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Abstract: Hemp (Cannabis sativa) has gained global attention since being legalized in the USA in 2018.
The legalization of hemp is also underway in Korea; however, it requires facility cultivation and an
agricultural technological system that can produce high-quality plants. This study investigated the
changes in the growth and secondary metabolite content of female hemp following treatment with
the plant growth retardant diniconazole (DIN). Treatment with DIN decreased the plant growth rate
with increasing concentrations; however, at a concentration of 25 mg·L−1, it increased inflorescence
biomass and apical inflorescence size. The high-performance liquid chromatograph analysis of
major cannabinoids showed no statistically significant differences in total cannabidiol (CBD) and
∆9-tetrahydrocannabinol (∆9-THC) contents among the treatment groups (25, 50, 100, 200, and
400 mg·L−1). However, the calculated production of CBD and THC per plant was significantly
highest at DIN 25 mg·L−1. Overall, at a concentration of 25 mg·L−1, DIN treatment not only
decreased the height of female hemp but also enhanced the production of female hemp inflorescences
as well as major cannabinoids (CBD and ∆9-THC). Our results indicate that at a concentration of
25 mg·L−1, DIN is suitable for use in a vertical farming system. However, the ∆9-THC content needs
to meet the 0.3% standard for industrial use. These findings can be applied in various fields that
use hemp.

Keywords: dwarfism; gibberellin acid; industrial hemp; plant factory; triazole

1. Introduction

Cannabis sativa, a dioecious annual plant from the Cannabaceae family, has been
cultivated mainly in central Asia since ancient times [1]. It is a multifaceted plant with
diverse applications in both agriculture and industry. For centuries, it has been utilized
as a source of fiber, food, oil, and medicine [2,3]. Currently, Cannabis sativa has various
applications, including industrial, ornamental, nutritional, medicinal, and recreational
uses [4–7]. Cannabis sativa consists of roughly 540 distinct compounds, including primary
metabolites like amino and fatty acids, proteins, sugars, and vitamins, as well as secondary
metabolites like cannabinoids, terpenes, flavonoids, and alkanes [8–11]. Cannabinoids
were first isolated from Cannabis sativa in 1964 [12].

Cannabis sativa produces acidic forms of cannabinoids (C22) via the biosynthetic path-
way of cannabinoids in plants. These cannabinoids are later transformed into alkyl-type
cannabinoids with a monoterpene isoprenyl moiety (C10) and a pentyl side chain (C5),
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mainly through decarboxylation and cyclization [13–15]. The most abundant acidic cannabi-
noids in Cannabis sativa are cannabigerolic acid (CBGA), cannabidiolic acid (CBDA),
tetrahydrocannabinolic acid (THCA), and cannabichromenic acid (CBCA), whereas the
alkyl-type cannabinoids include ∆9-tetrahydrocannabinol (∆9-THC), cannabidiol (CBD),
and cannabigerol (CBG) [16,17].

Cannabis sativa can be classified into two forms: medicinal hemp and narcotic mari-
juana. Marijuana contains more than 20% of the psychoactive compound ∆9-THC, whereas
hemp contains less than 0.3%. Hemp was excluded from the Controlled Substances Act
regulation of controlled plants after the 2018 US Farm Bill was signed. The major secondary
metabolite of hemp, the non-psychoactive compound CBD, has gained attention. According
to clinical studies, CBD has potential therapeutic effects in psychiatric disorders, anxiety,
seizures, sleep disorders, diabetes, pain, cancer, and cardiovascular diseases [18–25].

Hemp is a high-value plant primarily grown in controlled environmental production
facilities, such as greenhouses or vertical farms, under artificial light conditions [26]. Con-
trolled environmental production facilities offer the advantage of consistent year-round
production [27,28]. However, the operating costs of vertical farms are higher than those of
greenhouses or open fields; therefore, it is more advantageous to select high-demand or
high-value crops [29]. In Korea, leafy vegetables are mainly cultivated on vertical farms;
however, efforts are being made to produce high-value crops owing to profitability is-
sues [30]. Generally, marijuana plants reach an average height of 2–3 m and can even reach
up to 5 m, depending on the climatic conditions [31–33]. Given the large size of the hemp
plant, maximizing profits in agricultural facilities with limited space, such as vertical farms,
is difficult. Therefore, dwarf induction of the plant is required to achieve profitability in
vertical farms.

There are various methods for inducing plant dwarfism. Synthetic substances known
as plant growth retardants can modify the growth and development of plants, including
leaf expansion, stem elongation, and internode elongation, and they can be effective at low
concentrations [34]. These retardants have been applied to plants to reduce accidental stem
elongation without affecting productivity [35]. Various types of recognized plant growth
retardants, particularly those of the triazole group, such as hexaconazole, tebuconazole, and
diniconazole (DIN), suppress the biosynthesis of gibberellic acid (GA) via the inhibition of
a precursor in the GA biosynthesis pathway thereby reducing cell elongation and division
to produce dwarfed plants [36,37]. The triazole group offers several advantages, including
high effectiveness, a wide range of applications, minimal harm to non-target organisms,
and low levels of resistance [38]. In particular, DIN is widely used in domestic farms
because it is distributed at a lower price than other growth retardants [39]. Moreover, these
retardants are used as fungicides for disease control. Hexaconazole is used for controlling
powdery and downy mildew in cucurbitaceous vegetables, and DIN and tebuconazole are
used for disease control in fruit crops such as apple scabs [40]. However, the moderate
lipid solubility, extended durability, and photolytic half-life of triazole group compounds
pose a challenge as they have the potential to accumulate in aquatic environments, such
as wastewater, lakes, and rivers [38]. As a result, it is essential to ensure the judicious
use of DIN in agricultural practices by employing appropriate concentrations to prevent
excessive application.

Numerous studies have investigated the application of DIN at various concentrations
to different crops for determining the appropriate concentration for optimal effect; how-
ever, there have been no reported studies on the application of DIN to female hemp to
determine a suitable concentration for treatment. This study aimed to identify the appro-
priate concentration of DIN for cultivating and producing female hemp, a high-value plant,
in a limited-space agricultural facility, by treating it with DIN at various concentrations.
This study has considerable implications for the commercial production of female hemp,
particularly in areas with limited space and resources.
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2. Materials and Methods
2.1. Plant Materials and Cultivation Conditions

Feminized hemp (Cannabis sativa L. ‘Hot blonde’) seeds were purchased from Blue
Forest Farms (Blue Forest Farms Co. Ltd., New York, NY, USA) and germinated for four
weeks under the growth conditions of 200 ± 10 µmol·m−2·s−1 light intensity, ~70–75%
humidity, and a photoperiod of 18 h/6 h (light/dark). Thereafter, the seedlings were
transplanted into rockwool cubes (10 × 10 × 10 cm, Grodan, Roermond, The Netherlands)
and grown in a controlled vertical farming system (Daejeon, South Korea (36◦22′11′′ N
127◦21′10′′ E, elevation = 60 m) using Hoagland nutrient solution (irrigated through a
drip irrigation system and adjusted to electrical conductivity (EC) of 2.0 dS·m−1 and a
pH of 6.5). Once the female hemp had grown to a height of 1.7 ± 0.2 m, cuttings were
obtained by removing all leaves except for three to four leaves and rooted for three weeks
under the growth conditions of 100± 6 µmol·m−2·s−1 blue light, a photoperiod of 20 h/4 h
(light/dark), a temperature of 25 ◦C, and humidity of 90% (Table 1). Female cuttings
with fully developed adventitious roots and a uniform height of 12.6 cm were chosen for
further cultivation (Figure 1). These were transplanted into cultivation beds in a fully
controlled vertical farming system for vegetative growth for four weeks at a temperature
of 25 ± 1.2 ◦C, a humidity of 70 ± 6%, a photoperiod of 18 h/6 h (light/dark), and a
light intensity of 400 ± 31.7 µmol·m−2·s−1. Subsequently, the plants were transitioned
to the reproductive growth phase, which lasted for five weeks. During this phase, the
temperature and humidity conditions were maintained similar to those of the vegetative
phase. However, the photoperiod was adjusted to 12 h/12 h (light/dark) and the light
intensity was increased to 500 ± 35.1 µmol·m−2·s−1. The plants were regularly thinned
and relocated every three weeks based on their shoot development. The nutrient solution
was consistently maintained at an EC of 2.0 ± 0.2 dS·m−1 and a pH of 6.5 ± 0.3, with daily
measurements taken at 09:00 h to account for any fluctuations in EC and pH levels. The
plants were grown for a total of nine weeks.

Table 1. Environmental conditions of adventitious root induction in female hemp (Cannabis sativa L.
‘Hot blonde’) cuttings.

Environmental Conditions of Cutting Growth Chamber

Light Quality Blue
Light intensity (µmol·m−2·s−1) 100

Temperature (◦C) 25
Humidity (%) 90
EC (ds m−1) 2.0

Nutrient solution Hoagland

2.2. DIN Treatment

DIN (Binari®, Youngil Co., Incheon, Korea) was diluted in water as a solvent to
concentrations of control (0 mg·L−1), 25 mg·L−1, 50 mg·L−1, 100 mg·L−1, 200 mg·L−1, or
400 mg·L−1 and applied as a root-soaking treatment. As far as we know, this is the first
paper to apply DIN treatment to female hemp. Therefore, the treatment concentration
and method were set based on the DIN conditions provided for indoor farm production
of Agastache rugosa by Lam et al. [41]. The treatment was performed once during the
cultivation period for 10 min by root-soaking hemp cuttings after 3 weeks of adventitious
root induction before transitioning to vegetative growth. Each treatment group comprised
three hemp plants (n = 3).
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Figure 1. Pictures of female hemp cuttings (Cannabis sativa L. ‘Hot blonde’) after the induction of
adventitious root was completed. The adventitious root induction was carried out for 21 days. The
average length is 12.6 cm.

2.3. Measurement of Plant Growth Parameters

The growth analysis was conducted based on Anderson et al. [42] as the fundamental
basis. Growth analyses included measuring the length and width of the top (apical),
middle (11th node), and bottom (3rd node) leaves of the female hemp plants harvested
after treatment using a ruler. Additionally, the non-destructive chlorophyll content of
leaves was measured using a SPAD-502 (Minolta Camera Co. Ltd., Osaka, Japan) to
calculate the chlorophyll content per unit area for the leaves of each treatment group.
Stem diameter and internode length were measured at the same position using a caliper
(SD500-300PRO; Shin Con Co. Ltd., Bucheon, Korea), and plant height was measured from
the soil surface to the apical meristem using a ruler. Leaf area was measured using a leaf
area meter (Li-3100, LICOR, Lincoln, NE, USA), and plant biomass (fresh weight) was
measured using an electronic balance (MW-2N, CAS Co. Ltd., Seoul, Korea). To measure
dry weight, the harvested plants were dried in a freeze dryer (TFD550, Ilshin BioBase
Co. Ltd., Dongducheon, Korea) for seven days and then weighed using an electronic
balance (MW-2N).
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2.4. Measurement and Analyses of Cannabinoid Content

The cannabinoids in female hemp were analyzed by modifying the method described
by Hädener et al. [43]. Briefly, the aboveground parts of the nine-week-old female hemp
plants were separated into leaves and inflorescences and dried in a freeze dryer (TFD550,
Ilshin BioBase Co. Ltd., Dongducheon, Korea) for seven days. The dried samples were
ground into powder using a mortar and pestle. The powder (100 mg) was placed into a
2.0 mL tube and mixed with a solution of MeOH: hexane (9:1; 2 mL) by vortexing for 1 min,
followed by sonication (powersonic420, Hwashin Tech Co. Ltd., Daegu, Korea) at 25 ◦C for
20 min to extract the cannabinoids. After sonication, the mixture was vortexed for 1 min and
centrifuged at 13,000 rpm for 5 min to extract the supernatant. The extracted supernatant
was filtered through a 0.45 µm syringe filter (25HP020AN, Advantech Co. Ltd., Asan,
Korea) (1 mL per sample) and transferred to high-performance liquid chromatography
(HPLC) vials for analysis. The HPLC system consisted of an Agilent 1260 Infinity II binary
pump (G7112B, Agilent Technologies Inc., Santa Clara, CA, USA), Agilent 1260 Infinity
II Vialsampler (G7129C Agilent Technologies Inc., Santa Clara, CA, USA), Agilent 1260
Infinity II multicolumn thermostat (G7116A, Agilent Technologies Inc., Santa Clara, CA,
USA) and Agilent 1260 Infinity II diode array detector HS (G7117C, Agilent Technologies
Inc., Santa Clara, CA, USA). Chromatographic separation was achieved using a Poroshell
120 EC-C18 column (4.6 × 50 mm, 2.7 µm, Agilent Technologies Inc., Santa Clara, CA,
USA) and gradient elution with 0.1% formic acid (reagent grade, >96%, Sigma-Aldrich,
Saint Louis, MO, USA) in water (HPLC grade, Ducsan Pure Chemical Co. Ltd., Incheon,
Korea) as mobile phase A, and 0.1% formic acid in acetonitrile (HPLC grade, Ducsan pure
chemical Co. Ltd., Incheon, Korea) as mobile phase B. The flow rate and oven temperature
were 1 mL·min−1 and 25 ◦C, respectively and the gradient conditions were as follows:
0–5 min, held at 55% B; 5–25 min, increased to 85% B; 25–30 min, held at 85% B; 30–30.1 min,
decreased to 55% B; 30.1–35 min, held at 55% B. The injection volume was 10 µL, and full
spectra were recorded from 200 to 800 nm. For quantification, the detection wavelength
was set at 210 nm.

The cannabinoid standards for CBDA (CAS No. 1244-58-2) and CBD (CAS No. 13956-
29-1) and THCA (CAS No. 23978-85-0) were acquired from Lipomed (Arleisheim, Switzer-
land). ∆9-THC (CAS No. 1972-08-3) was purchased from Sigma-Aldrich (Saint Louis,
MO, USA). These were used to determine the retention times of each cannabinoid and
prepare a six-point calibration curve. A calibration verification standard was injected at the
start of each analysis day to verify retention times and quantitation. Quantification was
performed using calibration curves ranging from 50 to 1,000 µg·mL−1. The linear equations
were y = 32.251x + 19.131 for CBDA, y = 83.907x − 24.125 for CBD, y = 31.180x + 35.423 for
THCA and y = 86.082x − 0.954. The experiment was performed three times.

2.5. Total Yield of Major Cannabinoids

To calculate the total production of major cannabinoids (mg·g−1 DW) (mg/plant DW),
HPLC analysis results were combined with plant growth results. The total CBD and total
∆9-THC content (mg·g−1 DW) present in the inflorescences and leaves of the control and
treatment groups were multiplied by the dry weight (mg/plant DW) of the inflorescences
and leaves.

Total major cannabinoid yield [
(
mg g−1 DW

)
×

(
mg

plant DW
)

= cannabinoids content
(
mg g−1 DW

)
× dry weight

(
mg

plant DW
)

2.6. Statistical Analyses

The growth and cannabinoid content of the female hemp plants were analyzed us-
ing the Analysis of Variance test with Tukey’s multiple comparison test for significance
(p ≤ 0.05) using the SPSS program (Version 22.0.0.1, SPSS Inc., Chicago, IL, USA). Addition-
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ally, to determine the trends in growth and cannabinoid content, first- and second-order
regression analyses were performed using SPSS.

3. Results
3.1. Analyses of Female Hemp Growth Parameters According to DIN Concentration

The overall growth of the female hemp, except for the stem diameter, tended to de-
crease with increasing concentration of DIN (Figure 2). Growth analyses of DIN-treated
plants revealed that stem-related factors, such as plant height, stem diameter, and fresh
and dry weights of stem, were the highest in the control group, with mean values of
103.9 cm, 9.7 mm, 183.4 g/plant, and 29.2 g/plant, respectively. There were no signifi-
cant differences in internode length, and fresh and dry weight of stem among the DIN
100 mg·L−1, 200 mg·L−1, and 400 mg·L−1 treatment groups, and no significant differences
in stem diameter among the treatment groups. Values of leaf-related factors, such as leaf
number, length, width, area, and fresh and dry weight, were the highest in the control
group, similar to the stem-related factors. The apical inflorescence size increased at the DIN
concentration of 25 mg·L−1 and then decreased as the concentration increased thereafter
(Figure 3). Nevertheless, the fresh and dry weights of inflorescences showed the highest
values in the DIN 25 mg·L−1 treatment group, with mean values of 123.1 g/plant and
22.7 g/plant, respectively, and increased by 24.46% and 24.04%, respectively, compared
to the control group. Inflorescence weight showed a tendency to decrease at DIN concen-
trations of 50 mg·L−1, 100 mg·L−1, 200 mg·L−1, and 400 mg·L−1 compared to the control
group (Table 2).
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Figure 2. Pictures of female hemp (Cannabis sativa L. ‘Hot blonde’) on harvest day of diniconazole
applications. The control group (A) did not receive the additional diniconazole treatment. Harvest
day is 35 days after reproductive growth transition. (A) Control; (B) 25 mg·L−1; (C) 50 mg·L−1;
(D) 100 mg·L−1; (E) 200 mg·L−1; and (F) 400 mg·L−1.
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Diniconazole 
Concentration 

(mg·L−1) 

Plant 
Height 

(cm) 

No. of 
Nodes 

Stem 
Diameter 

(mm) 

No. of 
Leaves 

Leaf 
Length 

(cm) 

Leaf 
Width 
(cm) 

Leaf 
Area 
(cm2) 

wSFW 
(g/plant) 

LFW 
(g/plant) 

FFW 
(g/plant) 

SDW 
(g/plant) 

LDW 
(g/plant) 

FDW 
(g/plant) 

Control 
103.9 ± 

0.6 a 
25.0 ± 
0.1 a 

9.7 ± 0.6 a 
791.0 ± 
10.0 a 

14.3 ± 
0.1 a 

15.0 ± 1.2 
a 

11580.5 ± 
1269.1 a 

183.4 ± 
13.2 a 

244.9 ± 
12.0 a 

98.9 ± 4.3 a 29.2 ± 2.8 a 45.9 ± 4.2 a 18.3 ± 0.2 b 

25 
68.0 ± 1.6 

b 
22.6 ± 
0.3 b 

6.6 ± 0.4 ab 
651.6 ± 
32.9 b 

11.9 ± 
0.2 ab 

11.6 ± 0.6 
ab 

7544.0 ± 
405.6 b 

108.1 ± 4.4 
b 

162.7 ± 6.5 
b 

123.1 ± 7.9 
a 

18.6 ± 1.1 b 
35.0 ± 1.6 

ab 
22.7 ± 1.6 a 

50 54.4 ± 2.8 
c 

23.3 ± 
0.3 b 

5.7 ± 0.3 b 529.3 ± 
53.4 b 

10.4 ± 
0.7 b 

10.4 ± 0.7 
bc 

5455.5 ± 
913.2 b 

57.7 ± 11.4 
c 

110.5 ± 
20.3 c 

58.5 ± 12.8 
b 

9.9 ± 2.3 c 23.0 ± 4.0 
bc 

13.2 ± 0.3 c 

100 
28.2 ± 2.5 

d 
22.0 ± 
0.5 bc 3.9 ± 0.2 b 

300.0 ± 
18.5 c 

7.6 ± 0.5 
c 

7.6 ± 0.2 
cd 

2007.2 ± 
43.37 c 

12.4 ± 3.0 
d 

48.6 ± 3.0 
d  

34.2 ± 7.4 
bc 1.9 ± 0.5 d 

10.2 ± 2.2 
cd 7.2 ± 0.6 d 

200 
22.1 ± 0.8 

de 
21.0 ± 
0.1 cd 

4.3 ± 0.0 b 
164.0 ± 
16.0 cd 

5.9 ± 0.8 
c 

5.9 ± 1.0 
d 

656.2 ± 
133.16 c 

4.5 ± 0.6 d 
19.2 ± 3.7 

d 
23.4 ± 2.9 c 0.8 ± 0.0 d 5.4 ± 0.7 d 

4.6 ± 0.4 
de 

400 
17.8 ± 1.4 

e 
20.3 ± 
0.3 d 

6.9 ± 1.6 ab 
74.0 ± 
19.0 d 

6.9 ± 0.1 
c 

6.9 ± 0.1 
d 

298.7 ± 
72.1 c 

2.1 ± 0.4 d 8.4 ± 2.7 d 13.2 ± 1.2 c 0.5 ± 0.1 d 3.8 ± 1.2 d 3.1 ± 0.3 e 

Significancex *** *** ** *** *** *** *** *** *** *** *** *** *** 
Ly *** *** * *** *** *** *** *** *** *** *** *** *** 
Qz *** *** NS *** *** *** *** *** *** *** *** *** *** 

wSFW—Stem fresh weight; LFW—Leaf fresh weight; FFW—Inflorescence fresh weight; SDW—Stem 
dry weight; LDW—Leaf dry weight; FDW—Inflorescence dry weight—NS: not significant (p > 0.05); 
Significancex at * p ≤ 0.05, ** p ≤ 0.01, and *** p ≤ 0.001; Ly, linear; Qz, quadratic in regression analysis. 
The data represent the means and standard errors (n = 3). Different letters indicate significant dif-
ferences among treatments at the level of 5%, according to Tukey’s test. 
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Figure 3. Pictures of female hemp (Cannabis sativa L. ‘Hot blonde’) apical inflorescences on harvest
day of diniconazole applications. The control group (A) did not receive the additional diniconazole
treatment. Harvest day is 35 days after reproductive growth transition. Scale bars 1 cm; (A) Control;
(B) 25 mg·L−1; (C) 50 mg·L−1; (D) 100 mg·L−1; (E) 200 mg·L−1; and (F) 400 mg·L−1.
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Table 2. The growth parameters of female hemp (Cannabis sativa L. ‘Hot blonde’) grown in the
different diniconazole concentrations. The control group did not receive the additional diniconazole
treatment.

Diniconazole
Concentration

(mg·L−1)

Plant
Height

(cm)

No. of
Nodes

Stem Di-
ameter
(mm)

No. of
Leaves

Leaf
Length

(cm)

Leaf
Width
(cm)

Leaf
Area
(cm2)

wSFW
(g/plant)

LFW
(g/plant)

FFW
(g/plant)

SDW
(g/plant)

LDW
(g/plant)

FDW
(g/plant)

Control 103.9 ±
0.6 a

25.0 ±
0.1 a

9.7 ± 0.6
a

791.0
± 10.0

a

14.3 ±
0.1 a

15.0 ±
1.2 a

11580.5
±

1269.1 a

183.4 ±
13.2 a

244.9
± 12.0

a

98.9 ±
4.3 a

29.2 ±
2.8 a

45.9 ±
4.2 a

18.3 ±
0.2 b

25 68.0 ±
1.6 b

22.6 ±
0.3 b

6.6 ± 0.4
ab

651.6
± 32.9

b

11.9 ±
0.2 ab

11.6 ±
0.6 ab

7544.0
± 405.6

b

108.1 ±
4.4 b

162.7
± 6.5 b

123.1 ±
7.9 a

18.6 ±
1.1 b

35.0 ±
1.6 ab

22.7 ±
1.6 a

50 54.4 ±
2.8 c

23.3 ±
0.3 b

5.7 ± 0.3
b

529.3
± 53.4

b

10.4 ±
0.7 b

10.4 ±
0.7 bc

5455.5
± 913.2

b

57.7 ±
11.4 c

110.5
± 20.3

c

58.5 ±
12.8 b

9.9 ±
2.3 c

23.0 ±
4.0 bc

13.2 ±
0.3 c

100 28.2 ±
2.5 d

22.0 ±
0.5 bc

3.9 ± 0.2
b

300.0
± 18.5

c

7.6 ±
0.5 c

7.6 ±
0.2 cd

2007.2
± 43.37

c

12.4 ±
3.0 d

48.6 ±
3.0 d

34.2 ±
7.4 bc

1.9 ±
0.5 d

10.2 ±
2.2 cd

7.2 ±
0.6 d

200 22.1 ±
0.8 de

21.0 ±
0.1 cd

4.3 ± 0.0
b

164.0
± 16.0

cd

5.9 ±
0.8 c

5.9 ±
1.0 d

656.2 ±
133.16 c

4.5 ±
0.6 d

19.2 ±
3.7 d

23.4 ±
2.9 c

0.8 ±
0.0 d

5.4 ±
0.7 d

4.6 ±
0.4 de

400 17.8 ±
1.4 e

20.3 ±
0.3 d

6.9 ± 1.6
ab

74.0 ±
19.0 d

6.9 ±
0.1 c

6.9 ±
0.1 d

298.7 ±
72.1 c

2.1 ±
0.4 d

8.4 ±
2.7 d

13.2 ±
1.2 c

0.5 ±
0.1 d

3.8 ±
1.2 d

3.1 ±
0.3 e

Significancex *** *** ** *** *** *** *** *** *** *** *** *** ***

Ly *** *** * *** *** *** *** *** *** *** *** *** ***

Qz *** *** NS *** *** *** *** *** *** *** *** *** ***

wSFW—Stem fresh weight; LFW—Leaf fresh weight; FFW—Inflorescence fresh weight; SDW—Stem dry weight;
LDW—Leaf dry weight; FDW—Inflorescence dry weight—NS: not significant (p > 0.05); Significancex at * p ≤ 0.05,
** p ≤ 0.01, and *** p ≤ 0.001; Ly, linear; Qz, quadratic in regression analysis. The data represent the means and
standard errors (n = 3). Different letters indicate significant differences among treatments at the level of 5%,
according to Tukey’s test.

3.2. Analysis of Female Hemp Cannabinoids Content According to DIN Concentration

The CBDA content of the leaves and inflorescences of the female hemp plants were
the lowest in the control group, at 20.54 mg·g−1 and 56.80 mg·g−1, respectively, but there
was no statistically significant difference among the groups (including the control group
(0 mg·L−1)). The THCA content of female hemp leaves was the lowest in the control
group at an average of 0.96 mg·g−1, but there was no significant difference among the
treatment groups. The THCA content of the inflorescences too was the lowest in the control
group; the THCA contents of the DIN 25 mg·L−1, 50 mg·L−1, and 100 mg·L−1 treatment
group showed increases of 23.96%, 23.18%, and 22.00%, respectively, compared to the
control group. However, there were no significant differences in THCA content among the
treatment groups (25 mg·L−1, 50 mg·L−1, 100 mg·L−1, 200 mg·L−1, and 400 mg·L−1), except
for the control group. The total CBD and CBDA content of the leaves and inflorescences
did not show statistically significant differences among all treatment groups. Similarly,
there was no significant difference observed in the total ∆9-THC and THCA content of the
leaf and inflorescence. The total ∆9-THC content was similar to the THCA content. The
control group had the lowest total ∆9-THC content of 0.85 mg·g−1 for leaves on average,
and the highest value of 1.24 mg·g−1 was observed in the DIN 100 mg·L−1 treatment group.
However, no statistically significant differences were observed between the control and
treatment groups. The total ∆9-THC content of the inflorescences was the lowest in the
control group at 4.95 mg·g−1, whereas the highest was observed in the DIN 25 mg·L−1

treatment group at 5.15 mg·g−1 (Table 3).
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Table 3. The cannabinoid contents of female hemp (Cannabis sativa L. ‘Hot blonde’) leaves and
inflorescences grown in the different diniconazole concentrations. The control group did not receive
the additional diniconazole treatment.

Diniconazole
Concentration

(mg·L−1)

wCBDA
(mg·g−1) CBD ∆9-THC THCA Total CBD Total ∆9-THC

Leaf Inflorescence Leaf Inflorescence Leaf Inflorescence Leaf Inflorescence Leaf Inflorescence Leaf Inflorescence

Control
20.54
±

1.08

56.80 ±
2.24

0.12
±

0.022

0.76 ±
0.08 c

0.0124 ±
0.0009 ab

0.09 ±
0.0007

0.96
±

0.045

5.56 ±
0.027

18.14
±

0.9781

50.57 ±
2.057

0.85 ±
0.041

4.97 ±
0.024

25
23.20
±

1.61

62.73 ±
1.16

0.13
±

0.019

1.32 ±
0.07 a

0.0107 ±
0.0003b

0.11 ±
0.0056

1.10
±

0.107

5.75 ±
0.216

20.48
±

1.4305

56.34 ±
1.484

0.97 ±
0.094

5.15 ±
0.193

50
24.40
±

1.12

62.45 ±
1.90

0.14
±

0.025

1.34 ±
0.07 a

0.0106 ±
0.0013b

0.10 ±
0.0087

1.17
±

0.065

5.71 ±
0.278

21.54
±

1.0001

56.12 ±
1.694

1.04 ±
0.057

5.11 ±
0.252

100
25.33
±

0.62

58.61 ±
2.68

0.14
±

0.027

1.33 ±
0.02 a

0.0132 ±
0.0013 ab

0.09 ±
0.0008

1.39
±

0.153

5.77 ±
0.081

22.36
±

0.5554

52.73 ±
2.335

1.24 ±
0.134

5.15 ±
0.072

200
25.35
±

0.32

61.47 ±
0.92

0.07
±

0.001

0.85 ±
0.04 bc

0.0171 ±
0.0001 a

0.09 ±
0.0001

1.16
±

0.010

5.74 ±
0.118

22.31
±

0.2901

54.76 ±
0.767

1.03 ±
0.009

5.14 ±
0.104

400
24.43
±

1.37

60.98 ±
0.09

0.07
±

0.024

1.08 ±
0.01 ab

0.0169 ±
0.0013 a

0.10 ±
0.0030

1.21
±

0.110

5.64 ±
0.102

21.49
±

1.2308

54.56 ±
0.065

1.08 ±
0.098

5.05 ±
0.087

Significancex NS NS NS *** ** NS NS NS NS NS NS NS
Ly * NS NS NS *** NS NS NS * NS NS NS
Qz ** NS * * *** NS * NS ** NS * NS

wCBDA—Cannabidiolic acid; CBD—Cannabidiol; ∆9-THC—∆9-Tetrahydrocannabinol; THCA—
Tetrahydrocannabinolic acid; NS: not significant (p > 0.05); Significancex at * p ≤ 0.05, ** p ≤ 0.01 and
*** p ≤ 0.001; Ly—linear; Qz—quadratic in regression analysis. The data represent the means and standard
errors (n = 3). Different letters indicate significant differences among treatments at the level of 5%, according to
Tukey’s test.

3.3. DIN Treatment Contributes to the Contents of Major Cannabinoids in Female Hemp

The total contents of major cannabinoids in the female hemp grown in a fully con-
trolled plant factory for nine weeks varied depending on the concentration of DIN during
treatment (Figure 4). The total CBD and total ∆9-THC contents of the inflorescences were
1276.67 (mg·g−1 DW)·(mg/plant DW) and 116.76 (mg·g−1 DW)· (mg/plant DW), respec-
tively, at a DIN concentration of 25 mg·L−1, representing an increase of 37.3% and 27.6%
compared to the control group. Except for the DIN 25 mg·L−1 treatment group, the to-
tal contents of CBD and total ∆9-THC of the inflorescences decreased for all treatment
groups compared to the control group, and the decrease became more pronounced as
the DIN concentration increased. Although the total CBD and total ∆9-THC contents of
the leaves were highest in the control group at 839.96 (mg·g−1 DW)·(mg/plant DW) and
39.65 (mg·g−1 DW)·(mg/plant DW), respectively, there were no significant differences com-
pared to the DIN 25 mg·L−1 and 50 mg·L−1 treatment groups. None of the DIN treatment
groups showed an increase in the total contents of CBD and total ∆9-THC in the leaves,
unlike that in the case of the inflorescences, and there was a tendency for the contents to
decrease as the DIN concentration increased.
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4. Discussion

DIN is a plant growth regulator belonging to the triazole class of fungicides that
inhibits GA biosynthesis, resulting in reduced cell elongation and division, ultimately
leading to the production of dwarf plants [37]. By inhibiting the oxidation and methylation
of ent-kaurene, a precursor of GA, via phytochrome P450, the application of triazole
suppresses the biosynthesis of GA [36]. Treating peanut plants (Arachis hypogaea L.) with
DIN led to decreases of 33%, 16%, and 19% in plant height, leaf area, and leaf dry weight,
respectively, when compared to the control group [44]. Similarly, treatment of tomato
seedlings with DIN at a concentration of 30 mg·L−1 resulted in reductions of 27.40%, 4.80%,
23.20%, 20.70%, and 27.05% in plant height, leaf number, leaf area, shoot fresh weight,
and dry weight, respectively, compared to the control group [45]. These results show a
trend similar to those of this study and are commonly attributed to the general effects of
DIN. Interestingly, in this study, inflorescence growth showed the highest increase in the
DIN 25 mg·L−1 treatment group compared to the control group. Paclobutrazol, a triazole
similar to DIN, at a concentration of 500 mg·L−1, when exogenously applied, increased
flower bud size and flowering rate in apples (Malus domestica), whereas treatment with
GA3 (750 mg·L−1) had the opposite effect [46].

Goldberg-Moeller et al. [47] demonstrated that treatment with GA resulted in a de-
crease in the number of flower buds in Citrus reticulata Blanco × Citrus temple Hort. ex
Y. Tanaka. Additionally, the application of GA3 at a concentration of 40 mg·L−1 as a
flower induction agent to sweet orange (Citrus sinensis L. Osbeck) decreased the number of
flowers per 100 nodes by 72% compared to the control group. In contrast, treatment with
paclobutrazol at 2000 mg·L−1 increased the number of flowers per 100 nodes by 123% [48].
According to Yamaguchi et al. [49], elevated levels of gibberellin lead to the cessation of
vegetative growth and upregulation of transcription factor-encoding genes, such as SPLs
and LFY. An elevation in gene expression results in a decline in the GA concentration and
an amplification in the activity of the DELLA protein. Consequently, the DELLA protein
stimulates SPL9 and LFY, which trigger the formation of flowers by activating AP1 [49]. In-
hibiting gibberellin with DIN is anticipated to have a positive impact on the floral biomass
of hemp by increasing the growth rate, bud size, and number of buds. Nonetheless, it is
important to note that the effects of chemical growth regulators like DIN on flowering may
differ depending on the plant species and application timing [50].

Female Cannabis sativa is predominantly grown for the production of cannabinoids
as they can accumulate the highest concentration of cannabinoids in their unaltered
flowers [51]. Two pathways, the fatty acid oxidation pathway and the methylerythritol
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4-phosphate (MEP) pathway, are involved in the biosynthesis of cannabinoids in Cannabis
sativa. These pathways result in the production of olivetolic acid (OA) and geranyl diphos-
phate (GPP), respectively [52]. CBGA is produced through the prenylation of OA and GPP
in the plastids, with the involvement of several enzymes, including DXP synthase (DXS),
an enzyme in the MEP pathway [53]. The activity of DXS was found to decrease when
exogenous GA3 was applied to flowering Cannabis sativa, particularly in male plants,
compared to female plants [54]. Moreover, applying GA3 to the leaves of Cannabis sativa
during vegetative growth led to a reduction in DXS activity [55]. The study did not find a
significant difference in the total CBD and ∆9-THC contents after DIN treatment, which
may be due to the increase in DXS caused by GA inhibition. However, the lack of statistical
significance is thought to be due to the use of female Cannabis sativa in the study.

In a vertical farming system, plants with smaller sizes, like leafy vegetables and herbs,
can be cultivated in multiple layers, resulting in higher yields per unit of height [56,57]. To
accommodate larger plants such as tomatoes or peppers, alternative cultivation techniques,
specific plant varieties, and gene editing technology can be employed to regulate their
size [56,58]. This allows for the creation of dwarf plants, which maximizes cultivation
space and enhances overall efficiency [59]. Environmental factors, including light, temper-
ature, humidity, carbon dioxide (CO2) levels, and nutrients, are precisely controlled in a
vertical farming system to ensure optimal plant growth and productivity in a multi-tiered
indoor setup [60]. By effectively managing these factors, morphological changes can be
induced in tall plants, contributing to their successful integration into the vertical farming
system [61–64]. However, it is crucial to select varieties that are well-suited for each specific
vertical farming setup when integrating tall plants like hemp. This careful selection signifi-
cantly influences the plant’s growth, yield, and overall profitability of the vertical farming
system. Additionally, choosing the most appropriate cultivation methods tailored to the
target crop is essential for maximizing efficiency and profitability. In summary, in a vertical
farming system, the choice of suitable plant varieties, utilization of cultivation techniques,
and precise control of environmental factors are key considerations for integrating tall
plants and ensuring successful and profitable cultivation.

5. Conclusions

The decrease in plant stature holds significance in vertical farming setups that employ
artificial illumination, as it can result in enhanced yield per unit area. Triazole, encom-
passing diniconazole (DIN), stands out as one of the most effective agents in the realm of
agriculture. The results of this study exhibited the capability of DIN to curtail the vertical
growth of hemp within vertical farming systems, thereby economizing cultivation space.
We identified the optimal concentration of DIN (25 mg·L−1) that promotes increased in-
florescence production, which is a vital organ in hemp. Our findings put forth potential
avenues for exploring treatment methodologies applicable to hemp cultivation in vertical
farming systems. Although we assessed growth parameters and cannabinoid content in
response to the DIN application, ascertaining the potential existence of pesticide residues
within hemp remains beyond our scope. Moreover, the agricultural implementation of tria-
zoles occasionally carries the risk of environmental toxicity. Consequently, the utilization
of DIN should be determined in compliance with pesticide regulations, which may exhibit
variability across different countries.
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