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Abstract: In recent years, salinity-induced soil quality impairment and the misuse of management
practices have led to the reduced productivity of agroecosystems. This has prompted a search for
simple and effective agricultural management strategies that improve the sustainability of agricultural
production through soil quality assessments. In this context, the objective of this study was to establish
an integrated soil quality index (SQI) by assessing the influence of different types of abiotic stress
in two different seasons, using physical, chemical and biological indicators at three sites in the
geothermal zone of “Los Negritos”, Michoacán, Mexico. Thirty-nine indicators related to soil fertility
attributes and C, N, P, and S cycling—identified as the total dataset (TDS)—were evaluated. Principal
component analysis (PCA) and the Spearman correlation matrix (r2 ≥ 0.6) were used to calculate
the SQI using an integrated quality index (IQI) equation, with the indicators total nitrogen (TN),
cation exchange capacity (CEC), lithium (Li), and zinc (Zn) identified as the minimum dataset (MDS).
Significantly higher SQI values related to the better performance of soil functions were detected
during the rainy season.

Keywords: salinity; abiotic stress; soil quality indicators; soil properties; minimum dataset; principal
component analysis; integrated quality index

1. Introduction

The United Nations has estimated that the world population will reach 8.5 billion
people in 2030, 9.7 billion in 2050, and 11.2 billion in 2100, posing a challenge to agricultural
production in the face of the global threat of soil degradation from high salt concentra-
tions [1–3]. Salinity is defined as the accumulation of water-soluble mineral salts in the
soil, with either primary (natural processes) or secondary (human-induced) causes. It is
measured based on the electrical conductivity of the soil saturation extract (ECe, dS/m)
and—depending on the level—impacts agricultural production, environmental health, and
consequently socioeconomic conditions [4,5]. The most recent data issued by the Food and
Agriculture Organization of the United Nations (FAO) indicates that 118 countries contain
salinity-affected soils, comprising an estimated 424 million hectares in the upper soil layer
(0–30 cm) and 833 million hectares of subsoil (30–100 cm) [6]. Therefore, a transition to
the proper management of land use is necessary to better understand the role and make
decisions that promote sustainable agriculture [7,8].

Soil assessments that allow for monitoring quality for a specific purpose are usually
carried out using physical, chemical, and biological indicators that demonstrate an ability
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to perform a particular function. It is recommended that such assessments should meet—as
far as is practicable—universal criteria for different conditions and soil types; represent the
precise function for the purpose they were developed; elucidate ecosystem processes; be
easily measurable, reliable, integrative, and sensitive to soil alterations; discern between
normal situations and stress situations, either by soil management or by climatic conditions
on different scales and/or time periods; and be measurable in terms of time and cost [8–13].

The reliability of establishing a soil quality index (SQI) depends on using the appro-
priate analytical methods and integration based on the score of the information of the
evaluated indicators; the main evaluation methods are mathematical and statistical in
nature. The process seeks to obtain a minimum dataset (MDS) that adequately represents
the total dataset (TDS) on quality and that contributes to reducing the cost of evaluation.
The factorial analysis usually involves (1) the selection of a TDS of the soil properties in
relation to a specific function focused on within the objective of the study, (2) the choice
and interpretation of an MDS, and (3) the integration of the scores in an index [8,14,15].

Until now, there has been no consistent methodology for selecting a universal dataset
to characterize soil quality across regions and scales, and it has been proposed that the
establishment of an SQI be conducted according to specific purposes [14,16]. The main
disadvantages are the unequivocal interpretation or the lack of reference values, which
affect the subjectivity of the evaluated indicators, which is why it is important to clearly
define the objectives of the study [12].

However, the Integrated Quality Index (IQI) is the most widely used index because it
has proven to be a flexible, effective, and easy quantification tool for assessing the quality
of a given soil or region. Also, it reduces measurement costs by reducing the number of
indicators used, and it avoids collinearity [12,14,16]. Some studies have assessed soil quality
using MDS to calculate the IQI. For example, Yuan et al. [8] assessed 12 soil properties
and established the SQI using parameters such as soil organic carbon (SOC), microbial
biomass carbon (MBC), total potassium (TK), oxidation-reduction potential (Eh), and Mn
(II) in soils with aquaculture activities. Mamehpour et al. [14] determined 24 variables
and, as a result, EC, OC, SAR, CEC, bioavailable Fe, and total Cd and Pb were selected
as MDS to evaluate soils in semi-arid calcareous ecosystems. Liu et al. [16], based on
26 parameters, established an MDS with soil organic matter (SOM), total nitrogen (TN),
pH, dehydrogenase, and arbuscular mycorrhiza for IQI in agricultural soils.

The objective of this study was to establish a quality index under different soil manage-
ment practices, integrating the effects of different levels of salinity, as well as temporality,
to obtain a minimum set of data that represents greater inference on the performance of
the soil, and that serves as a quick tool for quantifying the quality of these soils. Here, we
measured different parameters that we used to define an IQI for salinity-affected soils in
the Geothermal Zone of Los Negritos, Michoacán, Mexico.

2. Materials and Methods
2.1. Description of Site and Soil Collection

The site and soil collection were described by Guevara-Luna et al. [17] as a geothermal
zone at the boundary of the Trans-Mexican Volcanic Belt; hydrothermal activity has been
reported in this area, and is associated with the presence of mud volcanoes with temperatures
between 48 and 94 ◦C at the surface reported. Soil samples (Figure 1) were collected from
nine points per plot by sampling the 15–25 cm top layer after removing the top 0–15 cm
layer from two arable sites, S1 (20◦03′24.432′′ N 102◦36′36.632′′ W) and S2 (20◦03′02.817′′ N
102◦37′37.013′′ W), and one non-cultivable site, S3 (20◦03′44.75′′ N 102◦36′46.78′′ W), in two
seasons (March 2019 and September 2020), coincident with two seasonal variations of an
annual cycle (the dry and rainy season, respectively). In the first season, S1 was ready for
cultivation, i.e., medium deep furrows were made in the soil using agricultural machinery
(tillage) to initiate an agricultural cycle; on the other hand, S2 had a few plant residues of sugar
cane (Saccharum officinarum L.) and weed growth on the soil surface, i.e., no tillage had been
carried out and no initial agricultural cycle was planned. S3 had no history of cultivation due
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to its high salinity. In the second season, S1 had a developing maize (Zea mays L.) crop, S2 had
abundant plant residues due to maize (Zea mays L.) harvesting, and S3 remained uncultivated.
The soil collected from each site was properly transported (labeled in sterile polyethylene
bags) to the laboratory and stored until analyzed for its physical, chemical, and biological
attributes related to soil fertility, carbon, nitrogen, and phosphorus cycles.
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Villamar, Michoacán, Mexico.

2.2. Soil Quality Indicators

Soil samples were dried at environment temperature and passed through a 2 mm sieve
to reduce particle size and remove crop residues. The physical and chemical indicators
of relative humidity, water holding capacity (WHC), hydrogen potential (pH), electrical
conductivity (EC), cation exchange capacity (CEC), total organic carbon (TOC), total nitro-
gen (NT) ammonium (NH4

+), nitrate (NO3
−), nitrite (NO2

−) soluble phosphorus (PO4
3−),

carbonate (CO3
2−), bicarbonate (HCO3

−), sulfate (SO4
2−), chloride (Cl−), and textural

classification were determined as described by Guevara-Luna et al. [17]. Trace elements
and major cation concentrations were quantified using acid digestion with HNO3/HCl and
inductively coupled plasma optical emission spectroscopy analysis (ICP-OES PerkinElmer
Avio 500). Calibration was performed with deionized water and appropriate standards
at 1 mg L−1 [18]. The biological indicators identified were urease, alkaline phosphatase
and acid phosphatase, β-D-glucosidase, and arylsulfatase enzymatic activities, and were
identified using modifications of previously established techniques [19–23].

2.3. Development of the Soil Quality Index

To determine the SQI, the methodology proposed by Andrews et al. [24], Mameh-
pour et al. [14], and Li et al. [25] was followed, with the general approach of choosing
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the MDS from the TDS of plausible indicators to assess soil quality using multivariate
statistical techniques [24,26].

A total of 39 indicators consisting of chemical, physical, and biological properties
representing the fertility conditions and the cycle of nutrients C, N, P, and S were evaluated
in two seasons at these sites. We performed a two-way variance analysis (ANOVA) of the
39 indicators, with the indicators that showed a significant difference (p≤ 0.05) between the
analyzed sites selected to be part of the TDS. To identify potential soil indicators for the MDS,
a principal component analysis (PCA) was performed on the previously standardized TDS
matrix. For each principal component (PC), variables with eigenvalue ≥ 1 that explained
at least 5% of the TDS variation and up to 85% of the cumulative variation within each PC
were considered [26].

Subsequently, for each selected PC, each variable was assigned a weight or factor-
loading representing the contribution of that variable to the PC composition. Only highly
weighted variables from each PC were considered as candidates for the MDS (those that
represented absolute values within 10% of the highest factor loading, or ≥0.40). When
more than one variable qualified under the same PC, multivariate correlation coefficients
(Spearman (r2 > 0.6)) were used to determine whether variables could be considered
redundant, and thus were candidates for removal from the MDS.

The indicators considered were those that were highly weighted and non-redundant;
however, if the group of variables was correlated, the absolute values of the correlation
coefficients of each were summed and it was assumed that the variable with the highest
correlation sum best represented the group and formed the MDS. The choice of corre-
lated variables could also be based on practicality of cost, sampling, interpretation, and
importance to the study [26].

After defining the MDS, each variable datum was transformed using three types of
nonlinear scoring function. “More is better” and “less is better” score curves were applied
to indicators when a soil indicator was considered good for soil quality in increasing order
(more is better), such as organic carbon, or in decreasing order (less is better), such as
salt content, as well as “optimal” scores considering thresholds and reference values of
soil properties [27–29]. The first nonlinear scores of the variables were performed using a
sigmoidal type of function; Equation (1):

SNL =
1

1 +
(

X
Xm

)b (1)

where SNL is the nonlinear score of the soil indicator, a is the maximum score achieved by
the function—which is equal to 1 in this study—X is the value of the selected soil indicator,
Xm is the average value of each soil indicator, and b is the slope of the equation and is set
as −2.5 for a “more is better” and 2.5 for a “less is better” curve.

The third score is the threshold value—those soil indicators where the score is equal
to 1 when the value is at an optimal level or is equal to 0 when it is at an unacceptable
level; Equation (2):

1

[1 + ((B− L)/(x− L))2S(B+x−2L)] ,
(2)

where B is the reference value of the soil indicator where the score is equal to 0.5, L is the
lower threshold, S is the slope of the tangent to the curve at the base line, and x is the value
of the soil indicator. Threshold and base line values were based on the literature, reference
data, expert opinion, or previously observed measured values in ideal soil conditions for
the specific purpose concerned.

After calculating the scores, the SQI described by Doran and Parkin [30] was estab-
lished with the following equation; Equation (3):

SQIw =
n

∑
i=1

Wi× Si (3)
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where SQIw is the soil quality index (weighted additive), Si is the MDS indicator score,
n is the number of soil indicators in the MDS, and Wi is the weighting value of the soil
indicators, determined by the variation of each respective PC (%) standardized to the unit.

2.4. Soil Quality Grades

Once the quality index had been obtained, to establish different levels the interval of
the index obtained (maximum minus the minimum) was divided by the desired number
of classifications. The result was used as the base for each level, adding that value to the
lowest value of the index to obtain the upper limit of the first interval, and so on, until the
upper range was reached [31,32].

2.5. Statistical Analysis

The evaluation of all the physical, chemical, and biological indicators was carried out by
replicates (nine repetitions) at separate times. Data distribution was based on the Shapiro–Wilk
test, with a significance level of p≤ 0.05. Significant differences between site indicators in both
seasons were determined with a significance level of p ≤ 0.05 using ANOVA. To demonstrate
the correlations between the variables, a Spearman correlation matrix was developed (r2 > 0.6).
Statistical analyses (ANOVA, PCA, Spearman correlation) were performed with MINITAB 17
and R 4.21 (www.r-project.org, accessed on 10 November 2022).

3. Results and Discussion
3.1. Soil Quality Indicators

Based on the evaluation of 39 soil parameters and a two-way ANOVA, a significant
difference was observed in most of the estimated parameters between soils from the same
season and between seasons; for example, the nutrient content TOC, TN, NH4

+, NO3
−, and

PO4
3− (Table 1). The soils were classified as sandy clay loam and sandy loam; however,

although they showed the same textural class, their sand, silt, and clay contents differed
significantly. It has been shown that the balance of particles forming the structure of a
soil influences water movement, aeration, and the ease of root growth [16]. The area is
characterized by soils classified as having light to extreme salinity, with EC values ranging
from 1.18 to 34.38 dS m−1 [33].

Table 1. Values of physical, chemical, and biological indicators of analyzed soils from “Los Negritos”
geothermal zone in Villamar, Michoacán, Mexico.

Site S1 S2 S3 S1 S2 S3

Indicators Unit Dry Season Rainy Season

Moisture
content % 7.30 ± 1.11 Bb 11.21 ± 1.80 aB 10.11 ± 2.45 aB 22.72 ± 1.29 bA 24.65 ± 1.43 aA 16.05 ± 0.97 cA

WHC mg kg−1 925.7 ± 116.2 bA 1204.9 ± 63.7 aA 991.1 ± 84.4 bA 919.17 ± 15.48 bA 1010.1 ± 56.8 aB 864.50 ± 21.07 cB

pH 6.63 ± 0.29 cB 6.96 ± 0.12 bB 9.12 ± 0.14 aB 7.74 ± 0.09 bB 7.61 ± 0.13 cA 9.31 ± 0.02 aA

EC dS m−1 at 25 ◦C 2.23 ± 0.41 cA 12.41 ± 1.86 bA 34.38 ± 2.77 aA 1.18 ± 0.53 cB 10.2 ± 2.26 bB 26.97 ± 4.32 aB

CEC cmolc kg−1 7.01 ± 4.30 aB 5.06 ± 2.34 aB 1.31 ± 0.65 bB 43.33 ± 2.72 bA 54.58 ± 6.09 aA 31.81 ± 3.25 cA

TOC

mg kg−1

149.33 ± 4.45 aB 126.93 ± 4.56 bB 28.80 ± 5.37 cB 527.84 ± 15.29 aA 586.4 ± 184.9 aA 496.48 ± 17.48 aA

TN 1.63 ± 0.17 bA 2.07 ± 0.29 aA 0.049 ± 0.38 cB 1.74 ± 0.18 aA 1.76 ± 0.12 aB 0.213 ± 0.06 bA

NH4
+ 32.21 ± 13.90 bA 85.01 ± 38.7 aA 3.33 ± 1.04 cB 15.99 ± 0.76 bB 18.97 ± 1.98 aB 5.72 ± 1.15 cA

NO2
− 95.98 ± 6.91 aA 91.31 ± 1.98 aA 92.59 ± 1.16aA 66.91 ± 5.11 bB 78.46 ± 2.44 aB 68.02 ± 3.93 bB

NO3
− 1908 ± 947 aA 55.23 ± 7.94 bB 98.42 ± 25.62bB 94.8 ± 33.0 bB 287.6 ± 46.6 aA 349.5 ± 132.3 aA

PO4
3− 103.8 ± 42.5 bA 218.2 ± 40.3 aA 76.28 ± 14.56bA 34.40 ± 5.58 bB 33.18 ± 2.27 bB 61.95 ± 6.32 aB

CO3
2− ND ND 186.70 ± 17.71B ND ND 319.4 ± 11.7 A

HCO3
− 111.85 ± 13.21 bB 130.49 ± 8.04 aB 32.20 ± 17.79 cB 230.5 ± 40.7 bA 325.4 ± 30.5 aA 122.0 ± 68.2 cA

SO4
2− 723.9 ± 61.0 cA 1372.7 ± 236.7 bA 1917.4 ± 116.4 aA 303.3 ± 142.4 cB 429.81 ± 15.61 bB 1832 ± 74.6 aA

Cl− 110.93 ± 22.90 cA 205.95 ± 8.02 bA 450.19 ± 3.65 aA 20.25 ± 0.0 cB 225.02 ± 26.2 bA 475.9 ± 88.9 aA

Sand 516.31 ± 25.0 bB 536.31 ± 10.0 aB 542.97 ± 10.0 aB 593.48 ± 10.0 aA 596.8 ± 596.8 aA 583.48 ± 25.0 aA

Clay 326.95 ± 5.0 aA 43.62 ± 5.00 cB 260.3 ± 30.0 bA 106.59 ± 10.0 bB 63.19 ± 10.0 cA 243.19 ± 10.0 aA

Silt 156.74 ± 27.84 cB 420.07 ± 8.66 aA 196.74 ± 20.0 bA 299.93 ± 17.32 bA 340.0 ± 39.7 aB 173.33 ± 21.79 cA

www.r-project.org
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Table 1. Cont.

Site S1 S2 S3 S1 S2 S3

Indicators Unit Dry Season Rainy Season

As

mg kg−1

118.39 ± 67.0 aA 61.9 ± 44.1 abA 20.7 ± 32.4 bA 157.1 ± 45.3 aA 19.2 ± 57.5 bA 17.7 ± 35.5 bA

Ca 10198 ± 6438 bA 14381 ± 3989 bA 47741 ± 24224 aA 18638 ± 15578 bA 11605 ± 1461 bA 49495 ± 17203 aA

Cd 7.96 ± 2.70 abA 7.52 ± 1.65 bA 13.79 ± 8.36 aA 10.12 ± 7.29 aA 6.21 ± 0.62 abB 2.84 ± 3.37 bB

Co 8.64 ± 4.35 abA 11.47 ± 1.02 aA 7.49 ± 2.46 bA 10.79 ± 1.30 aA 11.60 ± 1.31 aA 3.97 ± 4.93 bA

Cr 51.32 ± 28.41 aA 70.52 ± 10.40 aA 55.03 ± 5.76 aA 70.82 ± 6.81 aA 77.93 ± 11.67 aA 27.6 ± 33.3 bB

Cu 31.94 ± 17.34 bA 45.26 ± 3.50 aA 37.45 ± 8.06 abA 42.91 ± 1.48 aA 43.71 ± 9.32 aA 17.27 ± 20.70 bB

Fe 14213 ± 8124 bA 21353 ± 1951 aA 9431 ± 4811 bA 18173 ± 3697 aA 22844 ± 3210 aA 11027 ± 5014 bA

Li 45.21 ± 15.85 bB 57.11 ± 3.85 abA 73.09 ± 26.18 aA 61.50 ± 7.57 aA 60.53 ± 6.18 aA 70.70 ± 40.1 aA

Mg 6879 ± 3910 bA 10290 ± 980 bA 19113 ± 8582 aA 11497 ± 5583 bA 11316 ± 1607 bA 23635 ± 5384 aA

Mn 353.0 ± 200.9 aA 388.5 ± 91.8 aA 309.7 ± 117.2 aA 457.9 ± 44.5 aA 333.3 ± 72.5 bA 267.6 ± 51.8 bA

Mo 15.34 ± 6.82 aB 12.5 ± 5.32 aA 4.84 ± 5.88 bA 44.02 ± 36.6 aA 38.0 ± 48.1 abA 1.59 ± 4.77 bA

Ni 36.6 ± 33.8 aA 44.86 ± 22.77 aA 22.18 ± 5.27 aA 28.99 ± 3.61 aA 30.96 ± 7.05 aA 12.32 ± 14.88 bA

Sr 84.2 ± 48.8 bA 147.99 ± 24.62 bA 521 ± 271 aA 206.7 ± 177.8 bA 159.83 ± 25.16 bA 549.7 ± 171.9 aA

Ti 465.0 ± 264.8 bA 974.6 ± 191.9 aA 360.2 ± 211.3 bA 548.5 ± 98.2 bA 1050.0 ± 230.8 aA 420.4 ± 290.3 bA

V 46.96 ± 22.66 aA 59.58 ± 3.42 aA 26.88 ± 12.18 bA 54.51 ± 12.20 aA 58.90 ± 6.42 aA 14.82 ± 21.20 bA

Zn 73.7 ± 39.9 aA 88.53 ± 12.05 aA 100.4 ± 32.7 aA 96.45 ± 10.74 aA 75.47 ± 10.68 aB 29.7 ± 35.4 bB

β-glucosidase

mg p-nitrophenol g−1

h−1

64.51 ± 1.43 bA 68.08 ± 2.03 aA 55.38 ± 1.31 cA 61.45 ± 1.10 bB 66.60 ± 4.12 aA 52.68 ± 0.93 cB

Alkaline phosphatase 52.92 ± 1.10 bA 63.04 ± 1.45 aA 53.52 ± 0.87 bA 51.67 ± 0.56 cB 63.00 ± 0.70 aA 52.76 ± 0.52 aB

Acid
phosphatase 55.35 ± 1.03 bA 61.48 ± 1.65 aA 52.60 ± 1.06 cA 51.65 ± 0.83 bB 62.19 ± 1.05 aA 52.20 ± 0.24 aA

Arylsulfatase 52.49 ± 1.22 bA 62.65 ± 1.33 aA 52.87 ± 0.45 bA 49.70 ± 0.43 cB 59.36 ± 0.12 aB 52.11 ± 0.14 aB

Urease
mg NH4

+-N kg−1

h−1 112.16 ± 4.28 bB 130.22 ± 3.03 aB 102.47 ± 1.21 cB 194.12 ± 0.61 bA 232.93 ± 0.98 aA 194.28 ± 0.57 bA

WHC: water holding capacity, EC: electrolytic conductivity, CEC: cation exchange capacity, TOC: total organic
carbon. Groups not sharing a letter are significantly different from each other (p > 0.05). Lower case letters indicate
significant differences between soils of the same season, and upper-case letters between soils of different seasons.
ND: not detected. Values are the mean of the results per indicator ± standard deviation (9 replicates).

The pH data ranged between 6.63 and 9.31, indicating that these soils were neutral and
alkaline, with some within the optimal pH range—between 5.8 and 7.5—for agricultural
soils [34]. The salinity levels and pH were associated with the presence and availability
of salts at the sites, determining concentrations in the order of SO4

2− > Cl− > HCO3
− >

CO3
2− in both seasons. The presence of 16 elements was also observed in the soils—among

them, high levels of Ca, Fe, Mg, Mn, and Li, characteristic of the parent rocks of a brackish
area, which is suggestive of the area’s geological origin [5,14].

Enzyme activities related to nutrient cycling showed a significant trend in S2 and S1
for the dry season and S2 and S3 for the rainy season in the five enzyme activities. The
evaluation of biological indicators in soils is usually highly sensitive because they demonstrate
the availability of nutrients and reflect the activity of microbial populations [29,35].

3.2. Development of the Soil Quality Index

Soil variables that showed significant differences between sites or seasons were in-
cluded in the PCA and considered as members of the TDS. The first four principal compo-
nents (PC) had eigenvalues >1.0 and variance >5% and together explained 80.39% of the
variance of the original data (Figure 2). More than one highly weighted variable was con-
sidered for each PC and considered as a candidate for the MDS, distributed as follows: PC1
had four variables (TN, CO3

2−, glucosidase, and V) explaining 36.96% of the variance; PC2
presented 19.08% of the variance constituted by three variables (CEC, TOC, and urease);
and PC3 and PC4 were represented by one variable each—Li and Zn, explaining 12.72%
and 11.61% of the variance, respectively.

The PCA technique has been widely used by soil-quality researchers for its ability
to introduce less subjectivity in data selection, to help reduce bias and data redundancy,
and to select the most representative indicators from a dataset [24,25,36,37]. However, this
method requires an initial large dataset, more time for sampling and laboratory analyses,
and more complex data interpretation [29]. On the other hand, the Spearman matrix
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(r2 > 0.6) identified that all variables presented at least one significant correlation (Figure 3);
therefore, we proceeded to the sum of the absolute values of the correlation coefficients of
each variable. The NT, CEC, Li, and Zn variables (Table 2) were selected as best representing
each component, and were designated as members of the MDS to constitute the SQI in the
soils of the geothermal zone of “Los Negritos”.
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Table 2. Principal component analysis (PCA) output of the studied soil properties.

Principal Component PC1 PC2 PC3 PC4

Eigenvalue 14.41 7.44 4.96 4.52
Variance % 36.96 19.08 12.72 11.61

Cumulative % 36.96 56.05 68.78 80.39
CEC 0.260 0.936 0.023 −0.074
TOC 0.153 0.910 0.068 −0.134
NT 0.897 −0.033 0.264 −0.151

CO3
2− −0.882 0.138 −0.280 −0.081

Glucosidase 0.866 −0.212 0.129 −0.220
Urease 0.226 0.921 −0.077 −0.235

Li −0.170 0.165 −0.641 0.515
V 0.906 −0.029 −0.091 0.289

Zn 0.440 −0.212 −0.339 0.717
CEC: cation exchange capacity, TOC: total organic carbon, and NT: total nitrogen. Bold numbers are the correlated
parameters that contribute most to each CP, and indicators are considered as MDS.

Nitrogen—a critical macro-element in soil due to the plant biochemical processes in
which it is involved, from root growth to maturation, including photosynthesis and nitrogen
fixation [38]—was the most weighted indicator in this study. Nitrogen facilitates ecosystem
balance and productivity due to N transformations driven by different microbial groups with
different metabolic versatility and environmental tolerance [39]. Together with soil organic
matter (SOM), nitrogen is considered a key component contributing to soil fertility [16]. The
next indicator selected was the CEC, which represents the sum of exchangeable cations in the
soil (K, Ca, Mg, and Na), and several available micronutrients [40]. CEC has been considered
important for evaluating soil productivity in semi-arid ecosystems and for problems of high
calcium content [14] because it shows the reserve of nutrients; a high level is associated
with important levels of organic C in soils, essential for biological activity [7]. Lithium,
another indicator chosen, is an element related to geothermal zones, brines, and magmatic and
sedimentary rocks [41]. Natural Li concentrations depend on characteristics such as lithology,
temperature, salinity, and water–rock interaction [42]; furthermore, Li has economic value
in numerous industries, such as ceramics, glass, polymer production, and energy devices
(batteries), which has increased its presence in agricultural soils [43]. It is an element whose role
in the development of plants and animals—including humans—is unclear. Its toxicity has been
reported at different concentrations [44]. In plants, Li influences physiology and biochemistry,
reduces growth, and causes oxidative damage to the photosynthetic apparatus, metabolite
composition, and nucleic acid and protein synthesis [45]. Zinc was the last designated
indicator; it is an essential plant micronutrient involved in the synthesis of proteins, nucleic
acids, and carbohydrates, as well as in the activation of enzymes and cell differentiation. Zinc
accumulation in the soil depends on particles such as iron oxides and calcites that cause low
availability for plant uptake [25]. When contamination is suggested, it is related to irrigated
crops or soils adjacent to industrial areas [45].

The variables that comprised the MDS were transformed using (non-linear) scoring
equations in terms of the property and its function in the soil [27,28]. Using Equations (1)
and (2), a “more is better” curve was applied to the NT and CEC indicator, and “optimal”
was given for Li and Zn. The transformed indicator scores and the values of the contribution
of the individual indicators to the variance of their respective PC were then integrated into
additive and weighted SQI using Equation (3), as follows:

SQIw = ∑ (NT score × Si score) + (CEC score × Si score) + (Li score × Si score) + (Zn
score × Si score).

The sum of these values gave the soil quality indices for the three sites in both seasons.
In the dry season, S3 had the highest soil quality—and this result was significant (p≤ 0.05)—
whereas S1 and S2 had the highest soil quality in the rainy season (Figure 4). Furthermore,
globally (during the annual cycle), no significant differences were observed between the
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three sites (Figure 5). The opposite occurred between seasons, with the statistically highest-
quality soils occurring in the rainy season (p ≤ 0.05) (Figure 5). A better knowledge of
soils is crucial to maintaining or increasing soil sustainability, identifying the most relevant
soil attributes, and monitoring the changes generated by an event in each area [16,30].
Within soil quality observation and assessment studies, there are several methodologies
for achieving this, ranging from multivariate geostatistical methods, factorial statistics,
assessments based on crop growth and/or yields, visual assessment methods, expert
opinion, and scoring and weighting methods for a set of indicators. The SQI formulated
from obtaining MDS and non-linear scores—evidenced as a low-cost quantitative method
due to the reduced number of indicators evaluated—provides the necessary information
for decision making through the variability and sensitivity of indicators that represent the
effects of changes in soil management and seasonality [14,25,27,29,46,47].
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3.3. Soil Quality Grades

Five different levels of soil quality were established for this study (Table 3), for which
the sites were assessed in the two seasons (Table 4) and globally (Tables 5 and 6). The global
assessment of the sites was carried out considering the data from both stations without
differentiating between them; similarly, the stations were assessed without differentiating
between the sites. The soils were classified as “high”. Between seasons, the dry season
were classified as “low” and for the rainy season as “high”.
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Table 3. Soil quality classes and saline soil index values.

Soil Quality Very Low Low Moderate High Very High

Scale <0.16 0.17–0.32 0.33–0.48 0.49–0.64 >0.8
Class I II III IV V

Table 4. Soil quality classes of saline sites between seasons.

Season Site
Dry Rainy

1 2 3 1 2 3

SQIw 0.26 bB 0.24 bB 0.43 aA 0.99 aA 1.04 aA 0.56 bA
Soil Quality Class Low Low Moderate Very High Very High High

Means that do not share a lower case letter are significantly different between sites in the same season, and the
upper case letters denote significant difference between sites in different seasons. (p ≤ 0.05).

Table 5. Global soil quality classes of saline sites.

Site 1 2 3

Global SQIw 0.62 a 0.64 a 0.49 a
Soil Quality Class High High High

Means that do not share a letter are significantly different (p ≤ 0.05).

Table 6. Global soil quality classes between seasons.

Season Dry Rainy

Global SQIw 0.31 b 0.86 a
Soil Quality Class Low High

Means that do not share a letter are significantly different (p ≤ 0.05).

The results showed a better performance of soil functions in the rainy season and
in the sites with vegetation cover, because of the higher salinity concentration in the dry
season and lower salinity concentration in the rainy season, closely related to the seasonal
patterns of temperature, precipitation, pH, organic matter, the difference in agricultural
practices, and the phenological cycle of plants.

In this study, water was an important factor in the soil, as it is a means of transport
for the substrates in the hydrolysis processes, and in the control of microbial activity
that determines mineralization rates, nutrient cycling, the maintenance of plant diversity,
soil fertility, and ecosystem sustainability [4,13,48,49]. Similarly, crop residues on topsoil
have been noted to promote microbial growth, decrease temperature, prevent erosion,
and be a great source of material for mineralization [50]. On the other hand, low water
content, high temperature, and little or no vegetation lead to high soil evapotranspiration,
which causes the transport of large amounts of salt to the soil surface, affecting plant
and bacterial communities and nutrient distribution, as well as altering the physical and
chemical properties of the site and leading to a deterioration in soil functions [51].

The classification of the soil quality of the sites in this study was similar to those
reported by several authors who generated their own classification in the search to quantify
the soil quality of a particular area, such as the classification system of Cantú et al. [52],
for evaluating soils with different agricultural uses and management; Karaca et al. [53],
for grassland soils in semi-arid ecosystems; Mamehpour et al. [14], for evaluating urban
cultivated soils in a semi-arid calcareous ecosystem; Santos-Francés et al. [47], for agricul-
tural soils in a semi-arid ecosystem; and Sanchez-Navarro et al. [31], for soils in semi-arid
Mediterranean regions.

4. Conclusions

Soil salinity is a latent threat to ecosystems and agricultural production by reducing plant
growth and microbial functioning, so it is crucial to assess its interaction with other factors to
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highlight the critical needs of a soil. Currently, there is no universal SQI that can be used in
multiple natural and anthropogenic ecosystems, so targeted indexing strategies have been
developed and implemented for specific environmental conditions around the world.

The applied methodology reduced the number of physical, chemical, and biological
indicators analyzed from 39 to only 4, which allowed the establishment of a minimum
set of data focused on indicating the quality of the soil in the study area. The soil quality
classification proposed in this study during the annual monitoring evidenced the quality
class of the sites: high, including two classifications for seasons: low and high. The
analysis between seasons allowed us to propose a strategy to improve saline soils: the
addition of organic materials such as plant residues to improve the nutrient content and
the activity of microbial tolerance to saline stress. Likewise, the integrated quality index
represented an effective tool to evaluate the impact of saline soil management practices
and seasonality in an adequate and quantitative manner on soil functions with the use of
selected MDS (NT, CIC, Li, and Zn). The selected indicators indicated a higher sensitivity
in the chemical properties. However, the assessment of other biological properties that
better reflect microbial activity and that can be used to relate abiotic soil properties in terms
of biochemical transformations, as well as vegetation potential and performance under the
same ecological conditions in this region, could be considered for practical, economical,
and reliable results.
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