents significantly decreased in both the roots
and shoots of nNOS transgenic rice plants compared with wild-type plants (Figure 4A,B).
Then, we used reverse-transcription quantitative PCR (RT-qPCR) to examine the expression
levels of genes involved in Cd transport. Compared with the WT control, the expressions of
the cadmium transporter genes OsCAL1, OsIRT2, OsNramp5, and OsCd1 were significantly
downregulated in the nNOS-overexpressing lines under cadmium treatment, whereas
cadmium induced their expression (Figure 4C–F), suggesting that nitric oxide may reduce
the accumulation of cadmium ions in rice seedlings by reducing the expressions of the
genes encoding cadmium transporters.

3.4. ROS-Scavenging Capacity of nNOS-Overexpressing Rice Plants Was Enhanced

Much of the injury caused by cadmium at the cellular level is associated with oxidative
damage due to ROS [1]. Additionally, treatment with the NO donor SNP can decrease
ROS accumulation, thus alleviating oxidative damage in cadmium-stressed plants [7].
Therefore, we expected that our transgenic plants with higher NO contents would also
repress cadmium-induced ROS accumulation, thereby achieving higher tolerance to Cd
stress. For this purpose, we assayed the H2O2 contents of both wild-type and transgenic
plants. The results showed that the transgenic plants repressed the H2O2 accumulation
induced by cadmium stress in the wild-type plants; however, both wild-type and transgenic
plants accumulated similar contents of H2O2 under normal conditions (Figure 5A). The
reduced Cd-induced H2O2 content in transgenic plants may result from changes in the
activities of antioxidant enzymes that can scavenge H2O2, such as CAT and POX. As
expected, the transgenic plants showed much higher CAT and POX activities under Cd-
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stress conditions compared with the wild-type plants (Figure 5B,C). Furthermore, qRT-PCR
analysis showed that the expression levels of antioxidant enzymes genes such as OsCATA,
OsCATB, and OsPOX1 in the transgenic lines were significantly higher than those in
wild-type plants when subjected to Cd stress (Figure 5D–F). These results suggest that
endogenous NO improves Cd tolerance by increasing ROS-scavenging capacity under
Cd stress.
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Figure 3. The nNOS-overexpressing lines showed enhanced cadmium tolerance. (A) NOS activities
of the nNOS-overexpressing lines and wild-type plants were determined using a NOS assay kit.
The relative NOS activity is expressed using the NOS activity of the wild type as the standard
(1). (B) Relative NO content of the nNOS-overexpressing lines and wild-type plants examined
using DAF-FM DA and expressed using the fluorescence of the wild-type plants as the standard (1).
(C) Germinated wild-type and nNOS-overexpressing plants at 5 d after treatment with or without
200 µM CdCl2. (D–F) The fresh weight (D), root length (E), shoot length (F), and total chlorophyll
content (G) were assayed with both wild-type plants and three nNOS-overexpressing lines after
5 days of growth on the medium (1/2 MS with or without 200 µM CdCl2). The results shown are the
means ± SD. Values were derived from three independent biological experiments, and the different
letters indicate significant differences between the annotated columns (p < 0.05 by Tukey’s test). Bars
= 1 cm; FW, fresh weight; Cd, 200 µM CdCl2.
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Figure 4. nNOS-overexpressing rice plants accumulated less cadmium under cadmium stress. Ger-
minated wild-type and transgenic plants were treated with or without 200 µM CdCl2 for 5 days,
and then root (A) and shoot (B) cadmium contents, and the expression of OsCAL1 (C), OsIRT2 (D),
OsNramp5 (E), and OsCd1 (F) were assayed. The results shown are the means ± SD. Values were
derived from three independent biological experiments, and the different letters indicate signifi-
cant differences between the annotated columns (p < 0.05 by Tukey’s test). FW, fresh weight; Cd,
200 µM CdCl2.

3.5. nNOS Transgenic Plants Showed Increased Melatonin Levels under Cadmium Stress

Many studies have reported that melatonin plays a similar role to NO in the toler-
ance of plants to Cd stress [24]. However, the relationship between NO and melatonin
in response to Cd stress in plants is still unclear [37]. In this study, the melatonin con-
tent in nNOS-overexpressing transgenic lines was measured under cadmium stress. For
this purpose, 2-day-old seedlings of both the wild-type and transgenic lines were trans-
ferred onto 1/2 MS medium with or without supplementation with 200 µM CdCl2, and
the melatonin contents were measured 5 d after transfer. As shown in Figure 6A,B, the
melatonin levels significantly increased in the cadmium-treated plants compared with the
untreated plants, and the melatonin contents in the nNOS-overexpressing transgenic lines
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were markedly higher than those in the wild-type plants. The relative expression levels of
the genes of the melatonin metabolism process, including OsASMT1, OsTDC3, OsTDC1,
and OsSNAT2, increased under cadmium treatment in the transgenic lines compared
with the WT lines (Figure 6C–F). All these results indicate that NO may reduce cadmium
accumulation and improve cadmium tolerance in rice seedlings through modulation of
melatonin biosynthesis.
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cadmium stress. Germinated wild-type and nNOS-overexpressing plants were treated with or
without 200 µM CdCl2 for 5 days, and then H2O2 contents (A), enzymatic activities of CAT (B) and
POX (C), and the expression of OsCATA (D), OsCATB (E) and OsPOX1 (F) were assayed. The results
shown are the means ± SD. Values were derived from three independent biological experiments,
and the different letters indicate significant differences between the annotated columns (p < 0.05 by
Tukey’s test). FW, fresh weight; Cd, 200 µM CdCl2.
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Figure 6. nNOS-overexpressing rice plants accumulate less cadmium under cadmium stress. Ger-
minated wild-type and nNOS-overexpressing plants were treated with or without 200 µM CdCl2
for 5 days, and then root (A) and shoot (B) melatonin contents, and the expression of OsASMT1 (C),
OsTDC1 (D), OsTDC3 (E), and OsSNAT2 (F) were assayed. The results shown are the means ± SD.
Values were derived from three independent biological experiments, and the different letters indicate
significant differences between the annotated columns (p < 0.05 by Tukey’s test). FW, fresh weight;
Cd, 200 µM CdCl2.
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4. Discussion

Recently, many studies have reported the function of NO in response to Cd stress
in plants. However, the role of NO in plant responses to Cd stress remains controver-
sial [7]. This controversy may be due to the complex properties of NO, the functions of
which depend on its location and concentration, as well as the plant species and plant
development stage.

We present herein our results, showing that 200 µM CdCl2 treatment induces NO
accumulation in the roots of rice seedlings. This result is consistent with those of studies
in which NO accumulation was enhanced after treatment with different concentrations
of cadmium [11,13], although several studies have reported a decrease in NO content in
rice upon cadmium treatment [10,15,38]. This difference may be due to the use of different
Cd concentrations, treatment times, plant sizes, or genotypes. In addition, most results
regarding NO function were achieved with the application of NO donors or scavengers,
which may not adequately replicate the function of endogenous NO in plants. Therefore,
an exploration of the roles of endogenous NO in response to Cd in rice also appears
to be of great interest and importance. In this study, we also examined the effects of
exogenous NO treatment on Cd resistance in rice seedlings, and further investigated the
tolerance of nNOS-overexpressing rice plants with higher NOS activity and NO content to
Cd stress. Consistent with the results of studies in which the application of an NO donor
enhanced cadmium stress, the transgenic rice plants showed higher Cd tolerance and lower
Cd accumulation.

When plants experience cadmium stress, the antioxidant system is activated to reduce the
overproduction of ROS. Exogenous NO can alleviate Cd-induced oxidative damage by activating
the antioxidant system and strengthening its ability to scavenge ROS [19,39]. NO can also
scavenge excess ROS by directly binding to O2

− to form peroxynitrite (ONOO−) [40]. Our
results indicates that transgenic nNOS rice plants with higher NO levels accumulated less
H2O2 under Cd stress conditions, possibly due to the upregulation of the expression of
antioxidant enzyme genes (OsCATA, OsCATB, and OsPOX1). Whether the transgenic plants
affect other ROS and how these antioxidant enzyme genes are regulated under Cd stress
remains to be explored.

Exogenous application of an NO donor also affects the fixation of Cd and Cd uptake,
thereby regulating the Cd tolerance and Cd accumulation of plants. For example, 0.1 mM
SNP treatment increases the accumulation of Cd in the cell wall of roots but decreases
Cd accumulation in the soluble fraction of leaves and roots in rice under Cd stress [15].
Exogenous NO can also reduce Cd uptake and transport in rice [19,39]. However, these
studies mainly focus on the morphological and physiological indexes. In this study, nNOS-
overexpressing rice plants accumulated less cadmium under Cd stress conditions, possibly
due to the downregulation of the transcription of Cd uptake- and transport-related genes
such as OsCAL1, OsIRT2, OsNramp5, and OsCd1.

Similar to the physiological functions of NO, melatonin alleviates the Cd-induced
inhibition of seedling growth [24]. However, the relationship between NO and melatonin
is still elusive. For example, exogenous melatonin improved Cd tolerance by reducing NO
accumulation, resulting in lower Cd accumulation in Brassica pekinensis (Lour.) Rupr. [41],
but triggered endogenous NO and alleviated Cd toxicity by increasing the activities of
antioxidant enzymes in wheat seedlings [26]. These results suggest that NO may act as
a downstream signal in response to Cd stress. However, Lee et al., in 2017, reported that
cadmium-induced melatonin synthesis in rice requires NO [23]. In this paper, we present
data showing that NO upgregulates the expression of melatonin-biosynthesis-related genes,
thus enhancing melatonin accumulation under cadmium stress. These findings suggest
that NO may improve Cd tolerance by promoting melatonin biosynthesis. The complicated
relationship between NO and melatonin requires further investigation.

Overall, this study showed the effects of exogenous and endogenous NO on the
resistance of rice seedlings to Cd stress. NO was induced by Cd stress and exogenous
NO donors were able to alleviate Cd toxicity in a dose-dependent manner. Rice plants
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overexpressing rat nNOS showed increases in both NOS activity and NO content, resulting
in improved Cd stress tolerance. Further analyses indicated that improving endogenous
NO enhances cadmium tolerance in rice through modulation of cadmium accumulation,
antioxidant capacity and melatonin biosynthesis (Figure 7). However, the manner in which
NO modulates the expression of genes involved in these pathways and whether NO affects
other pathways in order to alleviate Cd stress need to be further investigated.
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Figure 7. Model of the role of endogenous NO in Cd stress. Cd stress induces NO accumulation,
and the generated NO enhances Cd tolerance through modulation of the contents of Cd, ROS,
and melatonin, possibly by regulating the transcription level of genes involved in Cd uptake and
antioxidant and melatonin biosynthesis.



Agronomy 2023, 13, 1978 14 of 16

5. Conclusions

When rice plants were stressed with Cd, the growth and development were signifi-
cantly inhibited and excessive Cd was accumulated. The application of an exogenous NO
donor alleviated Cd toxicity, and nNOS-overexpressing rice plants with higher NO levels
showed improved Cd stress tolerance. Moreover, the transgenic rice plants accumulated
less Cd, and had higher melatonin levels and stronger ROS-scavenging capacity, as well
as regulating the transcription of related genes under Cd conditions to achieve higher
tolerance to Cd stress. In summary, improving endogenous NO levels through exogenous
application of SNP or transgenic technology can improve Cd tolerance and reduce Cd
accumulation in rice seedlings.
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