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Abstract: Soilless cultivation has increased in China. Like vegetables or ornamental plants, tomatoes
can be cultivated in soilless culture systems. Fusarium wilt (FW) is an economic tomato disease. The
nature and amount of volatile organic compounds in Trichoderma asperellum PT-15 were investigated,
and 6-pentyl-α-pyrone (6-PP) was detected. Furthermore, the effect of 6-PP on Fusarium oxysporum
HF-26 was evaluated. Results revealed that 25 mg/L 6-PP was the optimal concentration inhibiting
F. oxysporum HF-26 and that the content of fusaric acid decreased considerably compared to that
of the control. FUB1, FUB4, and FUB10 toxin synthesis and transport genes were downregulated.
Additionally, VelA, velB, and LaeA genes were downregulated, reducing F. oxysporum mycelial growth
and hyphae formation. 6-PP was added to the soilless culture solution in a greenhouse experiment.
The results showed that an antifungal–nutrient solution containing 25 mg/L 6-PP significantly
suppressed FW with 70.71% efficacy and a 27.23% disease index (DI), which were higher efficacy
and lower DI than that of the control. Furthermore, treatment with an antifungal–nutrient solution
containing 6-PP increased the levels of defence enzymes 24 h post-inoculation (hpi) compared with
those at other time periods. The relative expression levels of the PR1, NPR1, PR2, and PR5 genes
were considerably upregulated at 24 hpi.

Keywords: soilless culture; tomato fusarium wilt; Trichoderma asperellum PT-15; 6-pentyl-α-pyrone;
antifungal–nutrient solution

1. Introduction

Soilless culture is the cultivation of plants without soil and includes hydroponics,
aerosol, and substrate culture [1]. Substrate soilless culture uses solid, non-soil substrate
material to support crops and provide nutrients; it has become the primary method in
greenhouse vegetable cultivation because it is not affected by terrain, prevents soil-borne
diseases, reduces pesticide use, and improves crop quality [2,3]. However, the continuous
use of raw materials causes problems associated with continuous cropping, such as the
accumulation of soil-borne diseases. Several studies have reported that Fusarium wilt
(FW), caused by Fusarium spp., is the primary soil-borne disease in substrate vegetables
production due to the continuous use of substrates. FW occurs in cucumbers, tomatoes,
watermelons, eggplants, peppers, lettuce, and carnations, which are mainly infected with
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Fusarium oxysporum [4–8]. Currently, FW limits the production of vegetables in soilless
media [6].

Tomatoes can be cultivated in soilless culture systems [9]. FW, caused by Fusarium
oxysporum, is the primary disease of economic importance in soilless cultivation systems,
usually occurring in the middle-to-late growth stages (90–120 d) [4,10]. Various biological
agents, such as bacteria, fungi, and their metabolites, have been used to control FW in
tomato, cucumber, watermelon, and other crops [5,8,11]. The use of microbial volatile
organic compounds (VOCs) is a biological control strategy for plant disease management.
VOCs are a large group of carbon-based chemicals with low molecular weight, polarity,
boiling point, and high vapour pressure [12]. VOCs are often lipophilic and belong to
different chemical classes, such as alcohols, benzenoids, aldehydes, alkenes, acids, esters,
ketones, thiols, and their derivatives [13,14]. Many of these volatile compounds have
biotechnological applications in agriculture and industry [15]. There is an increase in the
use of VOCs from various Trichoderma species as fungicides. The genus Trichoderma has
been used as a biocontrol agent to enhance plant growth since the 1930s [16]. Trichoderma
species produce various VOCs [17,18]. However, 6-pentyl-α-pyrone, known as pyrone
6-pentyl-2H-pyran-2-one (6-PP), is the most common substance metabolised and volatilised
by Trichoderma [19]. It is a type of compound with a six membered lactone ring skeleton,
and its physical and chemical properties are similar to olefins and aromatic compounds.
α- Pyranone, an important substructure of various natural products, exhibited extensive
diversity in structure and function and played an important role in microbial metabolism
and defense processes [20]. Trichoderma has various actions against phytoparasitic fungi,
such as restricting spore germination, mycelial pigmentation, and hyphal growth [21].
Furthermore, 6-PP reduces the fusaric acid and mycotoxin deoxynivalenol production by
Fusarium moniliform and graminearum, respectively [22,23]. Additionally, 6-PP is a post-
harvest food-grade volatile compound [24]. In commercial production, large amounts
of 6-PP can be produced by Trichoderma asperellum via forced aeration in a solid-state
fermentation system [25].

Currently, substrate replacement is the primary method used to eliminate the prob-
lems associated with continuous cropping in substrate cultivation. However, the method
wastes substrate and increases production costs [26,27]. Therefore, it is important to de-
velop new methods of preventing soil-borne diseases and alleviating problems associated
with continuous cropping. Lin et al. (2014) [28] reported that waste materials from the
vinegar industry, after stacking and fermentation, are used singly or in combination with
different proportions (volume ratios) of peat and vermiculite to ameliorate cucumber FW
considerably. Moreover, the microbiota that develops in a multiple parallel mineralisation
system (MPM) can suppress F. oxysporum and Bremia lactucae. A previous study revealed
that adding MPM culture solution to non-soil carriers (rockwool, rice husk charcoal, and
vermiculite) in soilless cultures reduced diseases and increased plant growth [29]. However,
there are few reports on the control of FW in soilless cultivation, particularly the application
of the antibiotic substance 6-PP in nutrient solutions.

In our previous study, T. asperellum PT-15 inhibited Verticillium wilt in potatoes [30].
The present study aimed to determine the type and quantity of VOCs in T. asperellum PT-15,
identify the target substance 6-PP, and test the inhibitory effects of 6-PP on F. oxysporum
HF-26 cells. Additionally, the present study aimed to determine the inhibitory effect
of 6-PP added to the nutrient solution of the soilless culture on tomato FW to develop
an environmentally friendly fungicidal nutrient solution for soilless culture media. The
present study is expected to contribute to preventing and controlling FW and the problems
associated with continuous cropping in soilless cultivation.

2. Materials and Methods
2.1. Fungal Isolates and Plants

T. asperellum PT-15 (GenBank: OQ675158) was obtained from the Fungus Preservation
Collection of the Inner Mongolia Agricultural University, Hohhot, China. F. oxysporum HF-
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26 (GenBank: OQ675162) was isolated from FW-infected tomato plants planted in soilless
planting media at the Yimin Hongtai Agriculture Co., Ltd., Hohhot, China. T. asperellum
PT-15 and F. oxysporum HF-26 were cultured in potato dextrose agar (PDA) and stored
at 25 ◦C in the dark for 7 days, and then cultured in potato dextrose broth on a rotator
at 180 rpm and 25 ◦C for 7 days in the dark for conidial production. The concentration
of conidial suspensions was adjusted to 1 × 107 conidia mL−1 using a hemocytometer
(Bioevopeak Co., Ltd., Jinan, China) with sterile distilled water for inoculation.

6-pentyl-α-pyrone was bought from Shanghai Macklin Biochemical Co., Ltd. (Shang-
hai, China).

Tomato plants (variety1617) were purchased from Mengmiao Agricultural Technology
Co., Ltd., Hohhot, China.

2.2. Collection of T. asperellum PT-15 Volatile Compounds and Gas Chromatography-Mass
Spectrometry

In our previous study, T. asperellum PT-15 had the highest inhibitory activity against
Verticillium wilt in potatoes [29]. Therefore, in the present study, T. asperellum PT-15 was
analysed to identify VOCs using purge-and-trap gas chromatography-mass spectrometry
(GC-MS) to extract 6-PP. T. asperellum PT-15 grown in PDA for 7 days was used for the
study. The control group comprised plates with PDA only.

2.2.1. Sample Extraction

Following the method by [31] for sample extraction, 1 g mycelium was prepared and
put into a 15 mL extraction vial. Next, 5 mL boiling distilled water was added, and the
mycelium was extracted and absorbed at 600 r/min, placed in a water bath at 80 ◦C for
60 min, and analysed for 10 min using GC/MS.

2.2.2. Gas Chromatography Conditions

A chromatographic column DB-WAX (30 m × 0.25 mm × 0.25 µm [Agilent, Santa
Clara, CA, USA]) at 240 ◦C inlet temperature was used. Helium (purity > 99.999%) was
used as the carrier gas, the column flow rate was 1 mL min−1, and the split ratio was 10:1.
The heating procedure was 35 ◦C for 5 min, at the rate of 2 ◦C min−1 to 100 ◦C, kept for
1 min; and heated at a rate of 5 ◦C min−1 to 240 ◦C for 2 min.

2.2.3. Mass Spectrometry Conditions

The mass spectrometer (Oxford Instruments, Abingdon, England) was operated in
230 ◦C Ion source temperature, 240 ◦C interface temperature, 70 eV electron ionization
mode, 1161 V electron multiplier voltage, and 35–550 u mass scan range in full scan mode.
Chemical identification of the compounds was performed by comparing spectra the results
with library mass spectra from the National Institutes of Standards and Technology, EPA-
NIH, and Wiley libraries. If no match was found, manual mass spectral interpretation was
used. Quantification was conducted using a toluene-d 8 internal standard by calculating
the peak area ratio of the compound of interest to that of the internal standard, which
was added at a known concentration. Volatile compounds in the control (PDA only) were
removed from the VOCs profiles.

2.3. Effect of 6-PP on F. oxysporum HF-26 Mycelial Growth

PDA media was amended with 0 (control), 10, 20, and 25 mg L−1 6-PP. An 8 mm
mycelial plug taken from the leading edge of 7-day-old F. oxysporum HF-26 colonies was
inoculated into the centre of the plate with amended PDA medium and incubated in a
growth chamber at 25 ◦C for 7 days. Colony diameter was determined by measuring
the average of two perpendicular lines on each plate. Data on each concentration was
measured on the three replicates.
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2.4. Effect of 6-PP on F. oxysporum HF-26 Fusaric Acid Synthesis

Mycelium (2 g) was placed in a 15 mL centrifuge tube, and 5 mL ethyl acetate was
added, centrifuged at 5000 r/min for 10 min, and ultrasonicated at low temperature for
15 min. The supernatant was placed into another 15 mL centrifuge tube. The extraction was
repeated thrice, and the supernatant from the three replicates was composited, freeze-dried
at low temperature, dissolved in 0.5 mL chromatographic grade methanol at a constant
volume, shaken and mixed for 5 min, and filtered through a 0.22 µm membrane for testing.
The prepared samples were analysed using an Agilent 1200 High-performance liquid chro-
matography system (G1313A, Shanghai Weisu Biotechnology Co., Ltd., Shanghai, China).
For the test conditions, the detection was done using a DAD C18 column (250 × 4.6 mm;
0.5 µm [Shanghai Weisu Biotechnology Co., Ltd.]) with a column temperature of 25 ◦C,
flow rate of 1 mL/min, a wavelength of 270 nm, moving phase solvent used was methanol:
0.1% formic acid water at 90:10 (V:V), and the sample size was 20 µL.

2.5. Real-Time Quantitative Reverse Transcription Polymerase Chain Reaction

Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR was
performed on F. oxysporum HF-26 to examine differences in the transcript levels of genes
associated with the biosynthesis of fusaric acid [32,33] and pigments [34]. The mycelia of
the F. oxysporum HF-26 isolate were prepared as described in Section 2.1. Total RNA was
isolated from F. oxysporum HF-26 mycelia using an RNA extraction kit (TaKaRa Bio Inc.,
Shiga, Japan) according to the manufacturer’s protocol. First-strand cDNA was generated
from RNA using the Primer Script RT Master Mix (TaKaRa Bio Inc.). In the present study,
the actin gene was used as an internal control, and all primers used for qRT-PCR are listed
in Table S1. qRT-PCR was carried out in a 10 µL reaction mixtures containing 6 µL TB
Green ® Premix Ex Taq™ (Tli RNaseH Plus; TaKaRa Bio Inc.), 0.4 µL of each primer, and
0.8 µL templated DNA. All qRT-PCRs were performed using a QuantStudio5 real-time
detection system (Thermo Fisher Scientific, Waltham, MA, USA). Each sample was analysed
twice in three independent biological experiments. With a related actin gene (Foxq13729)
as the reference gene, relative expression levels of target genes were calculated according
to the 2−∆∆Ct method [35].

2.6. Greenhouse Experiments

Based on the above results, the 6-PP optimal concentration for inhibiting F. oxysporum
HF-26 was selected and added to the soilless culture nutrient solution considering the
rates used for the Hoagland nutrient solution [36]. The new nutrient solution formula had
1360, 100, 500, 270, 3.0, 1.6, 0.28, 0.12,0.10, 20, and 25 mg/L of Ca (NO3)2, KNO3, MgSO4,
NH4H2PO4, H3BO3, MnSO4, ZnSO4·7H2O, CuSO4·5H2O, Na2MoO4, Na-Fe Ethylenedi-
aminetetraacetic acid, and 6-PP, respectively. The solution pH was adjusted to 6.5–7.0, and
the solution electrical conductivity ranged between 1.8–2.0 S/m.

Tomato plants were planted in a soilless cultivation system dominated by Rockwool
and regularly watered with a nutrient solution. After 20 days of growth in the system,
tomatoes were inoculated with a spore suspension with 1 × 107 conidia mL−1, and FW
incidence was recorded after 20 days. Three groups were established for this experiment.
The standard nutrient solution without 6-PP was used as a negative control, and the
nutrient solution containing carbendazim [4] was used as the positive control. The nutrient
solution containing 6-PP was the treatment group. Each group had three replicates, with 15
tomato plants per replicate.

FW infection was determined using four rating scales, as described as follows [4]:
0: No infection.
1: Slight infection of approximately 25% with one or two leaves turning yellow.
2: Moderate infection with two or three leaves turning yellow and 50% wilting.
3: Extensive infection with all plant leaves turning yellow, 75% wilting, and growth

inhibited.
4: Complete infection with all plant leaves turning yellow, wilting, and plant death.
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The disease index (DI) was then calculated as follows [4]:

DI = ∑
scale × number of plants infected

highest scale × total number of plants
× 100

Prevention or curative effects (%) =
disease index of the control − disease index of fungicide treatment

disease index of the control
× 100

2.7. Determination of Reactive Oxygen Species and the Activity of Defence-Related Enzymes
and Genes

To determine the effects of the nutrient solution containing 6-PP on defence-related
enzymes and genes related to the tomato disease defence mechanism, the content of related
defence-related enzymes and the relative expression levels of defence-related genes in
tomato leaves was determined at 0, 12, 24, and 48 h post-inoculation (hpi) with 1 × 107

conidia mL−1. H2O2 accumulation and catalase (CAT), peroxidase (POD), and superoxide
dismutase (SOD) activities were measured according to the operating instructions of
the H2O2, CAT, POD, and SOD respective test kits purchased from Sino Best Biological
Technology Co., Ltd. Shanghai, China. The relative expression levels of defence genes were
determined using qRT-PCR, as described in Section 2.5. The genes and primers used in
the present study are listed in Table S1. The nutrient solution containing 6-PP was used
in the treated group, and the standard nutrient solution (without 6-PP) was used in the
control group.

The experiments were replicated thrice, with six leaves per replicate.
According to the operating instruction.

2.8. Statistical Analysis

Data from repeated experiments were combined for homogeneity before analysis. All
data were processed and analysed using SPSS software (version 25.0; SPSS Inc., Chicago, IL,
USA). When significant results (α = 0.05) were obtained after analysis of variance, means
were separated using Fisher’s least significant difference.

3. Results
3.1. Analysis of VOCs Produced by T. asperellum PT-15

Based on the mass spectral properties, 55 unique VOCs were identified, including
alcohols, aldehydes, ketones, esters, alkenes, alkanes, alkynes, organic acids, benzenes,
terpenes (Table 1), and 6-PP (Figure S1).

Table 1. Volatile organic compounds identified from Trichoderma asperellum PT-15 by gas
chromatography-mass spectrometry.

Serial
Number Compound Retention

Time (min) Area (%) Molecular
Formula

Molecular
Weight

1 1-Propanamine 3.78 0.02 C3H9N 59.11
2 2-Methyl-pentanal 4.06 1.28 C6H12O 100.16
3 2-Methyloctanal 4.30 1.31 C9H18O 142.24
4 Ethanol 4.53 21.94 C2H6O 46.07
5 Glycylglycine 4.55 20.84 C4H8N2O3 132.12
6 Pentanal 5.16 0.11 C5H10O 86.13
7 4-Hexyl-1,3-oxazolidin-2-one 5.37 0.66 C9H16NO2 170.23
8 Ethyl propionate 4.74 0.02 C5H10O2 102.13
9 Acetonitrile 5.67 0.27 C2H3N 41.05
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Table 1. Cont.

Serial
Number Compound Retention

Time (min) Area (%) Molecular
Formula

Molecular
Weight

10 N-Methyl-2-cyanopyrrole 7.91 0.05 C6H6N2 106.13
11 N-Butyl propionate 8.06 0.74 C7H14O2 130.18
12 2-Propanone 8.46 1.57 C3H6O 58.08
13 7,7-Dimethylcycloheptatriene 8.60 6.46 C9H12 120.19
14 8,9-Epithio-1-p-menthene 8.96 0.00 C10H16S 168.3
15 Methane-sulfonic anhydride 9.28 0.02 C2H6O5S2 174.2
16 3-Methyl-1-Butanol 9.35 13.46 C5H12O 88.15
17 Ethyl hexanoate 9.70 0.04 C8H16O2 144.21
18 1,2-Ethanediol,diethylether 10.10 0.23 C6H12O2 116.16
19 (S)-1,1-Diethoxy-2-propanamine 10.19 0.76 C7H17NO2 147.13
20 3-Octanone 10.22 4.26 C8H16O 128.21
21 Styrene 10.32 0.19 C8H8 104.14
22 Trans-β-methyl-styrene-α,β-d(2) 10.57 0.07 C9H8D2 120.19
23 Acetoin 10.83 0.17 C4H8O2 88.11
24 Propanoic acid 11.09 0.14 C3H6O2 74
25 Tetradecane 12.14 0.31 C14H3O 198.39
26 Acetic acid 13.19 0.05 C2H4O2 61.04
27 Ethanethioic acid S-ethyl ester 13.26 0.08 C4H8OS 104.17
28 3-Furaldehyde 13.39 0.09 C5H4O2 96.08
29 3-Methyl Pentadecane 14.46 0.04 C16H34 226.44
30 9-Oxabicyclo[6.1.0]non-2-ene 15.50 0.03 C8H12O 124.18
31 2-Phenylethanal 15.52 0.01 C8H8O 120.15
32 1-Cyano-5-benzoyloxy-β-D-ribofuranose 15.84 0.16 C13H13NO5 263.25
33 Hexacosane 16.11 0.05 C26H54 366.71
34 1-Eicosanol 16.25 0.04 C20H42O 298.55
35 3-Methylthio propanol 16.46 0.02 C4H10OS 106.19
36 Chavicol 16.52 0.02 C9H10O 134.18
37 Methoxy-phenyl-Oxime 16.65 0.08 C8H9NO2 151.16
38 Naphthalene 16.96 0.07 C10H8 128.18
39 Isophthalaldehyde 17.78 0.06 C8H6O2 134.13
40 2,3-diethoxybutane 17.89 0.03 C8H18O2 146.23
41 2-Methyl-Naphthalene 18.15 0.01 C11H10 142.2
42 Methylnaphthalene 18.24 0.02 C11H10 142.2
43 Phenylethyl Alcohol 18.68 0.63 C8H10O 122.18
44 2,5-Furandicarboxaldehyde 19.51 0.02 C6H4O3 124.09
45 2-Methyl-butane 20.70 0.03 C5H12 72.15
46 3-Carbamoyl phthalide 21.13 0.01 C9H7NO3 177.16
47 6 amyl α pyrone 21.51 0.65 C10H14O2 166.22
48 1-(2,4-dimethylphenyl)-Ethanone 22.07 0.03 C10H12O 148.2
49 2,3-Dihydro-3,5-dihydroxy-6-methyl-4H-Pyran-4-one 22.25 0.04 C6H8O4 144.12
50 2-(4-fluoro-3-methoxycarbonylphenyl)-4-Nitrobenzoic acid 22.56 0.01 C15H10FNO6 319.24
51 5-Hydroxymethylfurfural 24.68 0.13 C6H6O3 126.11
52 Cis-3-acetoxy-4-ethoxycarbonylamino-1-thia-cyclopentane 25.69 0.02 C9H15NO4S 233.28
53 1-Methoxy-2-ethoxycyclobutanone 26.12 0.06 C7H12O3 144.17

54 4,4-Dimethyl-5-(1-methylene-2-phenyl-2-propenyl)-1,3-
dioxolan-2-one 27.26 0.07 C15H16O3 244.29

55 Methyl 1,3-dihydro-2H-isobenzofuran-4-carboxylate 27.54 0.13 C10H10O3 178.19

3.2. Effect of 6-PP on Inhibition of F. oxysporum HF-26 Growth

The effects of different 6-PP concentrations on the growth of F. oxysporum HF-26
mycelia are shown in Figure 1. 6-PP inhibited F. oxysporum HF-26 mycelial growth
(Figure 1A) and 25 mg/L 6-PP had the strongest inhibitory effect compared with other
treatments, inhibiting mycelial growth by 65.88% (Figure 1B). However, 10 and 20 mg/L
6-PP did not affect F. oxysporum HF-26 mycelial growth. Additionally, 25 mg/L 6-PP may
affect hyphae growth and formation, as indicated by the red circle in Figure 1A.
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3.3. Effect of 6-PP on Pigments

Fusaric acid is a non-specific toxin secreted by Fusarium, which is an important
pathogenic factor and related to plant wilt when Fusarium infects host plants [37] 6-PP
at 25 mg/L severely affected the F. oxysporum HF-26 pigment synthesis. Therefore, the
present study determined whether 6-PP affects fusaric acid synthesis (Figure 2A). The
results showed that fusaric acid content considerably decreased in treated plates compared
with that in the control (Figure 2B).
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3.4. Relative Expression Levels of Fusarium Acid Synthesis and Transport Genes

The FUBT genes involved in toxin synthesis and transport in Fusarium belong to the
major facilitator superfamily of genes [38]. We modified the code of the velvet protein family
complex genes (VelA, VeB, and VelC) to control mycelial growth and hyphae formation in F.
oxysporum. Deletion of this gene affects F. oxysporum growth, development, and invasive
ability. Like LaeA, which regulate F. oxysporum growth, velvet protein family complex genes
regulate the colonisation and establishment of F. oxysporum in tomato plant vessels and
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plays an important role in the development of vascular wilt symptoms [39]. FUB1, FUB4,
and FUB10 toxin synthesis and transport genes were downregulated in 6-PP treatments
compared with those in the control (Figure 3). The most significant downregulation was
that of FUB10, which was downregulated 0.28-fold that of the control. Furthermore, to
control the mycelial growth and hyphae formation of F. oxysporum, VelA, velB, and LaeA
genes were downregulated, revealing that 25 mg/L 6-PP downregulates genes related to
toxin synthesis and transportation, inhibits mycelial growth and hyphae formation, and
may decrease fusaric acid synthesis (Figures 2 and 3).
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3.5. Effect of the Nutrient Solution Containing 6-PP on the Control of Tomato FW in
Soilless Culture

The effects of the nutrient solution containing 6-PP on F. oxysporum were evaluated
under greenhouse conditions (Table 2, Figure 4). The present study demonstrated that a
fungicidal nutrient solution containing 25 mg/L 6-PP markedly suppressed FW in toma-
toes and the disease index was 27.23, which is lower than that of the standard nutrient
solution (Figure 4C, Table 2). The fungicidal nutrient solution containing 25 mg/L 6-PP had
70.71% efficacy (Table 2), which is consistent with that of a reported liquid media adding
carbendazim in a hydroponic system [4].

Table 2. Effect of soilless culture nutrient solution with 6-pentyl-α-pyrone (6-PP) on the control of
Fusarium wilt in tomatoes.

Nutrient Solution Concentration in Soilless
Culture Nutrition

Disease Index
(%) Efficacy (%)

Containing 6-PP 25 mg/mL 27.23 ± 1.23 b 70.71 ± 1.31 a

Containing
carbendazim 25 mg/mL 29.98 ± 1.04 b 70.96 ± 1.01 a

Common —— 92.98 ± 1.16 a ——
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concentration at 1 × 107 spores/mL of spore suspension. (B,C) were groups treated with 6-PP and
carbendazim, respectively.

3.6. Determination of Defence-Related Enzymes

Reactive oxygen species (ROS) are common secondary messengers in various cellular
physiological and biochemical processes [40]. We determined the H2O2, CAT, POD, and
SOD contents at 0, 12, 24, and 48 hpi in the leaves of tomatoes subjected to a fungicidal
nutrient solution containing 6-PP, and the enzymes were expressed in various microorgan-
isms. These enzymes play an important role in the removal of ROS and defence against
pathogenic infections [41]. Results from the present study revealed that after treatment
with a fungicidal nutrient solution containing 6-PP, the content of these defence-related
enzymes increased at 24 hpi compared with those at other time points (Figure 5), indicating
that 6-PP induced FW resistance in tomato plants.
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accumulation and the contents of defence-related enzymes in tomato leaves: (A) H2O2, (B) catalase,
(C) peroxidase, and (D) superoxide dismutase activities. Letters above bars show the significant
differences in different time points. Bars (means ± Standard deviation, n = 3) followed by the different
letters are significantly different at p < 0.05.
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3.7. Effect of Treatment with a Nutrient Solution Containing 6-PP on the Relative Expression of
Defence-Related Genes

In the present study, we determined the relative expression of defence-related genes
in tomato leaves. Pathogenesis-related proteins (PRs) defence genes were tested after
treatment with a fungicidal nutrient solution containing 6-PP, and the relative expression
levels of PR1, NPR1, PR2, and PR5 were markedly upregulated at 24 hpi (Figure 6),
suggesting that the expression of genes related to disease resistance was activated by 6-pp,
resulting in improved disease resistance in tomatoes.
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4. Discussion

Tomatoes (Lycopersicum esculentum), belonging to the Solanaceae family, are commer-
cially cultivated globally under indoor and outdoor conditions [42]. In our previous study,
the control efficiency of T. asperellum PT-15 against potato Verticillium wilt in the field
was 61.97% [30]. In the present study, we investigated the types of VOCs in T. asperellum
PT-15 using GC-MS. We identified 6-PP as the target substance to control FW in soilless
tomato cultivation. We added 6-PP at an optimal concentration which could severely inhibit
F. oxysporum in a soilless culture nutrient solution, and developed a fungicidal nutrient
solution with 6-PP that control tomato FW in soilless culture.

6-PP is a key bioactive compound secreted by various Trichoderma species [22]. 6-PP
has antibacterial activities is used in the biocontrol of various diseases, such as tobacco
mosaic virus, black point disease of wheat, and late wilt of maize [43,44]. In the present
study, 6-PP was identified in the VOCs from T. asperellum PT-15 (Table 1 and Figure S1),
and its effect on F. oxysporum HF-26 mycelia growth was determined. The results indicated
that 25 mg/L 6-PP has the strongest inhibitory effect on F. oxysporum HF-26 and could
affect hyphae growth and formation (Figure 1). However, 10 and 20 mg/L 6-PP did not
affect F. oxysporum HF-26 mycelial growth; but markedly affected the F. oxysporum HF-
26 pigment synthesis and decreased fusaric acid synthesis (Figure 2). The FUBT gene
involved in toxin transport in F. oxysporum belongs to the major facilitator superfamily
transporter genes, is located downstream of the polyketo synthase gene, and involved
in fusaric acid synthesis. FUB4 and FUB11 genes regulates fusaric acid synthesis and
transport [45]. Additionally, the deletion of genes (VelA, VeB, and VelC) encoding the
velvet protein family complex, which regulates F. oxysporum mycelium growth and hyphae
formation affects its growth, development, and invasion ability. The LaeA gene regulates
F. oxysporum growth and play an important role in catheter colonisation and vascular
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wilt development in tomato plants [46]. FUB1, FUB4, and FUB10 genes regulating toxin
synthesis and transport were downregulated in 6-PP-treated plants compared with those
in the control, and FUB10 had the most significant downregulation (0.28-fold). Moreover,
VelA, velB, and LaeA genes were downregulated, reducing F. oxysporum mycelial growth and
hyphae formation, demonstrating that 6-pp has a strong inhibitory effect on F. oxysporum,
consistent with the results described above.

In soilless cultivation systems prochloraz and carbendazim fungicides are added to the
soilless culture nutrient solution to control tomato FW [4]. In the present study, 6-PP was
added to a soilless culture nutrient solution owing to its inhibitory effect on F. oxysporum
HF-26 growth and development. The results demonstrated that an antifungal–nutrient
solution containing 6-PP suppresses FW with a 27.23 disease index, which was lower than
that of the control. Furthermore, the antifungal–nutrient solution containing 6-PP used in
the present study had 70.71% efficacy, consistent with that reported for antifungal–nutrient
solutions containing prochloraz and carbendazim (Figure 4, Table 2). When plants are
attacked by pests, fungi, and other adverse conditions ROS and defence-related enzymes
are activated and plant proline-rich proteins are produced and accumulate in plant tissues
improving plant resistance to pathogen infection and adapting to adverse conditions [47]. In
the present study, treatment with an antifungal–nutrient solution containing 6-PP markedly
increased the content of defence-related enzymes at 24 hpi compared with that at other
time points. Moreover, 6-PP inhibited Fusarium growth and hyphae formation, and also
activated PR genes and related defense enzymes in tomato (Figure 7). Therefore, 6-PP can
be added to soilless culture nutrient solution to prevent and control tomato Fusarium wilt.
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