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Abstract: The target region and diameter of maize stems are important phenotyping parameters for
evaluating crop vitality and estimating crop biomass. To address the issue that the target region
and diameter of maize stems obtained after transplantation may not accurately reflect the true
growth conditions of maize, a phenotyping monitoring technology based on an internal gradient
algorithm is proposed for acquiring the target region and diameter of maize stems. Observations were
conducted during the small bell stage of maize. First, color images of maize plants were captured by
an Intel RealSense D435i camera. The color information in the color image was extracted by the hue
saturation value (HSV) color space model. The maximum between-class variance (Otsu) algorithm
was applied for image threshold segmentation to obtain the main stem of maize. Median filtering,
image binarization, and morphological opening operations were then utilized to remove noise from
the images. Subsequently, the morphological gradient algorithm was applied to acquire the target
region of maize stems. The similarity between the three types of gradient images and the manually
segmented image was evaluated by pixel ratio extraction and image quality assessment indicators.
Evaluation results indicated that the internal gradient algorithm could more accurately obtain the
target region of maize stems. Finally, a checkerboard was employed as a reference for measurement
assistance, and the stem diameter of maize was calculated by the pinhole imaging principle. The
mean absolute error of stem diameter was 1.92 mm, the mean absolute percentage error (MAPE)
was 5.16%, and the root mean square error (RMSE) was 2.25 mm. The R2 value was 0.79. With an
R2 greater than 0.7 and a MAPE within 6%, the phenotyping monitoring technology based on the
internal gradient algorithm was proven to accurately measure the diameter of maize stems. The
application of phenotyping monitoring technology based on the internal gradient algorithm in field
conditions provides technological support for smart agriculture.

Keywords: crop phenotype; maize; stem diameter; morphological gradient; target region

1. Introduction

With the global population already above 8 billion, crop yield is expected to double by
2050 to meet global food demand. Breeding research is imperative to address food crises
resulting from population growth and adverse climatic factors [1–3]. In breeding research,
crop genotypes and phenotyping characteristics have received widespread attention from
agronomists [4–6]. Traditional plant phenotyping monitoring technologies rely on ruler-
based measurements [7,8], which are inefficient, labor-intensive, and subjective. Traditional
phenotyping monitoring technologies have lagged far behind the rapid development of
genomics research [9,10]. Plant phenotyping technology that depends solely on manual
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detection and analysis can no longer meet the demands of modern agricultural develop-
ment. Therefore, it is crucial to study low-cost, high-precision, and efficient phenotyping
monitoring technologies.

As one of the world’s major cereal crops, maize (Zea mays L.) has high nutritional and
medicinal value [11–13]. Stem diameter of maize is a key agronomic trait related to yield
and lodging resistance [14–16], and is an important indicator measured by agronomists.
Ma et al. [17] used handheld laser scanners to scan maize plants. The point cloud data
was processed by 3D reconstruction techniques. The stem diameter of potted maize at
multiple growth stages was calculated by fitting spheres and cylinders. Although the
grid method simplified the original point cloud data, the lack of color information in the
data acquired by the device is not conducive to the study of plant phenotyping color
characteristics. In comparison, depth cameras are more affordable and can simultaneously
capture color and depth information of images. The time-of-flight (TOF) camera is a
prototypical depth imaging device, which acquires depth-related data of objects through
the evaluation of round-trip time of light. This camera has extensive applications in the
agricultural domain. Chaivivatrakul et al. [18] used a TOF camera to obtain 3D point
clouds of maize plants, and acquired stem diameter through 3D holographic reconstruction.
However, due to the insufficient resolution of the TOF camera, the error between the
measured stem diameter and the true value was relatively large. In addition, TOF cameras
are sensitive to ambient light, so monitoring maize phenotyping parameters with TOF
cameras is typically performed in laboratory environments. In light of the TOF camera’s
capacity to concurrently acquire both color and depth images of plants, employing this
technology within a laboratory environment facilitates a more exhaustive investigation
of crop phenotypic characteristics. Although plant phenotyping analysis in controlled
environments is of great significance for plant science, the results differ significantly from
the actual conditions of crops in field conditions. In recent years, the superior performance
of RGB-D sensors have made it possible to extract the stem diameter of maize in field
conditions. These sensors have high resolution, low cost, and simple operation, and have
attracted widespread attention from scholars. Fan et al. [19] used the Intel RealSense
D435i sensor to obtain 3D point cloud data of maize, estimating stem diameter through
point cloud convex hull and planar projection, with high measurement accuracy. Vit and
Shani [20] studied the filling rate of four different RGB-D sensors in maize stems, tomatoes,
and plastic balls. Plastic balls were used to evaluate the ability of RGB-D sensors in the task
of calculating stem diameter. The results showed that the Intel RealSense D435 sensor had
the best filling rate for plastic balls at different distances and light intensities compared to
the other three sensors, making it more suitable for phenotyping analysis in field conditions.

Extracting the target region of maize stems is a critical step in measuring stem diameter,
and its effect directly influences the accuracy of stem diameter measurement. Moreover,
agronomists can evaluate soil moisture and nutrient supply conditions by analyzing the
smoothness and diameter of the target region of maize stems [21]. Among the numerous
image edge detection algorithms, the morphological gradient algorithm precisely captures
object edge contours. Han and Han [22] proposed an edge detection algorithm based on
morphological gradient and maximum between-class variance (Otsu) to extract edge pixels
of grayscale images. The performance of the morphological gradient and Otsu-based edge
detection algorithm is superior to that of the Sobel and Canny algorithms. Wu and Li [23]
proposed an improved watershed color image segmentation algorithm, which improved
the original algorithm by combining the morphological gradient and Otsu algorithm. The
improved algorithm accurately obtained object edge information with an accuracy rate
greater than 0.98, which improved the robustness and applicability of the algorithm.

In this study, maize was as the research subject, and the Intel RealSense D435i sensor
was used to obtain color images of maize stems in field conditions. The maize stems
were extracted by the HSV + Otsu algorithm, and image noise was eliminated by median
filtering, image binarization, and morphological opening operations. The internal gradient
algorithm was applied to extract the target region of maize stems, and the stem diameter
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was calculated by the pinhole imaging principle. This study combines the internal gradient
algorithm with color space models, image segmentation technology, and image filtering
technology to provide agronomists with more accurate phenotyping data and lays the
foundation for subsequent research combining 3D point clouds.

2. Materials and Methods
2.1. Image Data Collection

Field experiments were conducted at the teaching and research base of Jilin Agricul-
tural University in Changchun, Jilin Province, China. The maize cultivar selected for the
study was Ji Nong Yu 218. Image collection occurred from 12:00 to 15:00 in July 2021 and
July 2022, under clear weather conditions. The object of the study was maize stem images
during the small bell stage. The maize planting region was 20 m long and 15 m wide,
with a planting density of 67,000 plants per hectare. The plant spacing was 0.4 m, and the
row spacing was 0.5 m. Four rows of maize were randomly selected in the experimental
field for image collection. The canopy density could be neglected as there was almost no
overlapping coverage in the early growth stage. The tools employed for image collection
and stem diameter measurement included an Intel RealSense D435i camera, a shooting
platform, a Vernier caliper, a checkerboard, and a laptop. The Intel RealSense D435i camera
was placed on the shooting platform to capture maize plant images, with a distance of 0.5 m
between the camera and the ground. To reduce interference from the ground and adjacent
plants, the camera was tilted at a 40◦ angle from the vertical plane towards the maize
plant. To preserve the overall morphology and appearance of the maize stem, the distance
between the camera lens and the maize stem was 50 cm. The Vernier caliper was utilized to
measure the true stem diameter of the maize. Based on the advice of agricultural experts,
the second internode of the maize plant was designated as the region of interest [24,25].
Three random measurements of stem diameter were taken in this region, with the mean
value of the three measurements considered the true stem diameter. The checkerboard,
consisting of 84 alternating black and white squares with dimensions of 15 × 15 mm, was
used as a reference for measurement assistance. To measure the maize stem diameter by
the pinhole imaging principle, the camera captured two sets of images of the same maize
plant at the identical angle: one set with the checkerboard and another without. The laptop
was installed with the Intel RealSense SDK 2.0 development package under the Windows
10 operating system. The collected maize stem images were stored in the data collection
terminal. The process of maize stem image data collection is shown in Figure 1.

1 

 

 

Figure 1. Maize stem information collection: (a) field maize image; (b) field maize image with a
checkerboard; (c) digital Vernier caliper measurement.

2.2. Image Segmentation and Filtering

In this study, the HSV color space model was selected. The HSV color space model
has excellent robustness under varying illumination conditions [26–28]. The H value in
the model effectively reflects the color information of plant stems, leaves, and other parts,
serving as an important basis for separating plants from the background. The Otsu method
was employed as the image segmentation algorithm in this paper, utilized for extracting the
main stem of maize. The Otsu algorithm is commonly applied in processing plant images
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under field conditions [29]. Since the experiment required the removal of background noise
while preserving the edge information of maize stems, the median filtering was selected for
the filtering algorithm for this paper. After filtering, the image was subjected a binarization
process. Due to the presence of local noise in the binarized image, an opening operation
was conducted on the image. First, a morphological erosion operation was applied to
disconnect the weeds or other leaves from the stem. Subsequently, the image was subjected
to a morphological dilation operation to fill in the disrupted regions, resulting in a denoised
main stem of maize.

2.3. Morphological Gradient

The extraction of the maize stem target region is a pivotal step in maize phenotyping
monitoring technology. The morphological gradient can separate the contours of the target
region from the background, facilitating subsequent processing and analysis. The morpho-
logical gradient comprises the basic morphological gradient (BMG), external morphological
gradient (EMG), and internal morphological gradient (IMG). The basic morphological gra-
dient (BMG) refers to the difference image between the dilated image and the eroded image.
The external morphological gradient (EMG) refers to the difference image between the
dilated image and the original image. The internal morphological gradient (IMG) refers to
the difference image between the original image and the eroded image. The corresponding
formulas are shown in Equations (1)–(3).

BMG = (A ⊕ B)− (A 	 B) (1)

EMG = (A ⊕ B)− A (2)

IMG = A − (A 	 B) (3)

Here, A represents the input image, B represents the structuring element, ⊕ represents
the dilation operation, and 	 represents the erosion operation.

2.4. Image Data Processing

The processing workflow of this study is illustrated in Figure 2.
Agronomy 2023, 13, x FOR PEER REVIEW  6  of  25 
 

 

 

Figure 2. Flow chart of maize stem diameter measurement. 

Three sets of field maize images were randomly selected from 60 samples for exper‐

imentation. Field maize images, HSV color space images, and images based on HSV and 

Otsu algorithms are shown  in Figure 3. Median  filtered  images, binarized  images, and 

images subjected to morphological opening operations are shown in Figure 4. Basic gra‐

dient images, external gradient images, and internal gradient images are shown in Figure 

5. 

Figure 2. Flow chart of maize stem diameter measurement.



Agronomy 2023, 13, 1185 5 of 14

Three sets of field maize images were randomly selected from 60 samples for experi-
mentation. Field maize images, HSV color space images, and images based on HSV and
Otsu algorithms are shown in Figure 3. Median filtered images, binarized images, and im-
ages subjected to morphological opening operations are shown in Figure 4. Basic gradient
images, external gradient images, and internal gradient images are shown in Figure 5.
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Figure 3. Image segmentation process: (a–c) original maize images; (d–f) hue saturation value (HSV)
color space images; (g–i) HSV + maximum between-class variance (Otsu) images.
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subjected to morphological opening operations.
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Figure 5. Image gradient process: (a–c) basic gradient images; (d–f) external gradient images;
(g–i) internal gradient images.

2.5. Coordinate Extraction and Maize Stem Diameter Measurement

In maize gradient images, coordinates were semi-automatically extracted using the
OpenCV library functions in Python. The maize stem diameter was extracted based
on the pinhole imaging principle. A checkerboard was used as a reference object to
facilitate measurements. Since both the original and processed images have a resolution
of 1280 × 720, the checkerboard from the original image can be utilized to calculate the
stem diameter in the processed image. This approach avoids the impact of an incomplete
checkerboard after image processing on the experiment. Taking the internal gradient image,
for example, the experiment was conducted in the middle of the second internode of the
maize stem. A square was randomly selected on the checkerboard in the original maize
image, with its left and right endpoint coordinates being (x1, y1) and (x2, y1), respectively.
In the gradient image, a set of contour points was chosen with coordinates (x3, y1) and
(x4, y1). Each square in the checkerboard has a side length of W, and the measured stem
diameter of maize is denoted as S. S can be calculated by the proportion formula, as
shown in Equation (4). This operation is repeated three times, and the average of the three
measurements is used as the measured stem diameter of maize. The coordinate acquisition
process is illustrated in Figure 6.

S
x4 − x3

=
W

x2 − x1
(4)

1 

 

 

Figure 6. Coordinate acquisition process: (a) coordinate extraction of the checkerboard; (b) coordinate
extraction of the maize stem contour.
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2.6. Gradient Image Evaluation Method

In this study, two objective evaluation methods were employed to assess three types
of gradient images. By comparing with manually segmented images, a gradient image
more suitable for extracting the target region of maize stems was selected [30].

2.6.1. Pixel Proportion Extraction

In the field of computer vision, pixel proportion extraction is commonly employed to
facilitate the identification of similar images [31]. This method was applied to determine
the differences in pixel proportions of different color regions between gradient images and
manually segmented images. If the difference between the two is small, it indicates that the
gradient image can accurately detect the position and shape of the target region of maize
stems. This method holds significant importance for the performance evaluation of the
three gradient algorithms.

2.6.2. Image Quality Evaluation Metrics

Mean square error (MSE), peak signal-to-noise ratio (PSNR), and structural similarity
index (SSIM) are three metrics for evaluating image quality. They aid in assessing the
similarity or differences between two images. MSE can be utilized to calculate the pixel
differences between gradient images and manually segmented images, evaluating the
distortion between them. The closer the MSE value is to 0, the smaller the difference
between the gradient image and the manually segmented image, and the greater the
similarity between the two images. PSNR is used to evaluate the relative error between
gradient images and manually segmented images. The higher the PSNR, the greater the
similarity between the two images. SSIM effectively simulates human perception of image
quality and is employed to evaluate the structural similarity between two images. The SSIM
values range from 0 to 1, representing no similarity to perfect consistency. Different metrics
can evaluate model performance from various perspectives, and combining multiple
metrics allows for a more comprehensive assessment of the model’s performance. The
formulas for MSE, PSNR, and SSIM are as follows:

MSE =
1

M × N

M−1

∑
i=0

N−1

∑
j=0

[I(i, j)− K(i, j)]2 (5)

PSNR = 10 log10

(
2552

MSE

)
(6)

SSIM(x, y) =

(
2µxµy + c1

)(
2σxy + c2

)(
µ2

x + µ2
y + c1

)(
σ2

x + σ2
y + c2

) (7)

Here, M and N are the height and width of the test image, respectively. I(i, j) and K(i, j)
are the grayscale values of the test image and the original image at point (x, y), respectively.
For two images x and y, µx and µy denote the average values of x and y, respectively; σxy
represents the covariance of x and y; and σx and σy are the standard deviations of x and
y, respectively.

2.7. Evaluation Metrics for Stem Diameter Error

Mean absolute error, mean absolute percentage error (MAPE), root mean square error
(RMSE), and coefficient of determination (R2) serve as metrics for evaluating the accuracy of
maize stem diameter measurements. The formulas for MAPE, RMSE, and R2 are as follows:

MAPE =
1
m

m

∑
i=1

∣∣∣∣Li − Si

Li

∣∣∣∣× 100% (8)
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RMSE =

√
1
m

m

∑
i=1

(Li − Si)
2 (9)

R2 = 1 −

m
∑

i=1
(Li − Si)

2

m
∑

i=1

(
Li − L

)2
(10)

Here, m represents the number of maize plant samples, Si represents the measured
stem diameter, Li represents the true stem diameter, and L represents the average of true
stem diameters.

3. Results
3.1. Analysis of Pixel Proportion Extraction Results

To reduce the interference from the ground and adjacent plants, the second internode
of maize stems was selected as the evaluation region. The pixel proportion extraction results
for the evaluation regions of three groups of original maize images, basic gradient images,
external gradient images, internal gradient images, and manually segmented images are
shown in Figure 7.
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A comparison between the three types of gradient images and manually segmented
images reveals that the proportion of black pixels in the manually segmented images
is 98.03%. The proportions of black pixels in the basic gradient, external gradient, and
internal gradient images for the first group of maize are 93.08%, 94.60%, and 94.91%,
respectively. For the second group of maize, these proportions are 87.94%, 91.71%, and
92.12%, respectively. For the third group of maize, the proportions are 74.38%, 82.29%, and
82.48%, respectively. Consequently, the proportion of non-black pixels in internal gradient
images is closer to that in the manually segmented images.

3.2. Analysis of Image Quality Evaluation Results

The quality evaluation results for the three groups of maize basic gradient images,
external gradient images, and internal gradient images are shown in Figure 8.

1 

 

 

Figure 8. Image quality evaluation results based on three evaluation metrics: (a–c) Similarity between
the three gradient images and manually segmented images for the first group of maize plants;
(d–f) Similarity between the three gradient images and manually segmented images for the second
group of maize plants; (g–i) Similarity between the three gradient images and manually segmented
images for the third group of maize plants.
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In the first group of maize basic gradient, external gradient, and internal gradient
images, the MSE values are 3069.78, 1405.72, and 1378.63, respectively. The PSNR values
are 13.26 dB, 16.65 dB, and 16.74 dB, respectively. The SSIM values are 0.86, 0.88, and 0.88,
respectively. For the second group of maize, the MSE values are 5542.73, 2414.32, and
2668.17, respectively. The PSNR values are 10.69 dB, 14.3 dB, and 13.87 dB, respectively.
The SSIM values are 0.74, 0.79, and 0.77, respectively. For the third group of maize, the MSE
values are 6725.16, 2901, and 3187.7, respectively. The PSNR values are 9.85 dB, 13.51 dB,
and 13.1 dB, respectively. The SSIM values are 0.69, 0.75, and 0.73, respectively. Thus,
compared to basic gradient images, the internal gradient images and external gradient
images are more similar to the manually segmented images.

Both gradient image evaluation methods have confirmed that internal gradient images
and external gradient images are closer to manually segmented images, with no significant
difference between them. However, the external gradient algorithm eliminates some pixels
from the external edge contour of maize stems, affecting the smoothness of the maize stem
edge contour and the accuracy of stem diameter measurement. In contrast, the internal
gradient algorithm retains the pixels of the external edge contour of maize stems, only
eliminating some pixels from the interior, without substantially altering the diameter of the
maize stem target region. Therefore, the internal gradient algorithm is more suitable for
extracting the target region of maize stems.

3.3. Error Analysis of Stem Diameter Measurement

In order to verify the accuracy of the internal gradient algorithm, 60 groups of field
maize images were selected for error analysis, with the results shown in Table 1.

Table 1. Comparison of true and measured maize stem diameters.

Number
True Stem
Diameter/

mm

Measured
Stem

Diameter/
mm

Absolute
Error/mm Number

True Stem
Diameter/

mm

Measured
Stem

Diameter/
mm

Absolute
Error/mm

1 36.09 36.50 0.41 31 34.40 36.32 1.92
2 34.11 33.63 0.48 32 33.06 30.00 3.06
3 31.98 28.94 3.04 33 39.23 42.19 2.96
4 27.53 28.91 1.38 34 34.06 34.74 0.68
5 37.29 38.83 1.54 35 34.36 31.76 2.60
6 38.20 37.43 0.77 36 43.80 40.00 3.80
7 34.54 39.79 5.25 37 38.16 35.71 2.45
8 35.08 36.29 1.21 38 32.87 29.32 3.55
9 32.08 33.16 1.08 39 35.12 32.05 3.07

10 30.73 31.65 0.92 40 39.61 38.48 1.13
11 38.05 38.77 0.72 41 40.86 39.29 1.57
12 36.22 34.00 2.22 42 39.05 40.43 1.38
13 37.11 34.18 2.93 43 42.10 38.89 3.21
14 32.67 36.33 3.66 44 36.48 35.22 1.26
15 44.33 45.56 1.23 45 32.98 33.26 0.28
16 35.17 34.15 1.02 46 38.31 36.88 1.43
17 36.60 35.11 1.49 47 36.32 33.13 3.19
18 28.50 28.73 0.23 48 36.21 36.88 0.67
19 41.97 40.26 1.71 49 39.16 39.55 0.39
20 45.98 48.75 2.77 50 39.67 38.28 1.39
21 38.19 39.32 1.13 51 37.23 37.86 0.63
22 47.57 51.08 3.51 52 37.18 34.29 2.89
23 41.28 42.69 1.41 53 38.95 41.25 2.30
24 51.78 52.27 0.49 54 35.56 32.14 3.42
25 39.18 35.91 3.27 55 38.87 38.75 0.12
26 53.11 54.17 1.06 56 43.38 44.17 0.79
27 41.39 43.13 1.74 57 34.57 37.89 3.32
28 43.18 40.59 2.59 58 33.26 37.17 3.91
29 40.46 42.19 1.73 59 35.18 37.83 2.65
30 43.54 46.67 3.13 60 33.47 34.62 1.15
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According to the data presented in Table 1, the mean absolute error for maize stem
diameter measurements is 1.92 mm, the MAPE is 5.16%, and the RMSE is 2.25 mm. The
complex conditions encountered during image acquisition in field environments may yield
detrimental effects on the measurement outcomes. Firstly, the irregularity of the field sur-
face may result in discrepancies between the real and predetermined angles of the imaging
equipment, subsequently influencing the precision of the stem diameter measurements.
Moreover, situating the camera directly on the shooting platform to obtain maize images
lacks sufficient stability. Wind interference may cause the shifts in the camera’s position,
resulting in increased measurement inaccuracies. To mitigate these concerns, a future
design will incorporate an aluminum alloy mobile platform as a substitute for the existing
imaging platform. A stable universal joint is mounted on the aluminum alloy bracket
of the mobile platform, with the camera secured to the joint using screws. This not only
reduces measurement errors caused by uneven ground but also ensures the stability of the
imaging equipment.

In order to more intuitively present the relationship between the measured stem
diameter and the true stem diameter, a linear regression analysis was conducted in this
paper, and the results shown in Figure 9. The degree of linear fitting can be observed in
the figure, and the coefficient of determination (R2) was calculated to be 0.79. This result
indicates that the maize stem diameter measured using the internal gradient algorithm
demonstrates a relatively high level of accuracy, and there is a considerable degree of
consistency between the true stem diameter and the measured stem diameter.
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4. Discussion

To extract the target region and stem diameter of maize stems in field conditions, this
study employed the Intel RealSense D435i camera to acquire color images of maize during
the small bell stage. A phenotyping monitoring technology based on internal gradient
algorithm was utilized to extract the target region of maize stems. A checkerboard served
as a reference for measurement assistance, and the maize stem diameter was calculated
employing the pinhole imaging principle. The experimental results demonstrate the
feasibility of obtaining the target region and stem diameter of maize stems by a phenotyping
monitoring technology based on internal gradient algorithm.

Firstly, the current study is compared with research that utilizes LiDAR for measuring
maize stem diameter. Jin et al. [32] employed LiDAR to collect point cloud data of maize
plants and used a median normalized-vector growth (MNVG) algorithm to segment maize
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stems and leaves, enabling the measurement of field maize height, leaf length, leaf width,
stem height, stem diameter, and crown size. The R2 were 0.91, 0.88, 0.81, 0.97, 0.65, and 0.96,
respectively. The RMSE for stem diameter was 10 mm. Although this study demonstrated
high accuracy in extracting other phenotypic parameters of maize, it showed relatively
lower accuracy in measuring stem diameter. On the other hand, the current study achieved
an R2 of 0.79 for measuring maize stem diameter and decreased the RMSE to 5.29 mm,
demonstrating higher measurement accuracy. Moreover, using the Intel RealSense D435i
camera allowed the acquisition of color and texture information of maize stem that LiDAR
could not obtain, thus providing more comprehensive data support for agricultural experts.
Subsequently, the current study is compared with completed research. Zhou et al. [33]
employed the HSV + Otsu algorithm to obtain the main stem of maize stems and measure
their diameter, with mean absolute error, MAPE, and RMSE values of 4.30 mm, 10.76%,
and 5.29 mm, respectively. Building on the existing algorithm, the current study employed
median filtering, image binarization, and morphological opening operations to remove
noise in the images. Additionally, an internal gradient algorithm was deployed to obtain
the target region and diameter of maize stem. The mean absolute error, MAPE, and RMSE
for stem diameter were 1.92 mm, 5.16%, and 2.25 mm, respectively. In comparison to prior
research, the present study diminished measurement errors and more accurately identified
the morphology and structure of maize stem.

However, several limitations of the proposed method need to be addressed. Firstly,
the variety involved in this study is relatively singular. Maize includes various germplasm
lines, comprising cultivated and wild varieties. Different varieties of maize exhibit differ-
ences in stem morphology and stem diameter. In this study, Ji Nong Yu 218 was selected
as the experimental maize variety. However, selecting a single variety does not account
for the phenotypic differences among different varieties. Therefore, future experiments
will employ different maize varieties for phenotyping research and stem diameter mea-
surements, in order to provide an important scientific foundation for maize breeding and
improvement. Secondly, the observation period is relatively singular. The small bell stage
is a rapid growth stage for maize and serves as a transition period between vegetative and
reproductive stages. Maize at the small bell stage contains the features of both vegetative
and reproductive stages. This study obtained the target region and stem diameter of maize
stems only at the small bell stage using non-invasive imaging technology, without quan-
tifying maize phenotypic parameters at other stages. However, phenotyping monitoring
during vegetative and reproductive stages is crucial for improving maize yield and quality.
Therefore, future research will employ the internal gradient algorithm to monitor maize
phenotypes at multiple stages, assisting farmers and researchers to better formulate fer-
tilization, irrigation, and harvesting strategies, reducing resource and labor waste, and
improving maize yield and quality. Lastly, the monitored parameters are limited. This
study only monitored the target region and diameter of maize stems, without obtaining
growth information from other parts of the maize plant. However, phenotyping parame-
ters such as leaf length, plant height, and leaf inclination angle are closely related to the
photosynthetic efficiency, growth vigor, and water use efficiency of maize plants. Therefore,
monitoring other maize phenotyping parameters will be the focus of future research. This
will provide more comprehensive data support for precision agriculture and for improving
the efficiency and sustainability of agricultural production.

5. Conclusions

This paper proposes a phenotyping monitoring technology based on an internal
gradient algorithm for obtaining the target region and diameter of maize stems. Two
image evaluation methods were used to assess the three types of target region extraction
algorithms. The evaluation results indicated that the internal gradient algorithm is more
suitable for obtaining the target region of maize stems. The mean absolute error for stem
diameter was 1.92 mm, the MAPE was 5.16%, the RMSE was 2.25 mm, and the R2 was 0.79.
Since the R2 value was greater than 0.7 and the MAPE was less than 6%, the stem diameter



Agronomy 2023, 13, 1185 13 of 14

of maize can be accurately measured. Monitoring variations in maize stem contours and
stem diameter during the rapid growth period can reflect soil quality conditions. This
information will help researchers and agricultural practitioners develop scientific measures
to improve soil quality, such as proper fertilization, plowing, and deep loosening. These
scientific management methods will enhance soil fertility, consequently improving maize
lodging resistance and yield.
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