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Abstract: The contradiction between water demand and water supply in the Yellow River Delta
restricts the corn yield in the region. It is of great significance to formulate reasonable irrigation
strategies to alleviate regional water use and improve corn yield. Based on typical hydrological
years (wet year, normal year, and dry year), this study used the coupling model of AquaCrop, the
multi-objective genetic algorithm (NSGA-III), and TOPSIS-Entropy established using the Python
language to solve the problem, with the objectives of achieving the minimum irrigation water (IW),
maximum yield (Y), maximum irrigation water production rate (IWP), and maximum water use
efficiency (WUE). TOPSIS-Entropy was then used to make decisions on the Pareto fronts, seeking
the best irrigation decision under the multiple objectives. The results show the following: (1) The
AquaCrop-OSPy model accurately simulated the maize growth process in the experimental area. The
R2 values for canopy coverage (CC) in 2019, 2020, and 2021 were 0.87, 0.90, and 0.92, respectively, and
the R2 values for the aboveground biomass (BIO) were 0.97, 0.96, and 0.96. (2) Compared with other
irrigation treatments, the rainfall in the test area can meet the water demand of the maize growth
period in wet years, and net irrigation can significantly reduce IW and increase Y, IWP, and WUE
in normal and dry years. (3) Using LARS-WG (a widely employed stochastic weather generator in
agricultural climate impact assessment) to generate future climate scenarios externally resulted in a
higher CO2 concentration with increased production and slightly reduced IW demand. (4) Optimizing
irrigation strategies is important for allowing decision makers to promote the sustainable utilization
of water resources in the study region and increase maize crop yields.

Keywords: AquaCrop-OSPy model; maize; NSGA-III; TOPSIS-Entropy; Yellow River Delta

1. Introduction

The Yellow River Delta region has a temperate continental monsoon climate, with sig-
nificant temperature differences between the four seasons and average annual rainfall of
525–640 mm, where approximately 70% of the annual rainfall is concentrated between July and
September [1]. The grain crops in the region are planted following the method of maize–wheat
rotation. The planting area of maize was maintained at more than 5.6× 105 ha between 2015
and 2019, with a total output of approximately 4 million tons, of which the planting area of
maize in 2019 was 6.6 × 105 ha, and the output was 3.97 million tons, accounting for 17.2%
of the planting area of maize in 2019 in Shandong Province, and 15.7% of the total output.
This region is one of the most important corn production areas in Shandong Province [2]. The
maize yield has been severely affected by the growing lack of fresh water resources, uneven
spatial and temporal distribution of rainfall, increasing pollution of the water environment,
and increased area of saline alkali land [1]. Thus, in order to ensure food security and the
sustainable use of land, there is an urgent need to design a reasonable irrigation strategy.

The design of a reasonable irrigation system needs to consider many factors, such
as the meteorological conditions, soil conditions, crop characteristics, water quality, and
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groundwater level, but it is most important to consider the relationships between crops,
water, and nutrients. Numerous studies have aimed to understand the relationships be-
tween crops, water, nutrients, and climate, but these types of studies require much time
and effort, and thus it would be better if the relationships could be accurately predicted [3].
Many models have been developed to improve the efficiency of agriculture by accurately
assessing the relationships between crops, water, nutrients, and atmospheric conditions
in order to make predictions. Such crop models used for research include WOFOST [4],
DSSAT [5], and CropSyst [6]. These crop models are powerful tools for assessing the
minimum IW, maximum Y, maximum WUE, and maximum IWP [7,8]. However, these
models require many parameters, where some must be acquired from experiments and
others are not easy to obtain, thereby causing problems for users [9]. The AquaCrop model
was developed by the Food and Agriculture Organization of the United Nations (FAO)
in 2009 to address these issues, and it has been widely used because it can effectively
describe soil–plant–atmosphere system processes, as well as being simple to operate and
user-friendly, with few parameters (only 33 parameters), and thus it has been applied in
various practical conditions [10,11]. The model has also been used widely for simulation
studies of maize. In particular, Twumasi et al. (2017) simulated the response in terms of
the maize yield to climate variations using the AquaCrop model and 22 years of meteo-
rological data by considering four climate change scenarios: mean temperature changes
of ±1 ◦C to ±3 ◦C and mean rainfall changes of ±5 mm [12]. Donfack et al. (2018) used
the AquaCrop model for estimating yields in the northern regions of Cameroon in the
dry and rainy seasons. They estimated the yields in these seasons based on the irrigation
volume, where they showed that irrigating maize with 72.15 mm of water in the rainy
season could increase the yield by 0.24 t/ha and irrigating with 427.03 mm in the dry
season could increase the yield by 1.22 t/ha [13]. Martini (2018) simulated rainfed maize
yields using climate data from 1987 to 2016 in southern Brazil and analyzed the sensitivity
of parameters such as the soil water stress level, maximum effective rooting depth, root
zone crop coefficient, groundwater recharge, and planting density, which are required by
the AquaCrop model. The results show that the crop cycle duration, planting density, and
field practices had minimal effects, whereas the root zone crop coefficient, WUE, soil water
storage, and groundwater recharge were the parameters with the greatest effects on rainfed
maize yields [14]. In addition, in order to improve the effectiveness of the model, ACOSP
is an open-source Python implementation of AquaCrop developed by Kelly and Foster,
which can be implemented for integration with other Python modules [15].

Irrigation systems are mainly optimized using the dynamic programming method in
the early stage, but the complexity of the solution increases rapidly with the number of
state variables and the number of stage divisions [16]. Thus, irrigation system optimization
gradually shifts from a single-objective problem to a multi-objective problem, and the
optimization results obtained by the multi-objective optimization algorithm generate a
set of non-dominated options by analyzing the trade-offs between objectives based on
the Pareto front [17]. Huo and Hang (2007) developed an irrigation system optimization
model by using the irrigation date as the decision variable and maximum relative yield as
the decision objective [18]. Qie et al. (2011) used the irrigation date and irrigation water
amount as decision variables, and set the maximum relative crop yield and total irrigation
water amount for the whole crop reproductive period as the optimization objectives [19]. At
present, the non-dominated sorting genetic algorithm III (NSGA-III) based on the original
NSGA-II for solving the multi-objective optimization problem is mainly used for the
multi-objective optimization of irrigation strategies. Compared with NSGA-II, NSGA-III
overcomes the problem of simultaneously optimizing more than two objectives in NSGA-II
and the defects due to the poor diversification of the Pareto front [17].

The objectives of this study were (1) to construct four optimal irrigation schemes
based on the AquaCrop-OSPy crop model and NSGA-III framework to minimize IW and
maximize Y, WUE, and IWP for maize in the Yellow River Delta region in wet years
(defined as the 75% frequency precision), normal years (50% frequency precision), and dry
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years (25% frequency precision) [20]; (2) to solve the multi-objective optimization problem
for maize in the Yellow River Delta region of China; and (3) to determine the optimal
irrigation strategy.

2. Materials and Methods
2.1. Study Region

The trial area for the maize (Jinan 30 variety) field trials from April 2019 to October
2021 was located in the high-tech demonstration base of Dongying Agricultural High-tech
Zone, Shandong Province, China (37◦21′ N, 118◦57′ E, elevation 14 m) (Figure 1). This
region has a temperate continental monsoon climate with an average annual rainfall of
587.4 mm, which is mostly concentrated in June to September, an average temperature
of 12.3 ◦C, an annual average of 2234 sunshine hours, and an average frost-free period of
198 days. Maize was sown on 25 April in 2019 and harvested on 6 September. In 2020 and
2021, maize was sown on 15 June and harvested on 7 October. Solar radiation, temperature,
humidity, and wind speed meteorological data were monitored during the field trials in
2019–2021 using an automatic weather station (Weather Hawk 500, Campbell Scientific,
Logan Utah, UT, USA), which was installed at the base (Figure 2). Minimum and maximum
temperatures, rainfall, and reference evapotranspiration for the period of 1961–2015 were
obtained from the China Meteorological Data Service Center (http://data.cma.cn (accessed
on 26 March 2016)). Three irrigation treatments (I1, I2, and I3) were tested according to the
maize growth status, with total irrigation of 186.3 mm under I1 total irrigation of 130 mm
under I2, and rainfed conditions under I3, with three replicates for each treatment. The
maize growth period was divided into the seedling stage, jointing stage, tasseling stage,
and filling stage, and the irrigation measures for the treatments in 2019–2021 are shown
in Table 1. The properties of the soil in the 0–80 cm soil layer in the test area are shown in
Table 2.

Agronomy 2023, 13, x FOR PEER REVIEW 4 of 23 
 

 

 

Figure 1. Yellow River Delta modern agriculture experimental demonstration base of Shandong 

Academy of Agricultural Sciences, Dongying City, Shandong Province, China. 

 

Figure 2. Meteorological data during the maize growth periods in 2019–2021 (a–c). Tmax and 

Tmin are the maximum and minimum air temperature. 

  

Figure 1. Yellow River Delta modern agriculture experimental demonstration base of Shandong
Academy of Agricultural Sciences, Dongying City, Shandong Province, China.

http://data.cma.cn


Agronomy 2023, 13, 960 4 of 22

Agronomy 2023, 13, x FOR PEER REVIEW 4 of 23 
 

 

 

Figure 1. Yellow River Delta modern agriculture experimental demonstration base of Shandong 

Academy of Agricultural Sciences, Dongying City, Shandong Province, China. 

 

Figure 2. Meteorological data during the maize growth periods in 2019–2021 (a–c). Tmax and 

Tmin are the maximum and minimum air temperature. 

  

Figure 2. Meteorological data during the maize growth periods in 2019–2021 (a–c). Tmax and Tmin
are the maximum and minimum air temperature.

Table 1. Irrigation treatments in the maize-growing seasons during 2019–2021.

Year Sowing Date
Irrigation Amount (mm)

Seedling Jointing Filling Total

2019 25 April 21.6 74.7 90.0 186.3
2020 25 June 15.2 52.3 62.5 130.0
2021 25 June 0 0 0 0

Table 2. Soil properties at the field site.

Soil Layer
(cm)

Soil Texture Bulk Density
(g/cm3)

SAT
(cm3/cm3)

FC
(cm3/cm3)

PWP
(cm3/cm3)

Ks
(mm/d)Clay (%) Silt (%) Sand (%)

0–10 3.4 24.5 72.1 Sandy loam 1.40 0.490 0.247 0.050 59.8
10–20 2.2 18.4 79.4 Sandy loam 1.46 0.490 0.247 0.050 59.8
20–40 2.9 21.8 75.3 Sandy loam 1.51 0.530 0.218 0.043 62.7
40–60 6.7 55.4 37.9 Silty loam 1.54 0.530 0.218 0.043 62.7
60–80 7.6 50.9 41.5 Silty loam 1.56 0.530 0.300 0.045 46.9

SAT: soil water content at saturation; FC: field capacity; PWP: permanent wilting point; and Ks: saturated
hydraulic conductivity.

2.2. Determination of Typical Hydrologic Scenarios

The probability distribution of Pearson III, representing a generalized gamma dis-
tribution, is suitable for presenting the hydrological pattern of China and was used for
determining the different hydrologic scenarios [11,20]. The probability density function is
as follows:

f (x) =
βα

Γ(α)
(x− α0)

α−1e−β(x−α0) (1)

where α, β, and α0 are the shape, scale, and location parameters, respectively.
In this study, three hydrological scenarios were developed considering the Pearson

III probability distribution: dry year, normal year, and wet year. The Pearson type III
distribution method is expressed as follows:
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(1) First, the historical precipitation maize growing seasons (Figure 3) are arranged in
descending order (X1, X2, · · · , Xm, · · · , Xn), where n is the number of the growing
seasons, 55.

(2) Each descending order is assigned a value of m, where Xm represents that the number
of descending orders greater than or equal to Xm is m.

(3) The accumulated frequency of each growing season (P) of the Pearson type III distri-
bution is calculated as follows [21]:

P =
m

n + 1
× 100% (2)

(4) According to the precipitation frequency, n observations were divided into dry year,
normal year, and wet year, and the corresponding precipitation frequency was 25%,
50%, and 75%, respectively.
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Figure 3. Average rainfall in historical years from 1961 to 2015.

The growth seasons 1961, 1993, and 1982 are taken as the wet scenario, normal scenario,
and dry scenario, respectively. The precipitation amounts during the growing season are
546.7 mm, 380.7 mm, and 291.0 mm, respectively. Figure 4 shows the specific climate
conditions in these three growing seasons.
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Figure 4. Specific climatic conditions in typical hydrological years. Tmax and Tmin are the maximum
and minimum air temperature.
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2.3. Description of the AquaCrop Model

The AquaCrop model is used as a crop growth model to simulate the relationships
between the growth process, yield, and water for different crops, with fewer input parame-
ters and a more readily accessible interface compared with other growth models [20,22].
Studies have shown that the AquaCrop model can accurately simulate crop yields under
various irrigation scenarios, and the model has been used to successfully simulate the
growth process, yield, and water use for maize, wheat, rice, and cotton crops [23,24]. The
AquaCrop simulation focuses on four processes: CC, crop transpiration (Tr), BIO, and Y.
CC is converted from leaf area index (LAI) using Equation (3), and the leaf area index of
maize is obtained by measuring the length of the green leaf leading to the top and the
maximum leaf width of maize and multiplying them by a correction factor of 0.75 [25],
with the following core formulae [23].

The CC is calculated based on the leaf area index (LAI) with the following formula:

CC = 1− exp(−0.65×LAI) (3)

The Tr is calculated as

Tr = KSTr × KSw × CC∗ × KCTr,x × ET0 (4)

where KSTr is the temperature stress coefficient, KSw is the water stress coefficient, CC* is
the adjusted green canopy cover, KCTr,x is the maximum crop transpiration coefficient, and
ET0 is the reference crop evapotranspiration.

The BIO is calculated as

BIO = WP∗ ×∑
Tr

ET0
(5)

where WP* is the standardized moisture productivity.
The Y is calculated as

Y = fHI × HI0 × B (6)

where fHI is the adjustment factor and HI0 is the harvest index.

2.4. Evaluation Indicators for Effectiveness of Simulations

The effectiveness of using the AquaCrop-OSPy model for simulations was evaluated
with statistical indicators comprising the normalized root mean square error (NRMSE),
coefficient of determination (R2), and Nash–Sutcliffe efficiency coefficient (NSE). NRMSE
values of 10–20% are considered to indicate the good performance of model simulations
and NRMSE values of 20–30% denote fair model performance [26–29]. The NSE values
range from −∞ to 1, and the ideal value is NSE = 1. The values are calculated as

NRMSE =

√
∑n

i=1 (Si −Oi)
2/n

O
× 100% (7)

R2 = (
∑n

i=1 (Oi −O)(Si − S)√
∑n

i=1 (Oi −O)
2
∑n

i=1 (Si − S)2
)

2

(8)

NSE = 1− ∑N
i=1(Oi − Si)

2

∑N
i=1
(
Oi −O

)2 (9)

where Oi is the observed value and Si is the simulated value, O is the average of the
measured values, S is the average of the simulated values.
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2.5. Scenario Simulation
2.5.1. Irrigation Scenario Settings

In this paper, six different irrigation strategy scenarios of T1–T6 were set up to simulate
the maize IW, Y, IWP, and WUE under different scenarios [22]. T1, T3 and T4 are set
according to the irrigation plan tested in 2019–2021. T1 is rain-fed irrigation, and the total
irrigation volume of T3 and T4 is 180 mm and 130 mm, respectively. The T2 irrigation
scenario setting is to define the threshold value (TAWj (%)) of the main growth period of
maize, so that once the soil water content in the growth process of corn is lower than the
threshold value, irrigation will be triggered. T5 is net irrigation. According to the water
consumption threshold of the maize root zone, the total water content of the crop root is
kept above the total available water (TAW (%)) through irrigation measures. According to
the research of Kelly et al. (2021), this specific threshold is set at 70% [15]. The T6 scenario
setting is based on the analysis of meteorological data, and the soil water content TAW (%)
is set. When the soil water exceeds TAW (%) or there is no rainfall in the next ten days,
irrigation will be triggered. These six irrigation scenarios are summarized in Table 3.

Table 3. Settings for six irrigation scenarios in ACOSP.

Scenario Settings

T1 Rain-fed condition
T2 Optimal TAWj (%) irrigation 1

T3 The total amounts are 180.0 mm
T4 The total amounts are 130.0 mm
T5 Net irrigation
T6 Optimal irrigation under weather conditions 2

1 j represents the thresholds of four major maize growth stages (emergence, canopy growth, max canopy, and
senescence). 2 If no rain occurs for the next 10 days, or if rain occurs in the next 10 days but the soil is over 70%
depleted, 10 mm irrigation is applied; otherwise, no irrigation is applied.

Scenario T2 defines four thresholds for the total available water (TAWj, %) (for j = 1, 2,
3, 4) for crops in the seedling emergence, canopy growth, maximum canopy, and senescence
periods. These four thresholds represent x [0], x [1], x [2], and x [3] in the decision variables,
and the decision variable x [4] is IW (mm). In the crop growing season, if the soil water
content is lower than the specified threshold, irrigation is triggered until the soil water
content reaches the field capacity. In the multi-objective optimization problem for scenario
T2, the minimum IW, maximum Y, maximum IWP, and maximum WUE are used as the
objective functions. The objective function expression, decision variables, and related
constraints are defined as follows [22]:

Objectives


minIW = ∑n

i=1 Ii
maxY = f (TAWj(%), IW)

maxIWP =
(CYirr−CYrain− f ed)×100

IW
maxWUE = CYirr

ET×10

 (10)

Constraints
{

Imax > Ii > Imin(i ≤ n, i ∈ N∗)
TAWmax > TAWj > TAWmin

}
(11)

where IW is the total irrigation volume (mm) for the whole irrigation season and i is the
number of times that irrigation is applied; TAWj (%) is the threshold value of the total
effective water for each major growth period and j is used to differentiate between fertility
periods; CYirr is the crop yield under different irrigation conditions (kg/ha), and CYrain−fed
is the crop yield under rainfed conditions (kg/ha); ET is the total daily evapotranspiration
for winter maize during the growing season (mm); Imax is the upper limit of each irrigation
amount, Imin is the lower limit of each irrigation amount, and i is the number of times
irrigation is applied; j is used to differentiate between the maize growth stages; TAWj is the
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effective water threshold (%) for each remaining growth stage; and TAWmax and TAWmin
comprise the depleted soil water content levels in the allowed range (%).

Scenario T6 is a user-defined irrigation strategy based on meteorological data, where
the functions for irrigation are defined according to the following logic:

a. If no rain occurs in the next 10 days, the irrigation amount is x [0].
b. If rain occurs in the next 10 days but the soil moisture is depleted by more than x [2],

the irrigation amount = x [1].
c. Otherwise, irrigation amount = 0.

The four optimization objectives in the multi-objective optimization problem estab-
lished for T6 are the same as those for T2, where x [0], x [1], and x [2] are decision variables.
In Equation (15), Ino-rain, Irain, and TAW (%) correspond to x [0], x [1], and x [2], respec-
tively [22].

objectives


minIW = ∑n

i=1 Ii
maxY = f (TAW(%), Irain, Ino−rain)

maxIWP
maxWUE

Constraints
{

Imax > Ii > Imin(i ≤ n, i ∈ N∗)
TAWmax > TAWj > TAWmin

(12)

where Irain (mm) is the irrigation amount under the condition that rain occurs in the next
10 days but TAW (%) is depleted by more than x [2] and Ino-rain (mm) is the irrigation
amount under the condition that no rain occurs in the next 10 days.

2.5.2. Solution Based on the NSGA-III Algorithm

The multi-objective optimization model used in this study has four objective functions
and three constraint conditions. In order to obtain a reasonable global optimal solution, we
used the NSGA-III algorithm with good performance in the multi-objective optimization
problem in this study. The NSGA-III algorithm is based on NSGA-III, proposed by Jain and
Deb (2014), where a reference point mechanism is introduced. The algorithm deals with
multiple optimization objectives by reserving the non-dominated population of individuals
close to the reference point [17].

In order to deal with the constraints on Pareto dominance, we used the constraint
violation (CV) value to quantitatively describe the degree of violation. If a certain solution
x satisfies the constraint conditions, it is called a feasible solution, but an infeasible solution
if it does not. The CV value for the infeasible solution is calculated as [30]

CV(x) =
G

∑
g=1

∣∣gg(x)
∣∣+ K

∑
k=1
|hk(x)| (13)

where G is the number of inequality constraints, K is the number of equality constraints,
G (x) is an inequality constraint, H (x) is an equality constraint, and G (x) is an inequality
constraint. When G (x) < 0, G (x) = −g (x); otherwise, g (x) = 0. When x satisfies any of
the constraint conditions, i.e., x is within the feasible region, CV (x) = 0. When x does
not completely satisfy the constraint conditions, i.e., x is not in the feasible region, then
CV (x) 6= 0. When the CV value is smaller, x is closer to the feasible region.

The hypervolume (HV) is used as an index in order to evaluate the performance of the
NSGA-III algorithm. HV represents the volume of the region in the target space enclosed by
the non-dominated solution set and the reference point obtained by the algorithm. When
the HV value is larger, the comprehensive performance of the algorithm is better and the
distribution of the solutions in the optimal solution set is more uniform in the target space.
HV is calculated as [31].

HV = σ×U|s|c=1(vc) (14)
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where σ represents the Lebesgue measure used to measure the volume, |s| is the number
of non-dominated solution sets, and νc is the super-volume formed by the reference point
and the c-th solution in the Pareto solution set.

The spacing metric is a measure of the standard deviation of the minimum distance
from each point on the Pareto front relative to other points obtained by the multi-objective
optimization algorithm, and it is used to measure the uniformity of the solution set. The
spacing metric is calculated as follows:

Spacing =

√√√√ 1
X1 − 1

X1

∑
x=1

(
d− dx

)2

(15)

where X1 is the number of midpoints of P, dx represents the minimum distance from
point x in P to other points, and d is the average of all dx. The spacing metric is inversely
proportional to the uniformity of the solution obtained by the algorithm. If the spacing
value is 0, all points on the Pareto front obtained by the algorithm are equidistant.

Based on the NSGA-III optimization algorithm, a multi-objective optimization model
for maize crop growth in the Yellow River Delta region of Shandong Province, China was
constructed. The irrigation volume and TAW (%) were selected as the optimization decision
variables for NSGA-III coupled with the AquaCrop-OSPy model, and IW, Y, IWP, and WUE
were the optimization objectives. After a large number of experiments, the population
number was set to 500 for T2 and T6, and the number of iterations to 200. The specific
parameters used in the experiment are shown in Table 4, which are similar to those used
in [32]. The simulations were conducted using a PC with an Intel (R) Core (TM) i5-10300H
CPU @ 2.50 GHz and 16 GB RAM.

Table 4. Parameters used for optimization with NSGA-III.

Parameter
Scenario T2 Scenario T6

Wet Year Normal Year Dry Year Wet Year Normal Year Dry Year

Number of decision variables 5 5 5 3 3 3
Number of objective functions 4 4 4 4 4 4

Population size 500 500 500 500 500 500
Crossover probability 0.2 0.2 0.2 0.2 0.2 0.2
Mutation probability 0.01 0.01 0.01 0.01 0.01 0.01
Number of iterations 200 200 200 200 200 200
Evaluation number 91,000 91,000 91,000 91,000 91,000 91,000
Execution time (s) 6720.44 6821.24 5948.56 14,038.52 14,259.07 14,222.88

Number of non-dominated solutions 455 455 455 455 455 455
HV 0.005 0.009 0.010 0.013 0.040 0.040

Spacing 0.814 0.360 0.577 1.092 6.110 2.814

2.5.3. Scheme Optimization of TOPSIS-Entropy Comprehensive Evaluation Model

The TOPSIS is a common evaluation method based on multiple objectives that can
fully utilize the original data and accurately reflect the differences between evaluation
schemes. TOPSIS is one of the most widely used multi-criteria decision-making meth-
ods [31]. According to the principle of the entropy weight method, when the degree of
variation in the index is smaller, the amount of information represented is smaller and
the corresponding weight is lower. The method for calculating the evaluation object and
positive and negative ideal solutions is improved in the TOPSIS-Entropy comprehensive
evaluation model in order to make the evaluation results consistent with real situations.
The computational steps in the TOPSIS-Entropy model are as follows [33].

(1) Let W = (w1, w2, w3, w4) be the relative weight vector of each target calculated by the
entropy weight method, which satisfies
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∑n
j=1 ωj = 1(j = 1, 2, 3, 4) (16)

where j is the number of objectives for the multi-objective optimization problems.

(2) Xij is a solution on the Pareto front and Xij represents the ith solution on the jth
objective function. To normalize the objective function values, the following equation
is used:

rij =
xij√

∑m
i=1 xij

2
(i = 1, 2, · · · , n, j = 1, 2, 3, 4) (17)

(3) A weighted objective function normalization matrix is calculated according to the
weights obtained in the first step as

Vij = wj × rij(i = 1, 2, · · · , n, j = 1, 2, 3, 4) (18)

(4) The positive and negative ideal solutions are calculated as

V+
ij = max(z1j, z2j, z3j, . . . , zmj)

V−ij = min(z1j, z2j, z3j, . . . , zmj)
(19)

(5) The Euclidean distances between each index and the positive and negative ideal
solutions are calculated as

D+
ij =

√
4
∑

j=1

(
V+

ij −Vij

)2

D−ij =

√
4
∑

j=1

(
V−ij −Vij

)2
(20)

(6) The comprehensive evaluation value is calculated as

Cij =
D−ij

D+
ij + D−ij

0 < cij < 1 (21)

(7) Optimization scheme selection: sorting is carried out according to the size of relative
proximity, Cij. When Cij is larger, the score of the evaluation object is higher and closer
to the optimal value.

3. Results
3.1. Calibration and Validation of the AquaCrop-OSPy Model

The parameter calibration and validation of the model are used for the localization
and application of the model. The parameter calibration of AquaCrop mainly takes CC
and BIO as the reference standards. R2, NRMSE, and NSE are used for the evaluation of
the model performance. Figures 5 and 6, respectively, show the comparison between the
measured and simulated values of CC and BIO in the test area from 2019 to 2021. The
trial-and-error method is used to calibrate the relevant parameters. The final calibration
results of parameters in AquaCrop-OSPy are shown in Table 5. The relevant parameters are
essentially consistent with the values of Shan et al. (2022) for the AquaCrop constructed for
corn in this experimental area [34].
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Table 5. Maize parameters in the ACOSP model.

Parameter Value Parameter Description Remarks

Name Maize

PlantingDate 6/15 Planting date (mm/dd) Measured

HarvestDate 10/07 Latest harvest date (mm/dd) Measured

Emergence 7 Growing degree days from sowing to emergence Measured

MaxRooting 62 Growing degree days from sowing to maximum rooting Measured

Senescence 84 Growing degree days from sowing to senescence Measured

Maturity 115 Growing degree days from sowing to maturity Measured

HIstart 63 Growing degree days from sowing to start of yield formation Measured

Flowering 14 Duration of flowering in growing degree days Measured

Tbase 8 Base temperature below which growth does not progress (◦C) Recommended

Tupp 30 Upper temperature above which crop development no longer
increases (◦C) Recommended

Zmin 0.3 Minimum effective rooting depth (m) Measured

Zmax 1.0 Maximum rooting depth (m) Measured

CCx 0.85 Maximum canopy cover Measured

CDC 0.094 Canopy decline coefficient Measured

CGC 0.123 Canopy growth coefficient Calibrated

HI0 0.35 Reference harvest index Calibrated

WP 17 Water productivity normalized for ET0 and CO2 (g/m2) Calibrated

p_up1
0.12 Upper soil water depletion threshold for water stress effects on affect

canopy expansion Recommended

0.58 Lower soil water depletion threshold for water stress effects on
canopy expansion Recommended

p_up2 0.14 Upper soil water depletion threshold for water stress effects on canopy
stomatal control Recommended

p_up3 0.55 Upper soil water depletion threshold for water stress effects on
canopy senescence Recommended

In the “Remarks” column, “Calibrated” indicates that the values were calibrated using the data measured in
2019–2021, “Measured” indicates measured data, and “Recommended” indicates that the value was recommended
in the AquaCrop manual.

The model is validated by calibrated parameters, and the validation results are shown
in Table 6. We found that the model simulation overestimated CC and BIO under rainfall
conditions. When the impact of water stress on crops is more serious, the simulation
error of the model is greater. Li et al. (2014) obtained similar results for flax [35]. The
model overestimates CC during crop development and does not underestimate CC during
recession. Rainfall in the Yellow River Delta region mainly occurs in the late stage of
maize growth, with fewer sunshine hours, which delays the aging of maize, and the
model is sensitive to water stress in the recession period, in which the simulation speed
of the recession rate is too fast. Similar findings were obtained in previous studies [36,37].
Although the simulation results are biased, the model can still effectively simulate the CC
and BIO of maize under different irrigation treatments, thus establishing the relationship
between IW and Y, IWP, and WUE.
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Table 6. Evaluation of observed and simulated values for CC and BIO.

Year Particulars
Evaluation Parameters

NRMSE% R2 NSE

2019
CC 8.90 0.87 0.74
BIO 9.20 0.97 0.96

2020
CC 19.00 0.90 0.73
BIO 10.2 0.96 0.98

2021
CC 7.0 0.92 0.73
BIO 11.6 0.96 0.87

CC: canopy coverage; BIO: aboveground biomass.

3.2. Optimization Results Using NSGA-III and TOPSIS-Entropy

The Pareto frontier is the best specific method to solve conflicting multi-objective problems.
Figure 7 shows the Pareto front and two-dimensional projection under the T2 and T6 scenarios
in the Yellow River Delta region in the wet year, the normal year, and the dry year. The four
objective functions are drawn in three-dimensional coordinates, where the x-axis in the three-
dimensional coordinates represents IW, the y-axis represents IWP, and the z-axis represents
WUE. The Y objective function is represented by different colors. HV and spacing are important
indicators to evaluate the performance of the NSGA-III algorithm. The iterative process of HV
and spacing is shown in Figures 8 and 9. All optimization problems tend to be stable in the
25th generation, representing the effective improvement in the scheme during the optimization
process. The NSGA-III algorithm was used by Kelly et al. (2021) in their report, and scipy.
optimize. fmin () was used to solve the nonlinear programming problem of the AquaCrop model
with the linear programming function, which fell into the local optimal solution problem, so as
to solve the problem of the irrigation strategy optimization of the model. Decision makers may
have different decision bases and objectives rather than specifying specific weight combinations.
Therefore, the entropy weight method is used to determine the target weight. Zhao et al. (2020)
described the detailed procedure [38]. Then, the TOPSIS comprehensive evaluation method
was used to rank the advantages and disadvantages of each evaluation objective according to
different weight combinations. The weights of the four objectives in this study are shown in
Table 7. Under the T2 and T6 irrigation scenarios, the target weight of min IW is the largest in
the wet year, the normal year, and the dry year, and the target weight of max IWP is the smallest.
The main reason is that the soil water content has been maintained at a high level, which
increases the demand of crops for irrigation water, but the crop yield will not increase linearly
with the increase in irrigation water. Under this influence, IWP will be seriously underestimated.
In order to reduce this impact, the weight of IWP is assigned a low value. In rainy years, there
is more rainfall, crop transpiration demand remains unchanged, and IWP and WUE are only
affected by crop yield. At this time, their target weights are essentially equal. In the T6 irrigation
scenario, the target weight of max IWP in the dry year is the largest, mainly due to less rainfall
and higher irrigation frequency. In the scope of irrigation volume constraints, irrigation water
has a greater impact on crop yield, so the weight of max IWP is higher.

The comprehensive TOPSIS-Entropy method is used to select the optimal solution
from Pareto solutions with NSGA-III. The optimization methods for the first five T2 and T6
irrigation treatments in each typical year are shown in Table 8. The first scheme is called
the best compromise scheme. For example, in the best compromise scheme under the T2
scenario in the wet year, the optimal irrigation volume of corn is 62.83 mm, the yield is
5.89 t/ha, the IWP value is 0.15, the WUE value is 1.90, and the optimal irrigation volume of
corn in terms of the seedling emergence, canopy growth, maximum canopy, and senescence
period is 73.49 mm, 93.76 mm, 89.13 mm, and 3.17 mm, respectively. It can be seen that the
amount of irrigation in the senescence period of maize is less, mainly because the rainfall in
the Yellow River Delta is concentrated in September, which is the time of corn maturity, and
the amount of irrigation required for crops is less. According to the optimal compromise
scheme obtained by TOPSIS, decision makers can formulate various irrigation schemes to
meet their actual needs.



Agronomy 2023, 13, 960 14 of 22

Agronomy 2023, 13, x FOR PEER REVIEW 15 of 23 
 

 

 

Figure 7. Scatter plots of optimization in the present study: Pareto front. IW, IWP, and WUE are the irrigation water, irrigation water production rate, and water 

use efficiency.

Figure 7. Scatter plots of optimization in the present study: Pareto front. IW, IWP, and WUE are the irrigation water, irrigation water production rate, and water
use efficiency.



Agronomy 2023, 13, 960 15 of 22Agronomy 2023, 13, x FOR PEER REVIEW 16 of 23 
 

 

 

Figure 8. Performance of NSGA-III under T2 and T6. (a) HV curve for T2 in the wet year. (b) HV 

curve for T2 in the normal year. (c) HV curve for T2 in the dry year. (d) HV curve for T6 in the wet 

year. (e) HV curve for T6 in the normal year. (f) HV curve for T6 in the dry year. 

 

Figure 9. Performance of NSGA-III under T2 and T6. (a) Spacing curve for T2 in the wet year. (b) 

Spacing curve for T2 in the normal year. (c) Spacing curve for T2 in the dry year. (d) Spacing curve 

for T6 in the wet year. (e) Spacing curve for T6 in the normal year. (f) Spacing curve for T6 in the 

dry year. 

  

Figure 8. Performance of NSGA-III under T2 and T6. (a) HV curve for T2 in the wet year. (b) HV
curve for T2 in the normal year. (c) HV curve for T2 in the dry year. (d) HV curve for T6 in the wet
year. (e) HV curve for T6 in the normal year. (f) HV curve for T6 in the dry year.

Agronomy 2023, 13, x FOR PEER REVIEW 16 of 23 
 

 

 

Figure 8. Performance of NSGA-III under T2 and T6. (a) HV curve for T2 in the wet year. (b) HV 

curve for T2 in the normal year. (c) HV curve for T2 in the dry year. (d) HV curve for T6 in the wet 

year. (e) HV curve for T6 in the normal year. (f) HV curve for T6 in the dry year. 

 

Figure 9. Performance of NSGA-III under T2 and T6. (a) Spacing curve for T2 in the wet year. (b) 

Spacing curve for T2 in the normal year. (c) Spacing curve for T2 in the dry year. (d) Spacing curve 

for T6 in the wet year. (e) Spacing curve for T6 in the normal year. (f) Spacing curve for T6 in the 

dry year. 

  

Figure 9. Performance of NSGA-III under T2 and T6. (a) Spacing curve for T2 in the wet year. (b) Spacing
curve for T2 in the normal year. (c) Spacing curve for T2 in the dry year. (d) Spacing curve for T6 in the
wet year. (e) Spacing curve for T6 in the normal year. (f) Spacing curve for T6 in the dry year.
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Table 7. Weights in different scenarios using the entropy method.

Scenario Optimized Objective Ranking Weight

T2—Wet year f1 > f2 > f4 = f3 [0.42, 0.20, 0.19, 0.19]
T2—Normal year f1 > f2 > f4 > f3 [0.48, 0.19, 0.15, 0.18]
T2—Dry year f1 > f2 > f4 > f3 [0.35, 0.25, 0.16, 0.24]
T6—Wet year f1 > f2 = f4 > f3 [0.42, 0.26, 0.06, 0.26]
T6—Normal year f1 > f2 = f4 > f3 [0.45, 0.25, 0.05, 0.25]
T6—Dry year f3 > f1 > f2 > f4 [0.19, 0.14, 0.56, 0.13]

f1, f2, f3, and f4 represent minimum irrigation water (mm), maximum yield (t ha−1), maximum irrigation water
production rate (kg m−3), and maximum water use efficiency (kg m−3), respectively.

Table 8. Ranking of top five optimization solutions by TOPSIS.

Scenario Rank Value f1 f2 f3 f4 x0 x1 x2 x3 x4

T2—Wet year

1 0.72 62.83 5.89 0.15 1.90 73.49 93.76 89.13 3.17 62.83
2 0.72 36.33 5.85 0.17 1.89 49.34 93.03 52.98 29.24 36.33
3 0.69 171.52 5.93 0.08 1.92 84.74 93.55 55.67 36.38 171.52
4 0.69 83.64 5.90 0.13 1.90 69.25 93.56 0.000 41.26 83.64
5 0.69 244.17 5.95 0.06 1.92 89.11 94.53 86.01 47.21 244.17

T2—Normal year

1 0.78 72.60 5.96 0.72 1.83 20.06 84.95 96.31 94.45 72.60
2 0.78 85.62 6.00 0.67 1.85 39.73 85.58 87.58 99.90 85.62
3 0.78 68.76 5.94 0.74 1.83 41.79 84.82 81.16 74.33 68.76
4 0.78 121.83 6.07 0.53 1.87 31.80 86.99 94.38 78.31 121.83
5 0.78 55.32 5.87 0.80 1.80 27.10 84.88 87.87 15.47 55.32

T2—Dry year

1 0.76 31.08 5.45 0.56 1.57 25.40 53.57 97.83 88.12 31.08
2 0.75 125.83 5.80 0.41 1.67 74.21 83.37 86.30 89.70 125.83
3 0.74 90.64 5.69 0.46 1.64 73.47 78.71 85.25 96.69 90.64
4 0.74 247.17 5.97 0.28 1.72 83.84 89.63 93.49 96.89 247.17
5 0.74 171.55 5.87 0.35 1.69 74.17 86.85 79.30 99.16 171.55

T6—Wet year

1 0.93 132.23 5.89 0.07 1.90 0 16.53 0.15
2 0.93 141.88 5.90 0.07 1.90 0 12.90 0.13
3 0.93 273.24 5.93 0.05 1.92 0 11.88 0.08
4 0.93 184.26 5.92 0.07 1.91 0 16.75 0.11
5 0.93 278.71 5.94 0.05 1.92 0 12.12 0.08

T6—Normal year

1 0.96 269.00 6.13 0.26 1.88 0 7.70 0.09
2 0.96 246.00 6.12 0.28 1.88 0 8.47 0.10
3 0.96 266.00 6.13 0.26 1.88 0 7.61 0.09
4 0.96 118.00 6.00 0.48 1.84 0 13.12 0.20
5 0.96 278.00 6.13 0.25 1.88 0 7.73 0.08

T6—Dry year

1 0.67 148.32 5.70 0.28 1.64 0 18.54 0.21
2 0.60 252.63 5.91 0.25 1.70 2.39 20 0.16
3 0.60 255.91 5.91 0.25 1.70 2.60 19.87 0.16
4 0.60 97.11 5.50 0.22 1.58 4.41 0 0.14
5 0.60 86.29 5.48 0.23 1.58 3.92 0 0.14

f1, f2, f3, and f4 represent minimum irrigation water (mm), maximum yield (t ha−1), maximum irrigation water
production rate (kg m−3), and maximum water use efficiency (kg m−3), respectively. x0, x1, x2, x3, and x4 in the
T2 treatment represent crop emergence, canopy growth, maximum canopy, senescence, and irrigation amount in
the growth period, respectively. x0, x1, and x2 in the T6 treatment represent the amount of Irain, Ino-rain, and TAW
(%) in the next 10 days, respectively.

3.3. Responses to Irrigation Strategy Optimization under Different Scenarios

The IW, Y, IWP, and WUE values of maize under six irrigation scenarios (the best
compromise scheme for T2 and T6 is selected) are shown in Figure 10. It can be seen that the
net irrigation can obtain a yield of 5.87 t/ha yield without irrigation in the wet year, only
0.02 t/ha lower than the maximum yield (T2), and the corresponding irrigation amount
is reduced by 62.83 mm. The optimal TAW irrigation water demand in the normal and
dry year is the least, but outputs of 5.96 t/ha and 5.45 t/ha output are obtained, which are
0.17 t/ha and 0.3 t/ha lower than the highest output (T6 and T5), respectively. The irrigation
amount of 180 mm is the largest in each typical hydrological year, but the yield is the lowest.
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Figure 10. Maize IW (mm), Y (t ha−1), IWP (kg m−3), and WUE (kg m−3) under different irrigation
scenarios. Note: T1, rainfed conditions; T2, optimal TAW (%) irrigation; T3, irrigation in seedling,
jointing, and grouting stages, with a total amount of 180.0 mm; T4, irrigation in seedling, jointing,
and grouting stages, with a total amount of 130.0 mm; T5, net irrigation; and T6, optimal irrigation
considering the weather conditions. IW, IWP, and WUE are the irrigation water, irrigation water
production rate, and water use efficiency.

Comparing the five irrigation scenarios, it can be seen that the T2 irrigation scenario
has significant advantages in improving Y, IWP, and WUE. In the wet year, Y, IWP, and
WUE are the best of the five irrigation scenarios under the T2 irrigation scenario. In the
normal and dry year, the Y and WUE of T2 irrigation are higher, which is closely related to
the T2 irrigation method. T2 irrigation is triggered by monitoring the soil water content at
each growth stage of crops, which is lower than the threshold of the growth stage, consistent
with the current precision irrigation scheme used in smart agriculture.

In addition, IWP can comprehensively reflect the agricultural production level, irriga-
tion engineering status, and irrigation management level of the irrigation area. Our analysis
of the IWP of six irrigation scenarios in three typical hydrological years shows that net
irrigation is significantly higher than other irrigation treatments in the normal and dry years,
while the IWP of net irrigation in the wet year is 0, which may be because the rainfall in
the wet year of the region met the requirement for the normal growth of corn. The effect
of irrigation on crop yield is not obvious. WUE analysis of three typical hydrological years
found that the water use efficiency of net irrigation was at a higher level compared with
other irrigation scenarios. According to the comprehensive analysis of IW, Y, IWP, and WUE,
the impact of irrigation in high-water years on crops in the Yellow River Delta is relatively
small, and net irrigation in normal- and low-water years is the best irrigation scheme.

3.4. Irrigation Demands under Different Climate Change Scenarios

RCPs are a series of comprehensive concentration and emission scenarios, which are
used as the input parameters of climate change prediction models under the influence
of human activities in the 21st century [39]. On the basis of keeping the parameters of
the AquaCrop soil, crop, field management, and groundwater modules unchanged, the
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climate change prediction changes in accordance with the meteorological data module
to predict future corn yield changes. In 2014, the Fifth Coupled Model Intercomparison
Project Phase 5 (CMIP5) provided the latest data for predicting future climate change. The
researchers proposed four typical greenhouse gas concentration paths (RCPs) as scenarios
for predicting future climate, namely RCP2.6, RCP4.5, RCP6.0 and RCP8.5 [40,41]. The
RCP2.6 path simulates the scenario that the global temperature will rise by less than
2 degrees Celsius by 2100 compared with that before the industrialization era. The RCP8.5
path simulates a temperature rise of 5 degrees Celsius by 2100. Research shows that
because RCP4.5 has a higher priority than RCP6.0, and RCP2.6 is the most ideal of the four
emission scenarios, the research on RCP6.0 is of little significance [42–45]. Therefore, only
the estimated results under the climate models RCP4.5 and RCP8.5 are selected.

AquaCrop-OSPy includes a built-in functionality for externally generating future cli-
mate scenarios using LARS-WG, which is a widely used stochastic weather generator for
agroclimatic impact assessments. Meteorological data are transformed using the “pre-
pare_lars_weather” function, which includes functions for calculating the evapotranspiration
required for AquaCrop [15]. Projections generated for the RCP4.5 and RCP8.5 emission sce-
narios in 2021–2040, 2041–2060, and 2061–2080 based on the LARS-WG climate model output
are shown in Figure 11. Therefore, the climate prediction results are combined with the veri-
fied AquaCrop-OSPy model to simulate the corn yield change under future climate change
scenarios [15,46,47], and the reasons for the crop yield change are analyzed in combination
with the climate change trend in the growth period, providing a certain theoretical basis
for local agricultural production management. Assuming that a constant irrigation water
threshold of 70% will be maintained throughout the year in the future, we analyzed the crop
yield and irrigation water demand. The results show that in future climate scenarios, higher
CO2 concentrations will increase the yield and slightly reduce the demand for irrigation
water. The prediction of increased crop water productivity is consistent with the findings
obtained by Kelly and Foster (2021) [15]. Compared with the 1986–2015 baseline, yields will
be lower under future climate change scenarios and irrigation water consumption will be
slightly higher. Under future climate change scenarios, global warming will reduce rainfall
in the study region, thereby affecting crop yields and irrigation water usage.
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4. Discussion

The simulation optimization model coupled with AquaCrop and the NSGA-III algo-
rithm established using the Python language is used to simulate the IW, Y, IWP, and WUE of
corn under three typical hydrological years and six irrigation strategies in the Yellow River
Delta region, and the model parameters are calibrated and verified through three years of
field test data. The results show that after calibration, the model parameters could accurately
simulate the CC (R2 ≥ 0.87, NRMSE ≤ 19%) and BIO (R2 ≥ 0.96, NRMSE ≤ 11.6%) of corn,
and the simulation effect under the irrigation scenario was better than that under rain-fed
conditions, which may be related to the uneven distribution of rainfall in the region leading
to water stress in rain-fed corn. The simulation accuracy of AquaCrop under water stress
decreased, which was confirmed by Sandhu and Irmak et al. [3,34].

In the T2 and T6 irrigation strategies, the optimal solution is selected from the Pareto
solution of NSGA-III by TOPSIS-Entropy. The optimal compromise yield of the T2 irrigation
scheme in the wet year, the normal year, and the dry year is 5.89 t/ha, 5.96 t/ha, and
5.45 t/ha, respectively, and the irrigation volume is 62.83 mm, 72.60 mm, and 31.08 mm,
respectively. The best compromise yield of the T6 irrigation scheme in the high-water year,
normal-water year, and low-water year is 5.89 t/ha, 6.13 t/ha, and 5.70 t/ha, respectively,
and the irrigation volume is 132.23 mm, 269.00 mm, and 148.32 mm, respectively. It can be
seen that the T2 and T6 treatments are not the best in the IW or Y rankings after TOPSIS-
Entropy is selected, but decision makers (such as farmers and policy specifiers) can choose
the specific optimal scheme for a certain target. NSGA-III uses the AquaCrop model suite
as the optimization objective function to find a novel solution for irrigation optimization in
irrigation areas [20,22,46].

It can be seen from the performance of the four objectives under different irrigation
scenarios that IW has a significant impact on maize Y, IWP, and WUE. Maize Y will not
increase linearly with the increase in IW. Excessive irrigation will not only waste water
resources, but also lead to a reduction in crop yield, which is consistent with the research
results of Markovic et al. [47]. In addition, we compared T2 with T3 and T4 and found
that in the same typical hydrological year, IWP and WUE were lower with the increase in
irrigation volume, because the increase in irrigation volume was greater than the increase
in yield. According to the analysis of yield and WUE in three typical hydrological years,
the yield and WUE in dry years are the lowest, which may be due to the excessive water
stress, limiting crop growth and water use [48].

Assuming that the constant irrigation water threshold of 70% will be maintained
throughout the year in the future, under the RCP4.5 and RCP8.5 scenarios, the corn yield
will show a significant downward trend, and the total irrigation water volume will increase
significantly, which may be due to the reduction in the crop growth period and dry matter
accumulation time caused by a rise in temperature [49]. This research shows that reasonable
water and fertilizer management and crop variety improvement can also offset the negative
effects of climate change on yield, thus increasing the amount of irrigation during crop
growth [50,51].

5. Conclusions

Based on three years of field test data and 55 years of meteorological data in the
Yellow River Delta, the growth performance of maize under six irrigation scenarios in
three typical hydrological years was simulated using the coupled model of AquaCrop-
OSPy and NSGA-III. The results show that the model can accurately simulate the canopy
coverage and aboveground biomass of maize under irrigation conditions. Comparing
the four objectives of six irrigation strategies under three typical hydrological years, it
is found that net irrigation is the best irrigation method in the test area in the normal
and dry year, and that the rainfall in the wet year can meet the water demands of maize
during the growth period. The coupling of AquaCrop-OSPy and NSGA-III alleviates the
difficulties of large-scale farmland management [11,20], but does not directly solve issues
such as those relating to nutrient application, environmental impact, and economic cost.
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Future research should be carried out to realize the sustainable development of large-scale
farmland. By using LARS-WG to generate future climate scenarios from the outside and
the AquaCrop-OSPy model to simulate and analyze the impact of future climate change
on maize irrigation and yield in the experimental area, it was found that the increase in
annual average temperature in the future will have a negative impact on maize yield and
irrigation, and the prediction of maize irrigation and yield in 2021–2080 reflects the change
trend of future maize irrigation and yield, to a certain extent. However, the simulation
results are based on a constant irrigation water threshold of 70% in future growth periods,
without considering the impact of water stress, diseases, and insect pests on corn yield.
There are many uncertainties in future climate change scenarios, and the uncertainty of
crop models is also a key factor affecting crop yield, which needs further study.
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