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Abstract: Glucosinolates (GSLs) are not only a unique flavor substance from leaf B. juncea but also
a major secondary metabolite produced in response to abiotic stresses. Cold stress is one of the
most common abiotic stresses in leaf B. juncea; however, the metabolic response pattern of GSLs
in leaf B. juncea under cold stress has not yet been reported. In the present study, we analyzed
the GSLs content of leaf B. juncea under cold stress and found that it increased and subsequently
decreased. According to RNA-seq data, genes related to the synthesis of aliphatic GSLs were
significantly upregulated following 24 h of cold stress; genes related to the synthesis of indole GSLs
were significantly upregulated following 48 h of cold stress; and BjBGLU25 and BjBGLU27 were
significantly upregulated. Further analysis of the correlation between transcription factors and GSLs
content revealed that MYB, ERF, IQD, and bHLH may be involved in regulating the GSLs response
pattern in leaf B. juncea under cold stress. In particular, an unreported transcription factor, BjMYBS3
(BjuVA05G33250), was found to play a possible role in the synthesis of aliphatic GSLs. And the
external application of GSLs increased the ability of leaf B. juncea to cope with cold stress.

Keywords: transcriptomics; Brassica juncea L.; glucosinolate; cold stress; transcription factor

1. Introduction

Brassica juncea L. is an annual or biennial herbaceous plant of the genus Brassica in the
family Brassicaceae and is an important oil and vegetable crop in China [1]. B. juncea can
be categorized on the basis of its edible organs into leaf B. juncea, stem B. juncea, and root B.
juncea. [2,3]. Leaf B. juncea prefers to be cool, with a growth temperature of 15~22 ◦C, and
optimum growth temperature is hindered at temperatures below 12 ◦C. Leaf B. juncea is
mainly grown in the Yangtze River valley and the southwest of China, where it thrives in the
cooler climate and higher altitude [2,4,5]; however, few studies exist on the physiological
and biochemical characteristics of leaf B. juncea under cold stress, which is an abiotic stress
factor that seriously affects the growth and development of plants [6,7]. In response to
low-temperature stress, plants undergo dramatic changes in the expression of genes that
regulate the metabolome, exhibiting different physiological and biochemical responses
that ultimately lead to changes in membrane stability and the levels of osmoregulatory
substances (proline), soluble sugars, amino acids, and secondary metabolites [7].

Glucosinolates (GSLs) are sulfur-containing secondary metabolites that play an im-
portant role in abiotic stress, plants resistance to insects and pathogens, and also dis-
play anti-cancer properties [8–12]. In plants, GSLs side chains are commonly derived
from aliphatic and indole amino acids [11,12], such as methionine and tryptophan, re-
spectively [8,9]. The biosynthetic pathways of methionine-derived aliphatic GSLs and
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tryptophan-derived indole GSLs have been well-studied in cruciferous plants over the
past few decades [9,10,13–15]. The aliphatic GSLs biosynthesis pathway has been shown
to consist of three stages: side-chain extension, core structure formation, and side-chain
modification [16]. Branched-chain amino acid aminotransferase 4 (BCAT4), BCAT3, and methylth-
ioalkylmalate synthase (MAMs) have been demonstrated to affect the diversity of aliphatic
GSLs side-chain lengths [10,17,18]. Additionally, CYP81Fs catalyze the hydroxylation of
indole GSLs [8,10,19]. Moreover, transcription factors also play an important role in the
synthesis of GSLs. For instance, the overexpression of MYB28, -29, or -76 leads to the
increased accumulation of aliphatic GSLs and the inhibition of the indole GSLs biosynthesis
pathway [20–22]. MYC2, -3, and -4 basic helix–loop–helix (bHLH) transcription factors,
produced in response to plant stress, and AP2 (ERF) and IQD, involved in ethylene signal-
ing, play a role in the synthesis of GSLs [23–25]. GSLs are the main secondary metabolites
produced in cruciferous plants in response to stress, and their biosynthesis is regulated
by environmental factors. The involvement of GSLs in the response to abiotic and biotic
stresses, such as plant diseases and insect pests, drought, salt damage, high temperature, cir-
cadian rhythm, and nutrient deprivation, has been studied in detail; however, the response
processes under low-temperature stress remain elusive [12,26–28].

To elucidate the response mechanism of GSLs in leaf B. juncea under cold stress, we
analyzed the transcriptome at 0 h (CK), 24 h (LT24), and 48 h (LT48). Additionally, we used
the competition method to systematically detect the GSLs content in these samples. We
identified the genes involved in GSLs synthesis and metabolism and correlated this infor-
mation with the expression levels of related transcription factors to explore the response
mechanism of GSLs under low-temperature stress. These data lay a solid foundation for
the selection, development, and utilization of leaf B. juncea resources.

2. Materials and Methods
2.1. Plant Material and Cold Stress Treatment

The leaf B. juncea “Qianqing 6” was used in the present study, and cultivated at
Institute of Horticulture, Guizhou Academy of Agricultural Sciences (Guiyang, China)
under natural light and photoperiod. For cold stress treatment, we designed the following
experiments. Three-month-old leaf B. juncea was transferred to a constant-temperature
incubator at 22 ◦C for one week under optimal conditions. Subsequently, the temperature
was adjusted to 4 ◦C and the same parts of the leaves were taken as samples at three time
points: 0 h, 24 h, and 48 h. There were at least three biological replicates of the samples at
each time point. Samples were used for GSLs content analysis, and the remaining were
immediately frozen in liquid nitrogen and stored at −80 ◦C for further transcriptomics and
PCR analyses.

For the GSLs topical application treatment, we designed the following experiment.
Under optimal conditions, 3-month-old Monarch leaves were transferred to a constant
temperature incubator at 22 ◦C for 7 d. Subsequently, the temperature was adjusted to 4 ◦C,
and the control group was sprayed with water and the experimental group was sprayed
with a GSLs solution at a concentration of 100 ng·L−1. Both were sprayed until the liquid
naturally dripped from the leaves, and leaves from the same sites were taken as samples
after 14 d, samples for physiological indicators, and PCR analysis.

2.2. GSLs Enzyme Immunoassay

After the leaves were collected, they were repeatedly frozen and thawed at −20 ◦C
three times and then filtered through glass fiber, extracted with butanol/methanol/water
(5:25:70, V:V:V) as the sample to be tested; standard, blank (no enzyme reagent samples),
and sample wells were prepared on the enzyme plate. We added 50 µL of GSLs standard
solution to the standard well, 40 µL of sample dilution to the sample well, then added
10 µL of the sample solution to be tested to the sample well (the final dilution is 5×).
Subsequently, 50 µL enzyme standard reagents were added to each well, except for the
blank wells. The plate was sealed with film and incubated at 37 ◦C for 1 h; meanwhile, the
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30-fold concentrated wash solution was diluted with distilled water. The sealing membrane
was then carefully removed, the liquid discarded, and the plate shaken dry. The wells
were washed with wash solution, allowed to incubate for 30 s, and the solution was then
discarded; this was repeated 5 times and the plate was then patted dry. Next, 50 µL
chromogenic agent A and 50 µL chromogenic agent B were added to each well and the
plate was gently shaken to mix. The reaction was allowed to develop for 10 min at 37 ◦C
in the dark. A 50 µL aliquot of termination solution was added to each well to terminate
the reaction (the blue color turned yellow). Within 15 min of termination, the absorbance
(OD) of each well was measured at 450 nm and normalized to the blank wells. Using the
concentrations of the standard as the horizontal coordinates and the OD values as the
vertical coordinates, the standard curve was plotted, and the corresponding concentrations
were found and then multiplied by the dilution factors.

2.3. Physiological Analyses of Cold-Treated Leaves

Four cold response indicators, soluble sugars, soluble proteins, malondialdehyde,
and the proline contents of leaf B. juncea leaves, were determined. Soluble sugar levels
were determined using the anthranilate method [29]. The malondialdehyde content was
determined via the thiobarbituric acid reaction method [30]. The proline concentration
was determined by the sulfosalicylic acid–acidic ninhydrin method [31]. Soluble protein
concentrations were determined using the bis(urea) method. All the above determinations
were performed using Solarbio commercial kits (Solarbio Co., Ltd., Beijing, China).

2.4. RNA Sequencing (RNA-Seq) and Data Analysis

Leaves (three biological replicates) from the control and cold stress groups were sent to
Guizhou Shenglangsai Biotechnology Co., Ltd. (Guiyang, China) for RNA-seq. Total RNA
was isolated using the RNAiso Plus kit (TaKaRa, Dalian, China) and analyzed using the
RNA Nano 6000 assay kit (Agilent Technologies, Santa Clara, CA, USA) on a NanoDrop™
2000 (Thermo Scientific, Waltham, MA, USA) to assess the RNA concentration and integrity.
Approximately 1 µg RNA was used to construct the cDNA libraries, the quality of which
was assessed on an Agilent Bioanalyzer 2100 system. The prepared libraries were sequenced
on the Illumina HiSeq platform to generate raw reads of paired ends. After data processing,
reads were filtered to remove adapters, reads containing poly(N), and low-quality reads.
High-quality reads were mapped to the leaf B. juncea (T84-66) reference genome [32] using
HISAT2 v. 2.2.0. (https://ccb.jhu.edu/software/hisat2/index.shtml (accessed on 6 October
2022)). Gene expression levels were calculated using the FPKM (fragments per kilobase of
transcript per million fragments mapped) method. Differentially expressed genes (DEGs)
were identified using the DESeq R package V 1.24.0 based on |log2 (fold change)| ≥ 1 and
false discovery rate (FDR) < 0.01. GO (Gene Ontology) enrichment of DEGs and KEGG
(Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis was performed
using the cluster Profiler 4.0 software [33].

2.5. Quantitative Real-Time Reverse Transcription PCR (qPCR)

Total RNA for qPCR was extracted as described above. First-strand cDNA was
synthesized using the PrimeScript First-Strand cDNA Synthesis Kit (TaKaRa, Dalian, China)
according to the manufacturer’s instructions. The 10 µL reaction solution for qPCR analysis
contained 100 ng cDNA, 0.25 µM forward and reverse primers, and 5 µL SYBR Green Master
Mix (TaKaRa, Dalian, China). BjACTIN was used as an internal reference. Gene-specific
primers (Table S8) were designed using the IDT tool (https://sg.idtdna.com/scitools/
Applications/RealTimePCR/Default.aspx (accessed on 6 October 2022)). The 2−∆∆CT

method was used to calculate the relative expression levels. Three technical replicates were
performed for each sample.

https://ccb.jhu.edu/software/hisat2/index.shtml
https://sg.idtdna.com/scitools/Applications/RealTimePCR/Default.aspx
https://sg.idtdna.com/scitools/Applications/RealTimePCR/Default.aspx
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2.6. Statistical Analysis

Statistical data are expressed as the mean ± standard error. A Student’s t-test and one-
way analysis of variance (ANOVA) were used for statistical analysis (statsmodelsb package),
and differences were considered significant at * p < 0.05, ** p < 0.01, and *** p < 0.001.
Pearson’s correlation coefficient was calculated using the statsmodels package. Heatmaps
were plotted using TBtools [34].

3. Results
3.1. Difference in GSLs Content in Leaf B. Juncea under Cold Stress

Leaf B. juncea was subjected to cold stress treatment at 4 ◦C and samples were taken at
0 h (control group, denoted as CK), 24 h (denoted as LT24), and 48 h (denoted as LT48) to
measure the total GSLs content (Figure 1A). Comparison of the total GSLs content in the
leaves of leaf B. juncea among the three time points demonstrates that the GSLs content
in LT24 (66.38 ng·kg−1) and LT48 (63.52 n·kg−1) leaves was significantly higher than that
in CK leaves (59.89 ng·kg−1), and that the GSLs content in LT24 leaves was significantly
higher than that in LT48 leaves (Figure 1B). These results indicate that under cold stress,
the GSLs content of leaf B. juncea leaves initially increased; however, as the time under cold
stress increased, the GSLs content in the leaves began to decrease.
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3.2. Sequencing and Assembly of RNA-Seq Datasets

Transcriptome sequencing data were used to elucidate the molecular mechanism
underlying changes in the GSLs content of leaf B. juncea leaves under cold stress. Illumina
RNA-seq analyzed biological replicates of leaf B. juncea leaves under cold stress at three
time points, and each sample produced 38.42~50.64 million clean reads after quality control,
with the Q30 exceeding 92.90%. In addition, 35.21~40.80 million clean reads were mapped
to the mustard reference genome (90.73~92.52% mapping rate) (Table S1).

We clustered samples using principal component analysis (PCA) based on the expres-
sion of all genes in the sample. PCA1 shows that the three biological replicates of samples
CK, LT24, and LT48 were clustered together individually, and PCA2 shows little in-sample
variation among the three samples, in addition to high sample consistency (Figure S1),
which indicates that the gene expression profiles of the samples were highly consistent.

3.3. Identification and Enrichment Analysis of DEGs

To identify differentially expressed genes (DEGs) in response to cold stress in the
leaves of leaf B. juncea, the genes expression profile at 24 h and 48 h under cold stress
was compared with that at 0 h: CK vs. LT24 and CK vs. LT48 (Figure 2A). A total of
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10,448 DEGs were identified in leaf B. juncea leaves following 24 h of cold stress compared
with the control (CK vs. LT24), whereas 16,133 DEGs were identified following 48 h of
cold stress (CK vs. LT48, Figure 2B). A total of 8331 DEGs were identified from these two
comparisons, of which 4585 were jointly upregulated, 3693 were jointly downregulated,
and 53 were regulated in different directions. Moreover, 4175 upregulated DEGs and
3627 downregulated DEGs occurred only in CK vs. LT48, and 1130 upregulated DEGs
and 1054 downregulated DEGs were specific to CK vs. LT24. We created an UpSet plot
to illustrate the number of DEGs in the two comparisons (Figure 2C). To independently
assess the reliability of the RNA-seq data, the expression patterns of 20 randomly selected
genes were analyzed using RT-qPCR, which were highly correlated (R2 = 0.7886) with the
RNA-seq results, indicating data reliability (Figure S2). These results imply that a greater
number of genes begin to respond to cold stress as the duration increases, and that DEGs
in both comparisons may be associated with changes in the GSLs content in leaf B. juncea
leaves during cold stress.
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To further understand the potential mechanisms underlying changes in the GSLs
content in the leaves of leaf B. juncea, under cold stress, we performed GO (Gene Ontology)
and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis of the DEGs
for both CK vs. LT24 and CK vs. LT48 comparisons (Figure 3). The 50 most enriched
GO terms from biological processes, cellular components, and molecular functions were
determined, of which 49 were identical. GO terms were more enriched to DEGs in the CK vs.
LT48 comparison. The most abundant GO terms for biological processes of common DEGs
were cellular processes, metabolic processes, single-organism processes, response to stimuli,
and biological regulation. The most abundant GO terms for cellular components of common
DEGs were cells, cell parts, organelles, membranes, membrane parts, organelle parts, and
macromolecular complexes. The most abundant GO terms for molecular functions of
common DEGs were binding, catalytic activity, transporter activity, structural molecule
activity, nucleic-acid-binding transcription factor activity, and signal transducer activity
(Figure 3A,B). Among them, response to stimuli, biological regulation, nucleic-acid-binding
transcription factor activity, and signal transducer activity are likely associated with the
synthesis of GSLs. The standard pathway enrichment analysis based on KEGG differed
from GO enrichment in that only 11 of the 20 most-enriched KEGG pathways were common
to both comparisons. Ribosomes associated with protein synthesis and photosynthesis
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(ko03010), ribosome biogenesis in eukaryotes (ko03008), photosynthesis–antenna proteins
(ko00196), photosynthesis (ko00195), and RNA transport (ko03013) pathways were the most
enriched with the highest number of DEGs in both comparisons (Figure 3C,D). In addition,
the GSLs biosynthesis (ko00966) pathway was enriched in both comparisons; however, in
the CK vs. LT24 comparison, the GSLs biosynthesis pathway was enriched to 11 DEGs with
a higher enrichment factor of 2.46 (Figure 3C), whereas in the CK vs. LT48 comparison,
the GSLs biosynthesis pathway was only enriched to 5 DEGs with an enrichment factor of
0.58 (Table S1). This may be the reason for the change in the GSLs content.
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3.4. Expression Patterns of Structural DEGs Related to GSLs Biosynthesis

To further elucidate the mechanism underlying changes in GSLs content in B. juncea
under cold stress, we remapped the GSLs synthesis pathway in B. juncea (Figure 4A)
based on the Arabidopsis GSLs synthesis pathway, KEGG database, and related litera-
ture [12,16,35,36]. In total, we identified 29 major genes in the GSLs synthesis pathway in
leaf B. juncea (Figure 4, Tables S2–S4). In the CK vs. LT24 comparison, 11 DEGs were present
among the 29 synthesized genes, which encoded a branched-chain amino acid aminotrans-
ferase (BCAT, BAT4: BjuVB01G34920), a methylthioalkylmalate synthase (MAM, MAM1:
BjuVA03G45980), three cytochrome P450s (CYP, CYP79B3: BjuVB01G18500, CYP79F1:
BjuVA06G12040, CYP79F2: BjuVB06G35270), two glutathione S-transferases (GST, GST9:
BjuVB01G11760, GST20: BjuVA07G27800), a C-S lyase (SUR, SUR1: BjuVB03G59170),
two sulfotransferases (SOT, SOT17: BjuVA06G14130, SOT18: BjuVB03G46710), and an
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alkenyl-hydroxalkyl-producing protein (AOP, AOP3: BjuVB05G45660). In total, 9 of these
11 DEGs were upregulated and all were involved in the synthetic pathway of aliphatic GSLs.
CYP79B3 (BjuVB01G18500) and GST9 (BjuVB01G11760) were downregulated and upregu-
lated, respectively, which play a role in the synthetic pathway of indole GSLs (Figure 4A,
Table S2). In the CK vs. LT48 comparison, 10 DEGs were present out of 29 synthesized
genes. Unlike the CK vs. LT24 comparison, the majority of these 10 DEGs were upregulated
and associated with the synthesis of indole GSLs, namely CYP79B3 (BjuVB01G18500),
GSTF9 (glutathione S transferase F9, BjuVB01G11760), GSTF10 (glutathione S-transferase
F10, BjuVA03G16960), SUR1 (C-S lyase 1, BjuVB03G59170), CYP81F1 (cytochrome P450
81F, BjuVB05G01380), CYP81F3 (cytochrome P450 81F3, BjuVA01G01560), and IGMT1
(indole GSL O-methyltransferase 1, BjuVB04G32680). Among the DEGs associated with the
synthesis of aliphatic GSLs, CYP81A1 (cytochrome P450 81A1) and GSTF11 (glutathione
S-transferase F11) expression was downregulated and SOT17 (sulfotransferase 5c) expres-
sion was upregulated (Figure 4A, Table S2). Interestingly, most of the differential gene
expression in the synthesis pathway of aliphatic GSLs showed a trend to increase at LT24
and downregulate at LT48, whereas most of the differential gene expression in the synthesis
pathway of indole GSLs showed a trend to be consistently up-regulated.

In addition, we focused on GSLs-degradation-related genes, BGLU (β-glucosidase),
known as black mustard enzymes. We identified a total of 46 typical and 49 atypical
black mustard enzymes in the B. juncea genome based on Arabidopsis thaliana, which
possesses 6 typical and 16 atypical black mustard enzymes [37,38]. In the CK vs. LT24
comparison, only six DEGs were BGLUs: two typical BGLUs were downregulated and
three were upregulated, all belonging to BGLU34–36, and one atypical BGLU, BGLU27,
was upregulated (Figure 4B, Table S5). In the CK vs. LT48 comparison, 16 DEGs were
BGLUs: 12 typical BGLUs belonging to BGLU34–36 and 3 atypical BGLUs, 2 BGLUs25s
and 1 BGLU27, were upregulated, and 1 atypical BGLU, BGLU33, was downregulated in
(Figure 4B, Table S6). Upregulated BGLUs may be involved in the degradation of GSLs.

3.5. Candidate Transcription Factors Involved in GSLs Biosynthesis

Four families of transcription factors (TFs), MYB, ERF, IQD, and bHLH, have been
reported to be involved in the synthesis and degradation of GSLs [20,25,39–41]. Accord-
ingly, we performed Pearson correlation coefficient analysis of the expression of DEGs
that were members of these families (Figure 5, Tables S6 and S7) and identified homologs
of MYB28, MYB51, IQD1, and ERF107 that regulate the synthesis of GSLs. Among them,
MYB28 (BjuVA02G46870) was negatively associated with two atypical BGLUs and GSTF9
and significantly positively associated with two typical BGLUs. Three MYB51 homolog
genes, BjuVB04G30350, BjuVA08G30790, and BjuVB03G26160, were identified, all of which
were significantly positively correlated with the genes involved in indole GSLs synthe-
sis, especially BjuVB04G30350, which was significantly positively correlated with the
three transcription factors involved in indole GSLs synthesis, CYP79B3, CYP81F3, and
CYP81F1 (Figure 5 and Table S6). There were six IQD1 homolog genes: BjuVA01G43990,
BjuVA06G26910 BjuVA08G10210, BjuVB08G33460, BjuVA10G33380, and BjuVA10G00680.
Notably, BjuVA01G43990 was significantly positively associated with five genes involved
in indole GSLs synthesis: CYP79B3, CYP81F1, IGMT1, GSTF10, and CYP81F3. In addi-
tion, two IQD1 homologs, BjuVA10G00680 and BjuVB08G33460, were significantly neg-
atively correlated with total GSLs. We also found that the TFs MYBS3 (BjuVA05G33250)
was significantly positively correlated with four aliphatic GSLs synthesis genes, MAM1,
AOP3, GSTU20, and CYP79F1, in addition to the total GSLs content. There were also
seven TFs, MYB (BjuVA03G36050, BjuVB04G18620, BjuVB03G47230), ERF (BjuVA08G21510,
BjuVA08G20650), and bHLH (BjuVA03G01500, BjuVB06G55140), that were significantly
positively correlated with indole GSLs synthesis genes, and the MYB TF BjuVA06G03530
was significantly negatively correlated with the genes involved in the indole family GSLs
synthesis (Figure 5 and Table S6).
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3.6. Effect of Topical Application of GSLs on Cold Resistance in Leaf B. juncea

The leaves color of leaf B. juncea became lighter after 14 d of cold stress (Figure 6A).
Regarding the cold-stress-related indicators, the malondialdehyde (MDA), free proline,
and soluble sugar contents in the leaves of leaf B. juncea with external application of GSLs
were significantly lower than those of the control group, and the soluble protein content
was significantly higher than that of the control group (Figure 6B–E). We also examined the
expression of GSLs-synthesis-related genes with significantly elevated expression in the
transcriptome. The expression of GSTF9 was significantly lower, and the expressions of
CYP79B3, CYP79F1, CYP79F2, GSTF10, SUR1, SOT17, SOT18, and MYBS3 were significantly
higher in the leaves of leaf B. juncea with the external application of GSLs than in the control
group, indicating that GSLs were elevated in the leaves of leaf B. juncea during cold stress
after the external application of GSLs.
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Figure 6. Effect of GSLs treatment on cold resistance in leaf B. juncea. (A) Phenotypes of GSLs-treated
B. juncea and control after 14 d of cold stress; (B–E) propylene glycol, free proline, soluble sugar, and
soluble protein contents of GSLs-treated B. juncea and control after 14 d of cold stress; (F) Expression of
GSLs-synthesis-related genes (CYP79B3, CYP79F1, CYP79F2, GSTF9, GSTF10, SUR1, SOT17, SOT18,
and MYBS3) in GSLs-treated B. juncea and control after 14 d of cold stress (* p < 0.05; ** p < 0.01).
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4. Discussion

GSLs are special pungent flavor substances in cruciferous plants, such as B. juncea [42],
but recent studies have shown that GSLs also play an important role in the response to
biotic stresses, such as insect feeding and pathogen infestation, as well as abiotic stresses
such as water, light, and temperature [43]. In the present study, we focused on changes
in the GSLs content of leaf B. juncea leaves under cold stress, which initially increased
with time but subsequently began to decrease. However, even though cold stress is the
most common stress faced during leaf B. juncea growth and development [2], no relevant
reports exist regarding the response pattern of GSLs in leaf B. juncea under cold stress. The
results show that the response pattern of GSLs under cold stress is similar to that under
high-temperature stress [44,45], whereby high temperatures promote the synthesis of GSLs,
but extreme high-temperature stress decreases the GSLs content [46,47]. The GSLs content
is one of the criteria for evaluating the quality of leaf B. juncea, and in actual production,
the GSLs content and quality are increased by preserving leaf B. juncea at low temperatures
for a short period of time.

A previous study revealed the molecular mechanisms underlying GSLs synthesis and
response under abiotic stress, such as the transcriptional upregulation of MYB28/29 under
drought stress, which further increases the transcript levels of the genes involved in GSLs
synthesis, such as MAM1, CYP79F1, and CYP83A1 [48]. Moreover, BGLU30 has been
shown to mediate the hydrolysis of GSLs under dark conditions [12]. Transcription factors,
GSLs synthesis genes, and β-glucosidases (BGLUs) are all involved in GSLs synthesis and
response under abiotic stresses. Here, we compared the transcriptome of leaf B. juncea under
different temporal gradients of cold stress and show that global transcriptome changes
occur. More unique DEGs were identified in the CK vs. LT48 comparison than in the CK vs.
LT24 comparison, and GO enrichment results show that the 50 most-enriched GO terms
related to the DEGs in both comparisons were essentially the same, suggesting that B.
juncea responds to cold stress via the same mechanisms over time but requires a greater
number of genetic responses to adapt to cold stress as time increases. The KEGG pathway
enrichment results further reveal the effects of cold stress on B. juncea. Photosynthesis
(ko03010, ko00195), ribosome biogenesis in eukaryotes (ko03008), photosynthesis–antenna
proteins (ko00196), and RNA transport (ko03013) were the most enriched pathways in
both comparisons, suggesting that plants adapt to cold stress by altering protein synthesis
and photosynthesis, which is largely consistent with previous reports [49]. The KEGG
enrichment results also tentatively explain the response pattern of GSLs under cold stress.
The GSLs biosynthesis (ko00966) pathway was enriched to 11 DEGs in the CK vs. LT24
comparison, while only 5 DEGs were enriched in the CK vs. LT48 comparison. The initial
increase and subsequent decrease in the number of DEGs under cold stress was directly
responsible for the initial increase and subsequent decrease in GSLs content.

Three types of GSLs are produced in the order Brassicales: aliphatic, indole, and
aromatic [16]. Aliphatic and indole GSLs are the major components of GSLs in leaf B. juncea,
and the gene families involved in the synthesis of aromatic GSLs and the transcription
factors regulating their synthesis remain unclear [13,15,16,32,50]; therefore, we focused
on the former GSLs. In the CK vs. LT24 comparison, nine genes in the synthesis path-
way of aliphatic GSLs were significantly upregulated: the chain-extension-related genes
MAM1 (BjuVA03G45980) and BAT4 (BjuVB01G34920); the core-structural-synthesis-related
genes CYP79F1 (BjuVA06G12040), CYP79F2 (BjuVB06G35270), GST20 (BjuVA07G27800),
SUR1 (BjuVB03G59170), SOT17 (BjuVA06G14130), and SOT18 (BjuVB03G46710); and the
side-chain-modification-related gene AOP3 (BjuVB05G45660). However, only CYP79B3
(BjuVB01G18500) and GST9 (BjuVB01G11760) in the synthesis pathway of indole GSLs
were significantly upregulated and downregulated, respectively. This indicates that the
increased numbers of GSLs at 24 h following cold stress mainly consist of aliphatic GSLs,
and the content of indole GSLs may be unchanged. Interestingly, however, despite the re-
duced content of GSLs at LT48 relative to LT24, not all genes in the GSLs synthesis pathway
were downregulated. In the CK vs. LT48 comparison, seven indole group synthesis-related
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genes were significantly upregulated, CYP79B3 (BjuVB01G18500), GSTF9 (BjuVB01G11760),
GSTF10 (BjuVA03G16960), SUR1 (BjuVB03G59170), CYP81F1 (BjuVB05G01380), CYP81F3
(BjuVA01G01560), and IGMT1 (BjuVB04G32680), while genes associated with aliphatic GSLs
synthesis, such as CYP81A1 (BjuVB01G03480) and GSTF11 (BjuV_Contig00855G00010),
were downregulated and SOT17 (BjuVA06G14130) was upregulated. This indicates that
although the total content of GSLs decreased, the indole GSLs fraction may have increased.
It is known that there exists crosstalk between the biosynthesis of indole family GSLs
and the synthesis of indole-3-acetic acid (IAA). IAA production is increased following
the blockade of the synthesis of indole family GSLs [11,14,51,52]. Moreover, plant growth
was inhibited under cold stress, and the IAA content was reduced in above-ground tis-
sues [53], suggesting that plants may increase their indole GSLs content to antagonize
IAA. To reveal the reasons for the reduced aliphatic GSLs content, we further analyzed
GSLs-degradation-related genes. GSLs were hydrolyzed by a group of β-glucosidases
(BGLU) called myrosinases [12]. The BGLU gene family was amplified in leaf B. juncea;
however, most BGLUs were not expressed or expressed at low levels. Three atypical BGLUs,
BGLU25 (BjuVB07G00970, BjuV_Contig00947G00040), and BGLU27 (BjuVA04G33460), were
significantly upregulated at LT48. Although BGLU27 (BjuVA04G33460) was significantly up-
regulated at both LT24 and LT48, the upregulation multiplier was higher at LT48; therefore,
these three BGLUs may be involved in the degradation of GSLs, especially aliphatic GSLs.

The biosynthesis of GSLs was regulated by many different factors. The transcrip-
tional regulation aspect was well known, for example, MYB28, MYB76, and MYB29 tran-
scription factors regulate the biosynthesis of aliphatic thioglycosides. Moreover, MYB51-
overexpressing lines show the increased accumulation of indole-3-methyl glucosinolate, the
ERF gene family activates the biosynthesis of indole family GSLs to enhance plant defense
against Verticillium longum, and bHLH05 functions in the synthesis of indole family GSLs
by interacting with MYB51 [20,24,25,40,41,54]. Our data demonstrate that transcription
factor IQD1, MYB28, and MYB51 were significantly correlated with GSL-degradation genes,
with IQD1 (BjuVA01G43990) and MYB51 (BjuVB04G30350) being significantly positively
correlated with several indole family GSLs synthesis genes, and MYB28 being significantly
negatively correlated with the GSL degradation genes BGLU25 (BjuV_Contig00947G00040)
and BGLU27 (BjuVA04G33460). This suggests that IQD1, MYB28, and MYB51 may be
involved in the regulation of GSLs biosynthesis in the leaves of leaf B. juncea under cold
stress. We also found that the transcription factor MYBS3 (BjuVA05G33250) was positively
correlated with multiple genes involved in aliphatic GSLs synthesis, and we suggest that
MYBS3 (BjuVA05G33250) may be involved in the regulation of aliphatic GSLs biosynthesis
in leaf B. juncea leaves under cold stress. In addition, several members of the MYB, ERF, and
bHLH families showed significant positive correlations with indole group GSLs synthesis
genes, and these transcription factors may be candidates for the regulation of indole group
GSLs synthesis.

We also investigated the effect of the external application of GSLs on the cold resistance
of leaf B. juncea. After 14 d of cold stress, although the color of GSLs-treated leaf B. juncea
was similar to that of the control, malondialdehyde (MDA) was significantly lower than
that of the control. Cell membrane stability is considered to be a reliable indicator of cellular
damage caused by biotic and abiotic stresses [55]. In contrast, MDA content can be used
to assess the degree of lipid peroxidation, thus reflecting the extent of oxidative damage
to cells [56]. The lower MDA content of GSLs-treated leaf B. juncea leaves indicates that
the external application of GSLs can improve the cold resistance of leaf B. juncea, and we
speculate that the increase in GSLs content in cold stress may be a mechanism for leaf B.
juncea to protect itself in response to cold stress. We examined the content of free proline,
soluble sugars, and soluble proteins that affected the cold resistance performance, and only
the content of soluble proteins was significantly higher in GSLs-treated leaf B. juncea leaves
than in the control. Thus, we hypothesized that the external application of GSLs increased
the increase in soluble protein content and improved its cold resistance. In addition, we
also examined the genes related to the synthesis of GSLs, and the expression of most of
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them was significantly higher in the leaves of leaf B. juncea after GSLs treatment than in the
control, which indicates that GSLs were increased in leaf B. juncea leaves during cold stress
after the external application of GSLs. This may be one of the reasons for the increased cold
resistance in leaf B. juncea. However, the mechanisms by which the soluble protein and
endogenous GSLs contents are increased by the external application of GSLs may have to
be further investigated.

5. Conclusions

In summary, we analyzed the GSLs content and transcriptomics data of the leave of
leaf B. juncea under cold stress, identified the key genes and transcription factors involved
in the GSLs response to cold stress, and clarified the GSLs response patterns and molecular
mechanisms. We conclude that the expression of genes related to the synthesis of aliphatic
GSLs were upregulated during the early stages of cold stress, and the content of aliphatic
GSLs increased, as did the total GSLs content. With increased time under cold stress,
the expression of genes related to the synthesis of indole GSLs was upregulated and
the content of indole GSLs increased; however, the expression of genes related to the
synthesis of aliphatic GSLs was downregulated, the expression of BGLU25 and BGLU27
was upregulated, and the content of adipose GSLs decreased, leading to a decrease in
the total GSLs content. Many transcription factors may be involved in the regulation of
this process. In addition, we found that the external application of GSLs increased the
ability of leaf B. juncea to cope with cold stress, which was associated with an increase
in the content of endogenous GSLs and soluble proteins. These findings provide insight
into the molecular basis of the GSLs response pattern under cold stress in leaf B. juncea
and offer novel genetic information for screening new leaf B. juncea varieties with a high
GSLs content.
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