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Abstract: Doubled haploid (DH) technology is an efficient strategy for producing completely ho-
mozygous lines for breeding programs. Mutations in the MATRILINEAL (MTL) phospholipase trigger
intraspecific haploid induction in cereals. Although an in vivo haploid induction system based on
OsMTL-edited plants has been established in rice (Oryza sativa), DH technology is still limited by
other factors, such as haploid identification, which is one of the essential steps required for DH
technology. In the study, we addressed this technical challenge by integrating specific molecular
and phenotypic markers into rice haploid inducers. We first generated large fragment insertion or
deletion mutations within the OsMTL gene and designed a pair of primers flanking the mutational
sites to be used as the specific and universal molecular markers between wild-type and Osmtl plants.
Next, we screened for hairy leaf as a single dominant trait and integrated it into specific molecular
marker-based haploid inducers using the cross and self-cross method. When crossing cytoplasmic
male sterile lines with these haploid inducers, we utilized the specific InDel marker and hairy leaf
phenotypic marker to identify putative haploids (or double haploids). These putative haploids
were further confirmed through ploidy and phenotypic analysis, demonstrating the high efficiency
of haploid identification using these markers. The haploid induction rate (HIR) of the developed
specific molecular and phenotypic marker-based haploid inducers ranged from 3.7% to 12.5%. We
have achieved successful integration of distinct molecular and phenotypic markers into rice haploid
inducers. Our advanced marker-based system has significantly enhanced the accuracy of haploid
identification, thereby expediting the adoption of DH technology in rice breeding.

Keywords: rice; DH technology; MTL; haploid identification; marker

1. Introduction

Compared with traditional methods of inbred line development, doubled haploid
(DH) technology is a more efficient strategy for producing completely homozygous lines [1].
Although both in vivo and in vitro methods are available to generate haploids, only in vivo
intraspecific hybridization using haploid inducers provides a promising approach for large-
scale DH line production [2]. In maize, a haploid induction line called Stock 6, which was
firstly reported in 1959, can produce 2–3% maternal haploid seed during self-pollination
or when outcrossed as a male [3]. Stock 6 has contributed to the commercialization of
maize haploid breeding, as the haploid induction rate (HIR) has been increased to 7–15% by
academic and commercial routine users [4]. Recently, the genetic basis of haploid induction
has been identified as two main molecular players in maize: MTL is responsible for haploid
induction [4–6], and domain membrane protein (DMP) enhances haploid induction [7].
MTL is conserved in cereals, and knockout of OsMTL in rice can be used as a haploid
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inducer [8–10], which takes the first step towards developing an in vivo haploid induction
system in rice.

DH technology comprises four distinct steps: haploid induction, haploid identifica-
tion, genome doubling, and seed production from DH lines [1]. As an in vivo haploid
induction system is newly emerging in rice, a number of issues should be addressed in each
procedure [9]. Haploid identification, a key procedure in DH breeding technology, is highly
limited by the efficiency of identifying haploids from diploids due to the low frequency
of haploid induction [1]. Developing an efficient method for haploid identification will
greatly increase DH technology efficiency and reduce downstream process costs. In maize,
haploids can be efficiently identified by using genetic and phenotypic markers that are
integrated in the haploid inducers, such as the R1-nj based anthocyanin marker [11], the
high oil content marker [12], the red root marker [13], and the ZmC1/ZmR2-based antho-
cyanin marker [14]. However, efficient methods for distinguishing haploids from diploids
are lacking in rice DH technology.

Haploid induction crossing between mtl haploid inducers and source germplasm
generates diploids that contain both the male and female parents’ genome, as well as
maternal haploids that carry only the female parent genome [1]. Applying this princi-
ple, unique molecular markers can be integrated into haploid inducers to aid in haploid
identification. To achieve this, we propose utilizing CRISPR/Cas9 technology to create
large insertion/deletion (InDel) mutations within the OsMTL gene, thereby integrating
specific and universal genetic markers into rice haploid inducers. Additionally, we conduct
a meticulous review of germplasms in order to identify dominant and visually discernible
phenotypic markers. Next, we intend to incorporate these markers into our molecular
marker-based haploid inducers, thereby boosting our overall efficiency.

2. Materials and Methods
2.1. Plant Transformation

In this study, we utilized two OsMTL genome editing vectors from our previous
research [9], namely pC1300-ACT:Cas9-sgRNATarget1 and pC1300-ACT:Cas9-sgRNATarget2,
and introduced them into the typical indica-japanica hybrid rice ‘YongYou1540’ (YY1540).
Following plasmid construction, the Agrobacterium-mediated transformation (strain EHA105)
experiments were conducted by Hangzhou Biogle Co., Ltd. (Hangzhou, China).

2.2. Detection of Mutations

To detect mutations, fresh leaf tissue from transgenic plants (100 mg) was pulverized
using a tissuelyser (Jingxin, Shanghai). The genomic DNA was extracted using the CTAB
method. Amplification of the fragments flanking the two targeted sites was performed us-
ing KOD FX DNA polymerase (Toyobo, Japan) and genotyped via Hi-TOM technology [15].
The Hi-TOM primers utilized for amplification are listed in Supplementary Table S1.

2.3. Plant Growth Conditions

After being soaked in water at 37 ◦C for two days, the seeds were sown in a seedbed.
After 25 days, the seedlings were transplanted to a transgenic field, with six plants per
row. Plant materials were cultivated following the local (Hangzhou, China) standard
agronomic practices during the summer growing season. In winter, the plants were grown
in a greenhouse located at the China National Rice Research Institute (CNRRI) in Hangzhou,
China, under conditions that maintained an average temperature of 30 ◦C during the day
and 25 ◦C at night, with a 16 h light/8 h dark cycle and 75% relative humidity.

2.4. HIR Measurement

Investigation of HIR involved crossing ZhongguangA with haploid inducers to pro-
duce hybrids. Following harvesting, the seeds were germinated and cultured in the
hydroponic nutrient solution as previously described by Liu et al. [16]. Subsequently,
genomic DNA was extracted from each individual using the CTAB method. The 2 × Taq
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Master Mix was used to amplify target sequences with InDel marker 1 and 2, and PCR
products were analyzed by running them on 5% agarose gels. Putative haploids were then
confirmed using a flow cytometer.

2.5. Ploidy Analysis

The material used for ploidy analysis comprised of approximately 2 cm2 of fresh leaf
tissue, which was prepared following a previously described method [17]. Subsequently,
the ploidy of the sample was determined using the BD Accuri C6 flow cytometer, with
laser illumination at 552 nm and a 610/20 nm filter.

3. Results
3.1. Knockout of OsMTL in YongYou1540

The rice OsMTL gene encodes a sperm-specific phospholipase [8] and has four exons
and three introns (Figure 1). Previously, we designed and developed two CRISPR/Cas9
vectors targeting exon 1 and exon 4 of OsMTL, respectively [9] (Figure 1). The two vectors
were introduced into YongYou1540 (YY1540) for transformation. In the T0 generation,
a total of 31 and 48 independent transgenic plants were obtained for target 1 and 2, re-
spectively. We genotyped these lines and detected six heterozygous or homozygous large
insertion/deletion mutants: line M1 (43 bp deletion) at the target 1 site, and line M2 (26 bp
insertion), M3 (29 bp deletion), M4 (22 bp deletion), M5 (34 bp deletion), and M6 (13 bp
deletion) at the target 2 site (Figure 2). These mutants were reproduced to the T1 generation
to generate homozygous mutants and sufficient seeds for subsequent studies.
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Figure 1. OsMTL gene structure and sgRNA target sites. Exons and introns are shown as boxes and
lines, respectively. PAM motifs are highlighted in red.
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Figure 2. Generation of large insertion/deletion mutations in the OsMTL gene. The hybrid rice
YongYou1540 was used for genetic transformation. Blue and red letters indicate the target and PAM
sequences, respectively. The dashed lines represent nucleotide deletions. Insertions and SNPs are
shaded in yellow, and the size of the deletion or insertion is shown on the right.

3.2. Integration of Specific Molecular Markers into mtl Mutants

The maternal haploids produced by mtl haploid inducers exclusively harbor the
genome of the female parent [4–6,8], while the undesired diploids contain genomes from
both the male and female parents. Therefore, molecular markers developed based on
sequence differences between male and female parents can be employed to identify hap-
loids. However, the heterozygous and variable breeding materials to be made homozygous
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limit the application of molecular markers in haploid identification. To integrate unique
and universal molecular markers into the mtl haploid inducers, we designed two pairs
of primers that flank targets 1 and 2. The PCR products were 132 bp and 100 bp with
reference to the normal genome (Figure 3). The large insertion or deletion mutations in
the mtl haploid inducers (Figure 2) allowed the designed primers to serve as unique and
universal InDel markers between the wild-type (WT) and mtl mutants. We further tested
the polymorphism of the two InDel markers and found they could be easily distinguished
on a 5% agarose gel (Figure 4). Therefore, we successfully integrated specific molecular
markers into mtl haploid inducers.
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mutants of M1, M2, M3, M4, M5, and M6 from the T1 generation were used for analysis.

3.3. Development of Specific Phenotypic Marker Haploid Inducers

Phenotypic markers, such as the R1-nj based anthocyanin marker, greatly improve
the efficiency of haploid identification in maize DH technology [11]. To identify visually
discernible phenotypic markers in rice, we conducted a meticulous review of germplasms
and identified the NWFB10 variety, which shows hairy leaves at the seedling stage and
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can be used as a phenotypic marker. The dense trichomes appear on the leaf surface of
NWFB10 seedlings 10 days after germination and become increasingly prominent as the
plant matures. To confirm that hairy leaf can be employed in haploid identification, we
crossed the NWFB10 plant with the 93–11 variety (hairless leaf) and observed that all the
F1 offspring had hairy leaves (Figure 5a). In the segregating population of 108 F2 plants,
76 plants displayed a hairy leaf phenotype similar to NWFB10, while 32 plants exhibited
hairless leaves, fitting the typical segregation ratio of 3:1 (χ2 = 1.23 < χ0.05 = 3.84). These
results indicate that hairy leaf is a single dominant trait and can be used as a phenotypic
marker in haploid identification.
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Figure 5. Development of hairy leaf marker-based haploid inducers. (a) Verification of the hairy leaf
trait as a dominant characteristic. Bar = 1 mm. (b) Flow chart of the method used to develop hairy
leaf marker haploid inducers. The solid and dotted arrows represent one generation and more than
two generations, respectively. (c) Gel electrophoresis analysis to screen for homozygous mtl mutants.
InDel1 marker was used for PCR amplification. The black numbers represent genotypes that are the
same as the M1 haploid inducer. Marker = 2000 bp.

We then utilized the hairy leaf trait as a phenotypic marker to increase the efficiency of
haploid identification in haploid inducers. Figure 5b displays a brief flow chart outlining
the development of hairy leaf-based haploid inducers. Initially, we crossed the mtl haploid
inducers with the NWFB10 variety and screened for lines exhibiting both the mtl mutation
and the hairy leaf phenotype. Subsequently, we allowed the selected lines to self-fertilize
and screened for lines with no hairless leaf phenotype in their progeny. We crossed the
M1 haploid inducer with NWFB10 and identified seven mtl homozygous lines using the
InDel1 marker in a segregating population of 46 F2 plants (Figure 5c). We harvested and
grew the seeds of the seven mtl mutants separately for phenotypic analysis. Three lines,
namely M-P1, M-P2, and M-P3, lacked segregation for the hairless leaf phenotype in their
progeny and were therefore identified as phenotypic marker-based haploid inducers with
both InDel and hairy leaf markers.



Agronomy 2023, 13, 1520 6 of 10

3.4. Identification of Putative Haploids Using Molecular and Phenotypic Markers

To test the efficiency of haploid identification by using the specific InDel and pheno-
typic markers, we used the cytoplasm male sterility (CMS) line ZhongguangA to cross with
these haploid inducers and obtained a set number of hybrid seeds.

We first evaluated the efficiency of utilizing specific molecular markers to identify
haploids. We germinated the hybrid seeds, extracted the genomic DNA of each individual,
and amplified the fragments using InDel1 or InDel2 markers. After amplification, we
electrophoresed the PCR products in a 5% agarose gel. Due to the elimination of paternal
chromosomes that occurred during haploid induction [18], maternal haploids or sponta-
neously doubling haploids only showed one band consistent with ZhongguangA at the
target sites. On the other hand, heterozygous diploids contained both ZhongguangA and
mutant fragments, giving rise to two bands (Figure 6). Overall, we identified 10, 17, 11, 12,
8, and 10 putative haploids or double haploids out of 100, 159, 116, 96, 137, and 94 hybrid
seeds from the cross between ZhongguangA and haploid inducer M1, M2, M3, M4, M5,
and M6, respectively (Table 1), with a haploid induction rate (HIR) of 10.0%, 10.7%, 9.5%,
12.5%, 5.8%, and 10.6%.
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crosses between cytoplasm male sterility line ZhongguangA and haploid inducers M1 (a), M2 (b),
M3 (c), M4 (d), M5 (e), and M6 (f). Haploids or double haploids are marked with black numbers. WT
represents the genome type of ZhongguangA. Marker = 2000 bp.

We tested the effectiveness of using hairy leaf phenotypic marker to identify haploids.
We analyzed 156, 261, and 188 hybrid seeds obtained from the cross between ZhongguangA
and the haploid inducers M-P1, M-P2, and M-P3. Among the seeds, 8, 11, and 7 lines
exhibited the hairless leaf phenotype, while the rest showed the hairy leaf phenotype
(Figure 7a). We considered the hairless leaf individuals as potential haploids or double
haploids and verified this by using the InDel1 marker (Figure 7b). Out of these individuals,
6, 10, and 5 showed one band consistent with ZhongguangA. Therefore, the haploid
induction rate (HIR) for M-P1, M-P2, and M-P3 was found to be 5.1%, 4.2%, and 3.7%,
respectively. Although a few hairless leaf individuals exhibited two bands, which may be
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due to the underdevelopment of trichome formation in the early seedling stage, using the
hairy leaf marker remains an efficient method for haploid identification.

Table 1. Haploid induction rate (HIR) of the developed molecular and phenotypic markers based
haploid inducers.

Haploid Inducers Putative H/DH H/DH Progeny HIR (%)

Molecular marker

M1 10 a 10 100 10
M2 17 a 17 159 10.7
M3 11 a 11 116 9.5
M4 12 a 12 96 12.5
M5 8 a 8 137 5.8
M6 10 a 10 94 10.6

Phenotypic marker
M-P1 6 b 8 156 5.1
M-P2 11 b 11 261 4.2
M-P3 5 b 7 188 3.7

Note: a and b represent haploids or double haploids identified by the specific InDel marker or hairy leaf
marker, respectively.
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3.5. Verification of Haploids by Ploidy and Phenotypic Analysis

To verify the feasibility of haploid identification using specific molecular and pheno-
typic markers, we firstly determined the ploidy of putative haploids or doubled haploids
(DHs) through flow cytometry. The ploidy of putative haploids 6, 24, and 33, which were
harvested from the hybrid seeds of ZhongguangA and haploid inducer M1, was half of
the heterozygous diploid used as the control (Figure 8a). This observation indicated the
high accuracy of haploid identification through the specified markers. Following that,
the haploids were transplanted to the field to analyze their phenotypic characteristics. At
maturity, haploids exhibited a significant decrease in height compared to diploid plants,
exhibited dwarf plant height, short spikelets, small glume size, and complete sterility
(Figure 8b). The dwarf and small phenotypes of haploids were due to the half-reduced
genome ploidy level, as previously reported [19].
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4. Discussion

DH technology, based on an in vivo haploid inducer, is an efficient method for inbred
development and has gained widespread use in modern maize breeding programs [2]. The
identification of MTL, a conserved genetic factor in cereals for triggering haploid induction
in maize, has facilitated the development of in vivo DH technology and synthetic apomixis
systems in rice [4–6,8–10,17,20]. However, it is challenging to develop a high-throughput
DH technology platform in rice.

DH technology encompasses induction, identification, and chromosome doubling of
haploids [14]. Knockout of OsMTL produces 2–12% haploids in rice [8,9], which solves
the problem of haploid induction. However, the step of haploid identification remains a
limiting factor. Currently, there are four common methods available for identifying haploids
in rice: (1) ploidy analysis using flow cytometry, (2) phenotypic comparison at the late stage
of plant growth, (3) genotyping using molecular markers, and (4) phenotypic screening
using visually discernible traits. Identification of haploids via methods (3) and (4) is
more efficient and cost-effective compared to the time-consuming and expensive methods
(1) and (2). In this study, we optimized methods (3) and (4) for haploid identification.

Molecular markers have long been deployed, in combination with flow cytometry,
to determine homozygosity and identify haploids [21]. However, this method presents
certain challenges due to the variability of female germplasms in the development of
unique and universal InDel markers. To overcome this, we introduced large insertion
or deletion mutations in the MTL gene, which allowed us to easily develop a unique
and usable InDel marker without considering the variability in female germplasms. Our
strategy can serve as an alternative method for haploid identification in maize, wheat,
millet, and other species, as editing of the MTL gene has been shown to induce haploids
in these species [4–6,22,23]. Furthermore, our strategy can also be employed in haploid
identification for recently identified haploid genes such as ZmPLD3 [24], ZmPOD65 [25],
and DMP [7]. Additionally, the identification of haploids through the use of unique InDel
markers can be continuously optimized. With the development of various rapid and
cost-effective DNA extraction techniques in plants [26,27], it will become more convenient
and efficient to identify haploids by utilizing these methods in combination with the
InDel markers.
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Phenotypic marker systems have been widely used for screening haploids and greatly
improve the efficiency of haploid identification in maize [1]. However, a visually discernible
trait cannot always be found in rice. First, traits used as phenotypic markers for haploid
identification must be dominant and visible at seed or early seedling stages, such as
anthocyanin, high oil content, and red root markers [11–14]. Second, unlike big maize
seeds, rice seeds are small and have husks. Fortunately, we identified hairy leaf, which
was shown to be a single dominant trait that could be visible at the seedling stage. We
integrated this trait into haploid inducers and found that it greatly improved the efficiency
of haploid identification. As a result, we have made the first report of a phenotypic marker
for identifying haploids in rice. In future, as the use of phenotypic markers greatly improves
the efficiency of haploid identification, more markers such as anthocyanin can be integrated
into haploid inducers. Furthermore, it is worth exploring the combination of different
markers to enhance both the efficiency and accuracy of haploid identification.

5. Conclusions

We have successfully created haploid inducers in rice by introducing insertion/deletion
mutations into the OsMTL gene and utilizing the hairy leaf trait, both of which serve as spe-
cific molecular and phenotypic markers. Our marker-based haploid inducers significantly
enhance the efficiency of haploid identification, thus greatly accelerating the application of
in vivo DH technology in rice breeding.
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