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Abstract: Physically-based parameter estimations are essential to improve the simulation perfor-
mance of a hydrologic model and to produce physically reasonable parameters with spatial consis-
tency. This study proposed a parameter derivation strategy to improve the Sacramento Soil Moisture
Accounting (SAC-SMA) model simulation performance based on the publicly accessible Harmonized
World Soil Database (HWSD). The HWSD soil properties were used to estimate the soil moisture
characteristics, and the HWSD soil texture classifications and International Geosphere-Biosphere
Programme (IGBP) land cover types were used to identify the Soil Conservation Service (SCS) runoff
curve number (CN). After the soil moisture characteristics and CNs were identified, the major param-
eters of the SAC-SMA model were derived. The simulation results were evaluated using the Nash
efficiency coefficient (NSEC), and Free Search (FS) algorithm was used to further adjust and calibrate
the parameters. Compared with the simulation accuracy (NSEC = 0.66~0.88) and parameter transfer-
ability (NSEC = 0.22~0.83) obtained for the SAC-SMA model using directly calibrated parameters,
the HWSD data-derived parameters allowed the SAC-SMA model to achieve a similar simulation
accuracy (NSEC = 0.65~0.86) and a better transferability (NSEC = 0.61~0.85).

Keywords: HWSD soil properties; SAC-SMA model; parameter derivation strategy; runoff simulation;
IGBP land cover

1. Introduction

Hydrologic models are effective tools to simulate and evaluate the quantity and qual-
ity of water resources and play an important role in crop planting structure adjustment
and food crop production in water shortage areas [1–6]. The successful application of
any hydrologic model greatly depends on its parameterization. However, hydrologic
model parameters generally cannot be readily derived from the physical characteristics of
basins, which greatly hinders the application of these models in geographically discrepant
regions [7,8]. Even if model parameters are related to observable physical characteristics,
some calibration of the priori parameters are still required because the basin-scale het-
erogeneities of physical characteristics and data uncertainties can both significantly affect
the estimation process [9,10]. A great deal of research has explored different hydrologic
model calibration approaches [11–14], these approaches often require years of historical
hydrometeorological data and are usually performed for a single basin [15–17]. The quality
and quantity of historical data can vary significantly among different regions and even
among different basins in the same region [1,7,18]. These differences can lead to nonoptimal
parameter values and can produce significant and inappropriate randomness in the spatial
distributions of model parameters [7,18–20]. Therefore, there is an urgent need to develop
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hydrological model calibration strategies that can derive parameters with physical and
spatial consistency.

The Sacramento Soil Moisture Accounting (SAC-SMA) model is a globally widely
used streamflow simulation system [21,22], including 11 major parameters and 5 minor
parameters [7,18]. The Hydrology Laboratory of the National Weather Service (NWS) Office
of Hydrologic Development has developed a groundbreaking approach that uses physical
relationships to derive 11 major parameters of the SAC-SMA model based on the State
Soil Geographic Database (STATSGO, at a scale of 1:250,000) [7,8]. Additionally, Anderson
et al. [19] improved the initial parameter estimation approach by using the Soil Survey
Geographic Database (SSURGO, at a scale of 1:24,000). However, STATSGO and SSURGO
are only available in the United States, and there is a lack of reliable soil databases globally.
Although the general parameter calibration approach can obtain the “optimal” parameter
sets for the SAC-SMA model, these “optimal” parameter sets are often spatially inconsistent
and physically unreasonable and are thus not suitable to be transferred to other nearby
basins. Therefore, it is necessary to develop a generalized strategy to produce spatially
consistent and physically realistic parameters for use in the SAC-SMA model by applying
an available soil database with global coverage.

The Harmonized World Soil Database (HWSD) is a 30-arc-second database that inte-
grates varieties of regional soil datasets [23]. The HWSD provides 17 soil physicochemical
properties for topsoil (0–30 cm) and subsoil (30–100 cm), and its raster database consists
of 21,600 rows and 43,200 columns; 221 million grid cells cover the global land territory.
Over 16,000 different soil property units have been harmonized and integrated into HWSD.
The soil database provides frequently-used soil properties worldwide and is widely used
in the establishment of hydrologic model databases [24,25], identification of root burial
depth [26], calculation of soil hydraulic properties [27], etc. To the best of our knowledge,
however, there is a lack of studies exploring the application of HWSD datasets in deriving
major parameters in the SAC-SMA model.

To overcome the above problems, we develop a SAC-SMA model parameter derivation
strategy to improve the performance of a model on the simulation of the runoff process. It
will benefit the application of the SAC-SMA model in the region that lacks soil properties
datasets. Specifically, we address the following problems. (1) Can HWSD data be used to
derive the major parameters required by the SAC-SMA model? (2) Compared to the directly
calibrated parameters, how does the SAC-SMA model perform using HWSD data-derived
parameters? (3) Compared to the directly calibrated parameters, is the transferability of the
HWSD data-derived parameters better? Section 2 describes the parameter derivation strat-
egy based on HWSD. The selected basins, dataset, and experiment designs are introduced
in Section 3, followed by the result in Section 4, and discussion in Section 5. Finally, the
conclusion is given in Section 6.

2. Methodology

Based on the approach of Koren et al. [7], once the soil moisture characteristics and
the United States Soil Conservation Service (SCS) runoff curve number (CN) are esti-
mated, the major parameters of the SAC-SMA model can be derived. In this paper, we
attempt to derive these parameters using the HWSD soil properties and the International
Geosphere-Biosphere Programme (IGBP) land cover types; we aim to provide a more
general parameter derivation strategy while considering the physical characteristics of
parameters (see Figure 1). First, the soil moisture characteristics are estimated using the
sand (S), clay (C), and organic carbon (OC) contents listed in the HWSD. Second, the HWSD
soil texture classifications and IGBP land cover types are used to identify the CN values.
Third, a priori estimates for the major parameters of the SAC-SMA model based on the
above two points. Fourth, the major and minor parameters of the SAC-SMA model are
further adjusted or calibrated using a population-based optimization algorithm, namely
Free Search (FS).
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Figure 1. Decision-making procedure of deriving SAC-SMA model parameters based on HWSD
soil properties.

2.1. SAC-SMA Model Parameter and Soil Moisture Characteristic Relationships

The parameters of the SAC-SMA model are shown in Table 1. The relationship between
the major parameters (highlighted in Table 1) and soil moisture characteristics is shown in
Appendix A, and these soil moisture characteristics are saturated moisture content (θs), field
capacity (θfc), wilting point (θwp), saturated hydraulic conductivity (Ks), and specific yield
of soil (µ). To relate the major parameters to soil moisture characteristics, Koren et al. [7,8]
assumed that the total depth of the upper and lower layers in the SAC-SMA model (Zmax)
was equal to the total depth of the STATSGO soil profile, and the split between the upper
and lower soil layers (Zup) was determined by utilizing the initial rain abstraction concept
derived from the runoff curve number method.

To estimate the soil moisture characteristics, the percentages of sand and clay were ob-
tained from the midpoint values of each textural class using the United States Department
of Agriculture (USDA) textural triangle, and these were related to soil moisture characteris-
tics using regression equations from Cosby et al. [28]. Experimental data reported by Clapp
et al. [29] were used to estimate Ks, while an empirical relationship from Armstrong [30]
was used to estimate µ. A simplified approach was used to estimate CN values based on
the USDA Hydrologic Soil Group Grid (HSG) assuming ‘pasture or range land use’ under
‘fair’ hydrologic conditions for the entire region. These relationships are reported in Koren
et al. [7].

However, according to Clapp et al. [29] and Cosby et al. [28], the sand, clay, and Ks
can be obtained for only 11 USDA soil textures, silt soil properties are lacking and Ks is
empirical. It should be noted that the HWSD classifies clay soils into heavy clay and light
clay, so the HWSD has 13 USDA soil textures (see Figure 2). Therefore, it is necessary to use
other approaches to estimate the 13 USDA soil moisture characteristics using the HSWD
soil properties.
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Table 1. SAC-SMA model parameters and their feasible ranges or default value [7,18].

No. Parameter Description Range or Default Value

1 UZTWM Upper-layer tension water capacity, mm 10–300
2 UZFWM Upper-layer free water capacity, mm 5–150
3 UZK Interflow depletion rate from the upper-layer free water storage, day−1 0.10–0.75
4 LZTWM Lower-layer tension water capacity, mm 10–500
5 LZFSM Lower-layer supplemental free water capacity, mm 5–400
6 LZFPM Lower-layer primary free water capacity, mm 10–1000
7 LZSK Depletion rate of the lower-layer supplemental free water storage, day−1 0.01–0.35
8 LZPK Depletion rate of the lower-layer primary free water storage, day−1 0.001–0.050
9 PFREE Fraction of percolated water going directly to lower zone free water storage 0.0–0.8
10 ZPERC Ratio of the maximum and minimum percolation rates 5–350
11 REXP Percolation equation exponent 1–5
12 ADIMP Maximum fraction of an additional impervious area due to saturation 0.0
13 PCTIM Permanent impervious area fraction 0.001
14 RIVA Riparian vegetation area fraction 0.001
15 RSERV Fraction of lower zone free water not transferable to lower zone tension water 0.0
16 SIDE Ratio of deep recharge to channel baseflow 0.3
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2.2. Estimation of Soil Moisture Characteristics Using HWSD

Saxton et al. [31] developed some equations for soil moisture characteristic estimates
based on soil texture and organic matter (OM). When θwp, θfc, and θs are defined as the soil
moisture contents at tensions of 1500, 33, and 0 kPa, respectively, the prediction equations
are expressed as follows [31]:

θ1500 = 1.14θ1500t − 0.02 (1)

θ1500t = −0.024 S
100 + 0.487 C

100 + 0.006OM + 0.005
(

S
100 × OM

)
− 0.013

(
C

100 × OM
)
+ 0.068

(
S

100 × C
100

)
+ 0.031 (2)

θ33 = 1.283θ2
33t + 0.626θ33t − 0.015 (3)

θ33t = −0.251 S
100 + 0.195 C

100 + 0.011OM + 0.006
(

S
100 × OM

)
− 0.027

(
C

100 × OM
)
+ 0.452

(
S

100 × C
100

)
+ 0.299 (4)

θs = θ33 + θ(s−33) − 0.097
S

100
+ 0.043 (5)
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θ(s−33) = 1.636θ(s−33)t − 0.107 (6)

θ(s−33)t = 0.278 S
100 + 0.034 C

100 + 0.022OM − 0.018
(

S
100 × OM

)
− 0.027

(
C

100 × OM
)
− 0.584

(
S

100 × C
100

)
+ 0.078 (7)

where θ1500 is the 1500 kPa moisture (wilting point) at normal density, in cm3·cm−3; θ1500t
is the first-solution 1500 kPa moisture, in cm3·cm−3; S, C, and OM are the sand, clay, and
OM contents in the soil, respectively, in %wt.; θ33 is the 33 kPa moisture (field capacity)
at normal density, in cm3·cm−3; θ33t is the first-solution 33 kPa moisture, in cm3·cm−3; θs
is the 0 kPa moisture (saturated) at normal density, in cm3·cm−3; θ(s-33) is the 0–33 kPa
moisture at normal density, in cm3·cm−3; and θ(s-33)t is the first-solution 0–33 kPa moisture,
in cm3·cm−3.

The saturated hydraulic conductivity is related to θs and θ33 as follows:

Ks = 1930(θs − θ33)
(3−λ) (8)

λ =
ln(θ33)− ln(θ1500)

ln(1500)− ln(33)
(9)

where λ is the slope of the logarithmic tension-moisture curve.
It should be noted that a conversion factor of 1.724 has historically been used to convert

the soil OC measurements into soil OM estimates [32]. Studies published since the end of
the nineteenth century have consistently shown that the 1.724 conversion factor is too small
for most soils. A factor of 2 was thus adopted in this research based on the assumption that
soil OM contains 50% carbon [33].

In addition, µ was calculated using an empirical formula from Koren et al. [7]:

µ = 3.5
(

θs − θ f c

)1.66
(10)

Based on Formulas (1)–(10), the S, C, and OC contents of the HWSD topsoil and
subsoil layers can be used to estimate the soil moisture characteristics at a grid scale of 30
arc seconds.

2.3. CN Value Identification

Hong et al. [34] reported an attempt to derive a global CN map using satellite remote
sensing and geospatial data and developed an approach for estimating CN values using a
function of the hydrologic soil group (HSG), land cover type, and hydrologic conditions. In
the research of Hong et al. [34] and Zeng et al. [35], global land cover data derived from the
Moderate Resolution Imaging Spectroradiometer (MODIS) were used as a surrogate for
land cover/use types, and the 17 land cover types were identified in the IGBP vegetation
classification scheme.

When the topsoil and subsoil soil moisture characteristics of the HWSD are used to
replace the upper and lower soil moisture characteristics of the SAC model, the upper-layer
HSG of the SAC-SMA model can be identified according to the USDA texture of the HWSD
topsoil (see Table 2), and the CN values can then be estimated using the HSGs, IGBP land
cover types, and hydrologic conditions (see Table 3).

Table 2. Hydrologic soil groups derived from soil properties [34,35].

HSG USDA Soil Texture Classification

A sand, loamy sand, or sandy loam
B silt loam, silt, or loam
C sandy clay loam
D clay loam, silty clay loam, sandy clay, silty clay, or clay
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Table 3. CN values derived from the IGBP land cover types and hydrologic soil groups [34–36].

Code IGBP Land Cover Type
CNs for Different HSGs Hydrologic

ConditionA B C D

1 Evergreen needleleaf forest 34 60 73 79 Fair
2 Evergreen broadleaf forest 30 58 71 77 Fair
3 Deciduous needleleaf forest 40 64 77 83 Fair
4 Deciduous broadleaf forest 42 66 79 85 Fair
5 Mixed forests 38 62 75 81 Fair
6 Closed shrublands 45 65 75 80 Fair
7 Open shrublands 49 69 79 84 Fair
8 Woody savannas 61 71 81 89 Fair
9 Savannas 72 80 87 93 Fair
10 Grasslands 49 69 79 84 Fair
11 Persistent wetlands 30 58 71 78 Fair
12 Croplands 67 78 85 89 Fair
13 Urban and built-up 80 85 90 95 Fair
14 Cropland/other vegetation mosaics 52 69 79 84 Fair
15 Snow and ice N/A N/A N/A N/A N/A
16 Barren or sparsely vegetated 72 82 83 87 Fair
17 Water N/A N/A N/A N/A N/A

After the CN values are identified, Zup can be calculated using formula A12. At this
point, the major parameters of the SAC-SMA model can be derived using Zup, Zmax, and
the soil moisture characteristics of the HWSD topsoil and subsoil layers. In the study of
Koren et al. [7], 25 percent of bounds from soil-derived parameters were used to adjust the
soil-derived parameters. Referring to this method, these priori major parameters will be
adjusted slightly in our study, and the FS was used in the automatic adjustment process. FS
is an optimization algorithm based on swarm intelligence, and a detailed description of
FS can be found in Penev et al. [37]; through testing, this algorithm has been shown to be
efficient in finding the global optimal parameters of hydrologic models [22,38].

3. Data and Experiments

The proposed strategy was applied to a real-world study in which runoff simulations
of several watersheds in the Hulan River basin in northeast China were obtained. Rainfall-
runoff simulations were generated in a lumped mode assuming that the input data and
model parameters were uniform over each analyzed watershed. According to the SAC-
SMA model simulation accuracy, the results of the application of the major parameters
derived from the HWSD data can be reflected in two aspects: the first is the applicability
of these major parameters, and the second is the transferability of these major parameters
to nearby basins. Between these two aspects, the former attempts to address the first two
research questions, and the latter attempts to answer the third research question.

3.1. Site and Data

Hulan River is a tributary of the Songhua River and has a length of 523 km [39], a
drainage area of 36,789 km2 [40], and an annual runoff of 3.38 billion m3 (according to
the statistical result of annual runoff at Lanxi station, the last station on the mainstream
Hulan River) [41]. Hulan River originates from the western piedmont of the Xiaoxinganling
Mountains, flows through the central part of the Heilongjiang Province of China, and
discharges into the Songhua River (see Figure 3). The average annual mean air temperature
in the Hulan River basin is 1.5 ◦C, and the average annual precipitation is 574.7 mm [40,41].
The discharge in the Hulan River basin is not only unevenly distributed throughout the year
but also varies greatly from year to year [39–41]. For example, during the analysis period
considered in this research, the ratios of the maximum to minimum interannual runoff (Rr)
in the analyzed basins ranged from 3.4 to 11.9, and the ratios of the interannual maximum
peak flow ranged from 5.6 to 13.0. The discharge was simulated at five hydrologic stations
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along the upper reaches of the Hulan River; the locations of these stations are shown in
Figure 3 and listed in Table 4.
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Table 4. List of basins selected for the analysis.

Basin Station Latitude Longitude Basin Elevation (m) Basin Area (km2) Rr Rp Analysis Period

1 Keyin 47.333 127.117 231.0 968 11.9 13.0 1976–1985
2 Geshan 47.350 127.483 363.7 2458 3.8 5.6 1968–1976
3 Fazhan 47.100 127.567 300.3 1802 3.7 6.3 1973–1982
4 Beiguan 47.117 128.233 450.2 939 3.4 18.3 1984–1993
5 Tieli 46.967 128.017 429.6 1838 6.5 6.8 1984–1993

The data required for the tests included a digital elevation model (DEM), land cover,
soil property, discharge, and meteorological data. A 3-arc-second DEM was downloaded
from the Geospatial Data Cloud [42]. The land cover type data were represented by data
downloaded from the website [43], and the database classifies the global land cover into
17 types at a 1-km resolution. The data representing the soil properties were provided by
the HWSD [44]. For this study, the utilized daily precipitation and discharge data were
provided by the China Hydrologic Yearbook, and the daily meteorological data (except the
precipitation data) were downloaded from the National Weather Information Center [45].

3.2. Experiment Design

In our study, 11 majority parameters were calibrated by two schemes: (1) directly
calibrated using the ranges listed in Table 1 (denoted as Scheme 1). (2) the parameters
were initially estimated as arithmetic averages at 30 arc seconds using the soil moisture
characteristics calculated using the S, C, and OC contents from the HWSD (denoted as
Scheme 2). These priori parameters of Scheme 2 had to be further adjusted slightly, and the
FS was used in all schemes.
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In this study, 5-year data was used in the calibration process, and the remaining data
(4–5 years) were used for the validation. The Nash-Sutcliffe model efficiency coefficient
(NSEC) [46] was used to assess the goodness of fit of the simulated flows:

NSEC = 1 − ∑(Qi,obs − Qi,sim)
2

∑
(
Qi,obs − Qobs

)2 (11)

where Qi,obs is the observed discharge on the ith day, in m3·s−1; Qi,sim is the simulated
discharge on the ith day, in m3·s−1; and Qobs is the average of all the daily observed
discharges, in m3·s−1.

In addition to NSEC, the considered statistical indicators also included the linear
correlation coefficient (R) and root mean square error (RMSE) between the observed and
simulated daily discharges.

4. Results
4.1. Parameter Applicability

The accuracy statistics of the hydrographs simulated using the calibrated and HWSD
data-derived parameters are shown in Table 5. As seen in the table, the directly cali-
brated parameters (Scheme 1) usually produced higher accuracies (NSEC = 0.66~0.88),
although this gain was not extremely significant when compared with the use of the HWSD
data-derived parameters (Scheme 2, NSEC = 0.65~0.86). For all basins, the simulation
performances under the two schemes were similar. When the NSEC was larger, the other
statistical indicators were also better (i.e., R was larger and the RMSE was smaller). How-
ever, differences could be seen in the simulation accuracies among different basins. Among
the analyzed basins, the discharge simulation results obtained for the Tieli station were the
best, the simulation results derived for the Geshan station were the worst, and the results
obtained for the other three stations were moderate. In general, the simulation results
obtained when using HWSD data-derived parameters were not extremely different from
those derived using the calibrated parameters, and this result indicates that it is feasible to
use HWSD-listed soil properties to derive the major parameters of the SAC-SMA model.
This result shows that in areas lacking soil databases such as STATSGO and SSURGO,
HWSD data can be used to derive the major parameters required by the SAC-SMA model.

Table 5. Accuracy statistics of hydrographs simulated using calibrated and HWSD data-derived
parameters for the analyzed basins.

Scheme Indicator Keyin Geshan Fazhan Beiguan Tieli

1
NSEC 0.83 0.66 0.78 0.80 0.88

R 0.91 0.81 0.88 0.90 0.94
RMSE (m3·s−1) 2.8 22.9 8.0 9.6 9.1

2
NSEC 0.78 0.65 0.73 0.79 0.86

R 0.89 0.81 0.86 0.90 0.93
RMSE (m3·s−1) 3.2 23.1 8.7 9.8 10.0

It can be seen from the observed and simulated hydrographs shown in Figure 4
that the performances of the two schemes when simulating the discharge process were
generally similar. However, both of the two schemes cannot perform well when simulating
peak runoff in some periods (see Figure 4d,e). There are two possible reasons for this
phenomenon. First, the data from only 25 precipitation stations were available (see Figure 3),
and the daily precipitation and discharge data were not sufficient to accurately simulate the
temporal and spatial changes in rainfall and runoff. Second, the daily series of discharge
in these five basins changed drastically, and the ratios of the interannual maximum peak
flow reached a maximum of 5.6 to 13.0 (see Table 4). Nevertheless, under the available data
conditions, the simulation results of the model were still acceptable.
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4.2. Parameter Transferability

In the Radar diagram shown in Figure 5, each basin has transferred its parameters to
the other 4 basins; thus, there are 20 parameter transfer results under each scheme. After
the parameters were transferred, the simulation accuracies of each basin under all schemes
were reduced. Compared with Scheme 1, the NS and R values of Scheme 2 are larger
and the RMSE values are smaller, indicating that the parameters of Scheme 2 have better
transferability (see Figure 5). Under Scheme 1, the model parameters directly calibrated
contain obvious uncertainties (see Figure 6a), although these parameters do make the
model achieve slightly better simulation results than Scheme 2 (see Table 5). However,
in Scheme 2, the model parameters were derived from the HWSD-listed soil physical
properties, and the spatial consistency of these soil physical properties ensures the relative
stability of the model parameters (see Figure 6b). Therefore, Scheme 2, in which HWSD
data-derived parameters were used, was the best parameter-transfer option in practice.

It was also found that the parameter-transfer quality has no significant relationship
with the previous simulation accuracy of the analyzed basins. In the following text, the
NSEC is used to discuss the parameter-transfer results of the two schemes, as shown in
Figure 7. First, the simulation accuracy of the basin providing the transferred parameters
did not determine the simulation qualities of the other basins using those parameters. For
example, in Scheme 1 Basin 5 had the largest NSEC (see Table 5); however, the simulation
accuracy of Basin 1 obtained under Scheme 1 after using the parameters derived for Basin 5
(NSEC = 0.36, see Figure 7a) was much lower than the simulation accuracy of the same basin
after using the parameters obtained for Basin 3 (NSEC = 0.73, see Figure 7a). Basin 2 had
the smallest NSEC value among all schemes (see Table 5); however, when its parameters
were transferred to the other basins, the simulation results of other basins were not the
worst. Second, when other basin parameters were adopted, the basin simulation accuracy
was not significantly related to the simulation accuracy obtained before the parameters
were transferred. For example, in all schemes, the NSEC value obtained for Basin 1 was
greater than that derived for Basin 3 (see Table 5). However, when the parameters of other
basins were applied, the simulation accuracies of Basin 1 were lower than or equal to that
of Basin 3 in most cases; only in Scheme 2 (NSEC = 0.74, see Figure 7b) was the accuracy
higher than that of Basin 3 (NSEC = 0.71, see Figure 7b) when the parameters derived for
Basin 4 were applied.
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5. Discussion

This article provides a method for estimating soil moisture characteristics using HWSD
data. This method can derive the major parameters of the SAC-SMA model at the grid scale
and then count these parameters to obtain basin averages. In this method, the S, C, and OC
contents listed in the HWSD were used alongside formulas to calculate the soil moisture
characteristics. The advantage of this method was that the soil moisture characteristics of
any grid could be estimated. The potential application of the second method was beneficial
with regard to the development of the conceptual SAC-SMA model into a finer-resolution,
high-dimensional grid model.

Compared to the directly calibrated parameters, the HWSD data-derived parameters
had better transferability and allowed the SAC-SMA model to achieve similar simulation
accuracies in this study. This conclusion is similar to that of Koren et al. [7], although
the number of soil layers, the soil profile depth, and the USDA soil texture classification
of the HWSD are different from those of STATSGO and SSUGO. Although the HWSD is
still very coarse compared to other soil databases, such as STATSGO and SSURGO, the
publicly available HWSD may currently be a preferred soil database for deriving the major
parameters of the SAC-SMA model in regions outside the United States.

Parameter calibration is an important step in the utilization and development of a hy-
drologic model for hydrologic simulation. The calibration of hydrologic model parameters
usually requires a large amount of hydrometeorological data, and it is extremely difficult to
estimate physical parameters, especially in basins that are typically data-poor or ungauged
on the ground. The priori parameter sets derived from HWSD soil property data can
reduce the manual calibration effort and/or accelerate the automatic calibration process,
reduce the calibration uncertainty, and provide valuable spatially consistent parameters for
ungauged basins. These spatially consistent and physically reasonable parameter sets are
especially suitable for flood simulations and flood forecasting in small watersheds that lack
calibration data (such as discharge data).

6. Conclusions

In this study, we developed a parameter-derivation strategy for the SAC-SMA model
mainly based on HWSD soil property information and verified the applicability of this
strategy in improving the performance of the model when runoff simulating five basins.
Based on the results, we obtained the following conclusions.

(1) The directly calibrated SAC-SMA model parameters have obvious uncertainties;
specifically, the spatial consistency and transferability of these parameters are not good.

(2) The HWSD soil data can be used to derive the major parameters of the SAC-SMA
model and allowed the SAC-SMA model to achieve a similar simulation accuracy as
that obtained using directly calibrated parameters.

(3) Compared with the directly calibrated parameters, the parameters derived from the
HWSD soil data had better transferability.

Therefore, further research should give more attention to updated HWSD versions and
the coupling applications of the HWSD and other datasets to improve the quality-derived
SAC-SMA model parameters.
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Appendix A

Below are the SAC-SMA model major parameter and soil moisture characteristic
relationships as they appeared in Koren et al. [7,8] and Anderson et al. [19].

Upper-layer parameters:

UZTWM = Zup

(
θ f c − θwp

)
(A1)

UZFWM = Zup

(
θs − θ f c

)
(A2)

UZK = 1 −
(

θ f c/θs

)n
(A3)

Lower-layer parameters:

LZTWM =
(
Zmax − Zup

)(
θ f c − θwp

)
(A4)

LZFSM =
(
Zmax − Zup

)(
θs − θ f c

)(
θwp/θs

)n (A5)

LZFPM =
(
Zmax − Zup

)(
θs − θ f c

)[
1 −

(
θwp/θs

)n
]

(A6)

LZSK =
1 −

(
θ f c/θs

)n

1 + 2
(
1 − θwp

) (A7)

LZPK = 1 − exp

[
−

π2KsD2
s
(
Zmax − Zup

)
∆t

µ

]
(A8)

PFREE =
(
θwp/θs

)n (A9)

ZPERC =
LZTWM + LZFSM(1 − LZSK) + LZFPM(1 − LZPK)

LZFSM × LZSK + LZFPM × LZPK
(A10)

Percolation parameters:

REXP =

(
θwp

θwp,sand − 0.001

)0.5

(A11)

Upper-layer depth: percolation parameters:

Zup =
5080/CN − 50.8

θs − θ f c
(A12)

where n is an empirical exponent; Ds is the stream channel density; ∆t is the time step, and
in the SAC-SMA model, it is equal to 24 h; and θwp,sand is the sand wilting point, in cm−3.
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