
Citation: Acosta, M.; Visconti, F.;

Quiñones, A.; Blasco, J.; de Paz, J.M.

Estimation of Macro and

Micronutrients in Persimmon

(Diospyros kaki L.) cv. ‘Rojo Brillante’

Leaves through Vis-NIR Reflectance

Spectroscopy. Agronomy 2023, 13,

1105. https://doi.org/10.3390/

agronomy13041105

Academic Editors: Daniel García

Fernández-Pacheco, José Miguel

Molina Martínez and

Dolores Parras-Burgos

Received: 28 February 2023

Revised: 4 April 2023

Accepted: 11 April 2023

Published: 12 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agronomy

Article

Estimation of Macro and Micronutrients in Persimmon
(Diospyros kaki L.) cv. ‘Rojo Brillante’ Leaves through Vis-NIR
Reflectance Spectroscopy
Maylin Acosta 1 , Fernando Visconti 1,2 , Ana Quiñones 1 , José Blasco 3 and José Miguel de Paz 1,*

1 Centro para el Desarrollo de la Agricultura Sostenible, Instituto Valenciano de Investigaciones
Agrarias (IVIA), CV-315, km 10.7, 46113 Moncada, Valencia, Spain

2 Departamento de Ecología y Cambio Global, Centro de Investigaciones Sobre Desertificación-CIDE (Consejo
Superior de Investigaciones Científicas, Universidad de Valencia, Generalitat Valenciana), CV-315, km 10.7,
46113 Moncada, Valencia, Spain

3 Centro de Agroingeniería, Instituto Valenciano de Investigaciones Agrarias (IVIA), CV-315, km 10.7,
46113 Moncada, Valencia, Spain

* Correspondence: depaz_jos@gva.es

Abstract: The nutritional diagnosis of crops is carried out through costly elemental analyses of
different plant organs, particularly leaves, in the laboratory. However, visible and near-infrared
(Vis-NIR) spectroscopy of unprocessed plant samples has a high potential as a faster, non-destructive,
environmental-friendly alternative to elemental analyses. In this work, the potential of this technique
to estimate the concentrations of macronutrients such as nitrogen (N), phosphorus (P), potassium
(K), calcium (Ca), and magnesium (Mg), and micronutrients such as iron (Fe), manganese (Mn) and
boron (B), in persimmon (Diospyros kaki L.) ‘Rojo Brillante’ leaves, has been investigated. Throughout
the crop cycle variable rates of N and K were applied to obtain six nutritional status levels in
persimmon trees in an experimental orchard. Then, leaves were systematically sampled throughout
the cropping season from the different nutritional levels and spectral reflectance measurements were
acquired in the 430–1040 nm wavelength range. The concentrations of nutrients were determined by
inductively coupled plasma optical emission spectrometry (ICP-OES) for P, K, Ca, Mg, Fe, Mn and B
after microwave digestion, while the Kjeldahl method was used for N. Then, partial least squares
regression (PLS-R) was used to model the concentrations of these nutrients from the reflectance
measurements of the leaves. The model was calibrated using 75% of the samples while the remaining
25% were left as the independent test set for external validation. The results of the test set indicated an
acceptable validation for most of the nutrients, with determination coefficients (R2) of 0.74 for N and
P, 0.54 for K, 0.77 for Ca, 0.60 for Mg, 0.39 for Fe, 0.69 for Mn and 0.83 for B. These findings support
the potential use of Vis-NIR spectrometric techniques as an alternative to conventional laboratory
methods for the persimmon nutritional status diagnosis although more research is needed to know
how the models developed one year perform in ensuing years.

Keywords: nutritional diagnosis; non-destructive; foliar analysis; macronutrients; micronutrients;
Vis-NIR spectroscopy

1. Introduction

Persimmon (Diospyros kaki L.) ‘Rojo Brillante’ is the most common variety cultivated in
Spain, with 95% of the Spanish production. The Valencian Community cultivated around
429,000 tons of this fruit in 2021 under a Protected Designation of Origin (PDO) certified
by the Regulatory Council of PDO ‘Kaki Ribera del Xúquer’. Additionally, for this variety
Diagnosis and Recommendation Integrated System (DRIS) norms and standardized tables
for Nutritional Optimal Ranges (NOR) have been established [1].

Accurately determining the nutritional status of plants in different phenological stages
is necessary to achieve adequate fertilization and to tailor fertilizer applications to match
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their exact needs. A foliar analysis is the most suitable method for assessing nutrient
status because it provides precise information about the amount of nutrients absorbed
and assimilated by plants [2]. Quantifying macro and micronutrients in leaves is essential
for any farmer because they are the primary organ of plant metabolism and the easiest to
collect and analyze [3,4].

Nitrogen (N) is the nutrient that most significantly affects the vegetative development
of plants; it is a crucial element for the physiological processes of plants and is required in
large amounts [5]. N deficiency leads to smaller leaves and noticeable yellowing. Phospho-
rus (P) is essential for some macromolecules such as nucleic acids, phospholipids and sugar
phosphates used by plants to develop new roots, fruits and flowers [6,7]. Potassium (K) is
the element that most influences production and is necessary for enzymatic reactions, main-
taining osmotic potential, and water uptake during plant development [8]. Calcium (Ca) is
a secondary macronutrient that promotes the growth and development of roots, driving the
absorption of nutrients and water present in the soil. Ca deficiency first appears on young
leaves, showing a typical deformation and chlorosis. The primary role of magnesium (Mg)
is as a constituent of chlorophyll, involved in the synthesis of carotenoids and xanthophylls.
Mg deficiency is characterized by chlorosis on the leaf borders. Micronutrients, such as iron
(Fe), manganese (Mn) and boron (B), are essential for plant growth and development as
they participate in numerous enzymatic and metabolic processes, as well as in the synthesis
of chlorophyll [9].

The most appropriate method for determining the nutrient concentration in leaves is
through ionomic analysis, which provides important information about plant nutritional
status and helps to identify nutrient disorders that can guide balanced fertilization pro-
grams [10–12]. However, reference methods such as inductively coupled plasma optical
emission spectroscopy (ICP-OES), atomic absorption spectroscopy (AAS) and X-ray fluores-
cence spectroscopy (XRFS) require a large number of leaf samples and expensive reagents,
and they also have negative environmental impacts [13,14]. These characteristics often
make it difficult to achieve optimal nutrition for deciduous plants, such as persimmon.

To overcome these drawbacks, visible and near-infrared (Vis-NIR) spectroscopy is a
promising alternative for determining leaf nutrient concentration. Vis–NIR spectroscopy is
commonly used as a remote, non-destructive method for rapid analysis of many attributes
of fresh leaves. The visible region is where photosynthetic pigments, such as carotenoids,
chlorophylls, and xanthophyll, strongly absorb energy. However, the reflection in NIR is
dominated by the structural reflection of turgid plant cells of the mesophyll [15].

In case of nutritional deficiency, the plant may be affected by the loss of vegetative,
structural, photosynthetic and enzymatic compounds essential for plant development [16].
N is one of the elements associated with chlorophyll, which is why it interacts with
electromagnetic radiation [17]. Other elements, such as P, may not be directly detected
when irradiated with Vis-NIR frequencies, but organic compounds and other complex plant
components containing these elements can be detected [18]. Concerning Mg, this nutrient
is part of the structure of the chlorophyll molecule, which presents a strong interaction
with electromagnetic radiation [19]. The rest of the nutrients, such as K, Ca, Fe, Mn, Zn and
Cu, do not present specific spectral absorption characteristics in the Vis-NIR region but can
bind electrostatically or act as binders for larger compounds containing carbon [15].

Previous studies have demonstrated the potential of Vis-NIR-based technologies to
estimate the concentration of several elements in the leaves of different crops. The best
predictive model was obtained for potassium (K) in citrus (R2 = 0.982) and the analyzed
elements showed coefficients of determination ranging from R2 = 0.883 for magnesium
(Mg) to R2 = 0.481 for phosphorus (P). The calibration curves for all nutrients in sugarcane
showed high correlations (CV > 0.9) and low standard deviations (σ < 0.15) in all cases
with an R2 = 0.90.

Menesatti et al. [20] used Vis-NIR spectroscopy (400–1000 nm) to evaluate the concen-
tration of N, P, K, Ca, Mg, Fe, Zn, and Mn in citrus. To increase variability, they applied
five different nitrogen input levels (0, 200, 400, 600 and 800 g N tree−1 year−1) while all
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treatments received the same amount of P and K. The best predictive model for a single
nutrient was achieved for K with an R2 of 0.982. When all chemical parameters were con-
sidered together, coefficients of determination ranged from R2 = 0.883 for Mg to R2 = 0.481
for P. Other study performed by Ordoñez et al. [21] used a functional linear regression
and non-parametric methods to predict chemical characteristics such as moisture, dry
mass, and concentrations of N, P, K, Ca, Fe and Mg in vine leaves from spectral reflectance
measurements taken from 350–2500 nm. Yarce et al. [22] and Chen et al. [23] used NIR
spectroscopy (NIRS) to study the concentrations of macro and micronutrients in sugarcane.
They obtained high correlations (>0.9) and low standard deviation (<0.15) with an R2 of
0.90 for all nutrients. Regarding persimmon, Visconti & de Paz [24] developed a regression
model to estimate Cl− from foliar reflectance, achieving the best results with an R2 of 0.78
and a root mean square error (RMSE) of 0.34% for Cl− concentrations above 1.5%, and
finding that the most important wavelengths for Cl− estimation were between 390–472 nm
and 690–692 nm.

Due to the importance of the persimmon ‘Rojo Brillante’ cropping in Spain, it is crucial
to develop fast, environmental-friendly, non-destructive and accurate enough nutritional
status estimation tools. However, to our knowledge, only one study has been found related
to estimating nutrient contents in persimmon leaves using Vis-NIR spectroscopy [24] but
focused only on chloride (Cl−). Therefore, the objective of this work was to develop models
able to estimate the most relevant macro and micronutrients by Vis-NIR spectroscopy in
conjunction with PLS-R, which may be an alternative to the conventional laboratory foliar
analyses for the assessment of persimmon nutritional status.

2. Materials and Methods
2.1. Experimental Design

The experiment was conducted on an experimental persimmon ‘Rojo ‘Brillante’ or-
chard located at the Instituto Valenciano de Investigaciones Agrarias (IVIA, Moncada,
Valencia, Spain; 39◦32′ N, 0◦23′ W).

To increase the range of foliar nutrient concentrations and build more accurate models,
an experiment was conducted on persimmon trees using six different treatments with
varying N and K dosage rates (Table 1). These treatments included four levels of N (0%,
33%, 50%, and 100%) and three levels of K (0%, 50%, and 100%). The control doses (100%)
were set considering the tree requirements, which were 106 kg·ha−1 for N and 110 kg·ha−1

for K. Each treatment was replicated twice with two trees per replicate, resulting in four
trees per treatment and a total of 24 trees.

Table 1. Doses of nitrogen and potassium (kg/ha) applied in each treatment of the persimmon tree
nutrient experiment.

Treatment N (kg ha−1) K2O (kg ha−1)

T1 (N-0%) 0 110
T2 (N-33%) 35 110
T3 (N-50%) 53 110
T4 (K2O-0%) 106 0
T5 (K2O-50%) 106 55
Control (N and K2O-100%) 106 110

Leaf samples were taken monthly throughout a complete vegetative cycle in April
(after flowering), June (fruit enlargement), July (70% fruit size), September (color break),
October and (fruit at harvest) November (lethargy) 2020. Six leaves from each tree, which
were the third or fourth one from the axilla of reproductive sproutings, were collected per
treatment, resulting in 144 leaves per sampled month (864 total leaves sampled).

Once collected, the leaves were washed with phosphate-free soap and rinsed with
milliQ water to remove any remaining dust or contamination. Figure 1 shows four leaves
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of persimmon in different phenological stages. As they are deciduous leaves, they show
slight color changes.

Agronomy 2023, 13, x FOR PEER REVIEW 4 of 11 
 

 

Control (N and K2O-100%) 106 110 

Leaf samples were taken monthly throughout a complete vegetative cycle in April 
(after flowering), June (fruit enlargement), July (70% fruit size), September (color break), 
October and (fruit at harvest) November (lethargy) 2020. Six leaves from each tree, which 
were the third or fourth one from the axilla of reproductive sproutings, were collected 
per treatment, resulting in 144 leaves per sampled month (864 total leaves sampled). 

Once collected, the leaves were washed with phosphate-free soap and rinsed with 
milliQ water to remove any remaining dust or contamination. Figure 1 shows four leaves 
of persimmon in different phenological stages. As they are deciduous leaves, they show 
slight color changes. 

 
Figure 1. Persimmon leaves collected in (a) April (after flowering), (b) July (70 % fruit size), (c) 
October (fruit at harvest) and (d) November (lethargy). 

2.2. Vis-NIR Spectral Measurements 
Leaf reflectance measurements were performed in the laboratory, employing a 

portable CI-710 Miniature Leaf Spectrometer (CID Bio-Science, Inc., Camas, WA, USA), 
which is shown in Figure 2 (left panel). Two spectral recordings were performed per leaf, 
one near the tip of the midrib and the other near the petiole, but always at an 
inter-nervation point. Spectral measurements were taken in the Vis-NIR range from 430 
to 1040 nm in steps of 2.6 nm (232 values). Both spectra were averaged to obtain a single 
representative reflectance spectrum per leaf. Figure 2 shows the arrangement for the 
spectral recording, highlighting the points of measurement on the leaf (Figure 2, right). 
The reflectance data were acquired using the software Spectra Snap! v1.1.3.150 (CID 
Bio-Science, Inc., Camas, WA, USA). 

(a) (b) 

(c) (d) 

Figure 1. Persimmon leaves collected in (a) April (after flowering), (b) July (70% fruit size), (c) October
(fruit at harvest) and (d) November (lethargy).

2.2. Vis-NIR Spectral Measurements

Leaf reflectance measurements were performed in the laboratory, employing a portable
CI-710 Miniature Leaf Spectrometer (CID Bio-Science, Inc., Camas, WA, USA), which is
shown in Figure 2 (left panel). Two spectral recordings were performed per leaf, one near
the tip of the midrib and the other near the petiole, but always at an inter-nervation point.
Spectral measurements were taken in the Vis-NIR range from 430 to 1040 nm in steps of
2.6 nm (232 values). Both spectra were averaged to obtain a single representative reflectance
spectrum per leaf. Figure 2 shows the arrangement for the spectral recording, highlighting
the points of measurement on the leaf (Figure 2, right). The reflectance data were acquired
using the software Spectra Snap! v1.1.3.150 (CID Bio-Science, Inc., Camas, WA, USA).
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2.3. Chemical Analysis

After the spectral measurements, the leaves were dried in an air-forced oven at 65 ◦C
for at least 72 h until constant weight. Then, they were crushed in a grinder (IKA M 20,
IKA Labortechnik, Staufen, Germany) and stored until analysis. Organic digestion was
performed first, using microwave-assisted wet extraction in a microwave digestion system
(ETHOS UP, Milestone Inc., Santa Clara, CA, USA). Subsequently, the macro (P, K, Ca and
Mg) and micronutrients (Fe, Mn and B) were measured using inductively coupled plasma
optical emission spectroscopy (ICP-OES 7000; Thermo Scientific, Cambridge, UK) [25–28].
The Kjeldahl method (Kjeltec 8200, Foss Tecator AB, Sweden) was used to determine N
contents [29]. Six leaves were necessary to obtain the minimum dry matter weight required
to conduct a single ionomic analysis.

2.4. Chemometric Analysis

Spectral data were obtained by measuring at two points on the leaf that were averaged
to obtain a single value per leaf. However, the accuracy of these measurements can
be adversely affected by noise [30], which can be caused by factors such as electrical
currents in the instrument, temperature and humidity changes during measurements,
and variations due to the nature of the sample, like texture, size or geometry. This noise
causes unwanted variations in the spectral data that must be corrected [31]. To address
these issues, five data pretreatments were used: mean center (MC) [32], Savitzky-Golay
(SG) [33], standard normal variate (SNV) [34], first (1D) and second derivatives (2D) [35,36].
These pretreatments helped to reduce random noise and dispersion, eliminate constant
baseline offsets, and highlight the variations among individual samples instead of using the
absolute signal level. Once the corrections were made, a table was created for each macro
and microelement, with rows representing the leaf samples and columns representing the
wavelengths (predictor variables X). An additional column containing the reference values
obtained through ionomic analysis (response variable Y) was added to each table. This
table was the input to build partial least squares regression (PLS-R) models.

PLS-R is a soft modeling method for constructing predictive models when the factors
are many and highly collinear [37]. Different models were created for each nutrient and the
samples were randomly split into a calibration set (75%) for model building and an inde-
pendent test set (25%) for external validation. In PLS, one goal is to find a reduced number
of latent variables (LV) that capture the maximum amount of variation in the data [38]. A
method based on 20-fold cross-validation (CV) was used for internal validation [39,40] and
to determine the number of LV that balances model complexity and predictive performance.
The performance of the PLS-R models was evaluated using the root mean square error of
prediction (RMSEP), which expresses the uncertainty that can be expected when predicting
new samples, and the coefficient of determination (R2) that indicates the proportion of the
variance of ionomic values (variable Y) that is predicted or explained by linear regression
and the spectral measurements (variables X) [41]. The lower the RMSEP and the higher the
R2, the better a model fits a dataset. The models were built using the statistical program
Unscrambler version 9.7 (Camo Software, Oslo, Norway).

3. Results

Descriptive statistics of each element identified from destructive ionomic analysis
through the sampling period are shown in Table 2. The nutrient concentrations for the
samples collected in July are also shown as this month is considered one of the most suitable
for foliar sampling for persimmon in Spain [42]. All values are within the expected ranges.
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Table 2. Descriptive statistics of the leaf macro and micronutrient concentration determined in the
vegetative cycle (April-November 2020) by conventional analytical methods. Macronutrients (N, P, K,
Ca and Mg) are expressed in (%) of dry matter. Micronutrients (Fe, Zn and B) are expressed in (ppm).

Nutrient
Cycle Average Standard

Deviation
Coefficient July Range Std Bias KurtosisMin–Max Cycle of Variation Min–Max

N 1.06–2.82 1.74 0.39 0.22 1.62–2.30 1.75 2.48 1.09
P 0.04–0.30 0.11 0.06 0.55 0.13–0.30 0.26 8.87 5.6
K 0.83–2.96 1.94 0.53 0.28 1.08–2.30 2.13 0.71 2.53
Ca 0.30–6.52 2.7 1.41 0.52 0.30–2.11 6.22 0.81 0.17
Mg 0.17–0.95 0.5 0.2 0.39 0.17–0.58 0.78 0.68 1.26
Fe 13.22–81.77 39.52 15.45 0.39 31.00–69.00 68.54 3.36 1.36
Mn 32.81–295.02 181.07 72.92 0.4 32.00–118.00 262.21 2.66 2.27
B 12.18–102.10 48.76 22.89 0.47 12.00–26.00 89.92 0.06 2.49

Table 3 shows the RMSEP, the R2 and the number of LV achieved for the macronutrients.
Based on the independent test set (external validation), the best results for N were obtained
using the MC + 1D with R2 = 0.78 and RMSEP = 0.18. The better model for P was obtained
with the raw data, achieving an R2 of 0.75 and RMSEP = 0.02. The best performance for K
was achieved using MC + SG with R2 = 0.52 and RMSEP = 0.34. Ca achieved R2 = 0.77 and
RMSEP = 0.60, while for Mg, the best model had an R2 = 0.63 and RMSEP = 0.11 in these
two cases using MC + 1D.

Table 3. Comparative statistics on reflectance for the test sets of the model generated by PLS-R for
prediction of macronutrients (N, P, K, Ca and Mg). Mean center (MC), Savitzky-Golay (SG), Standard
Normal Variate (SNV), First Derivative (1D) and Second Derivative (2D).

Pretreatment LV
N

LV
P

LV
K

LV
Ca

LV
Mg

RMSEP R2 RMSEP R2 RMSEP R2 RMSEP R2 RMSEP R2

Raw data 12 0.19 0.71 12 0.02 0.75 10 0.34 0.52 12 0.66 0.72 11 0.11 0.60
MC 12 0.20 0.70 12 0.02 0.71 11 0.35 0.50 12 0.68 0.70 11 0.12 0.57
MC + SG 12 0.20 0.69 12 0.02 0.74 12 0.34 0.54 12 0.67 0.71 12 0.12 0.56
MC + SNV 12 0.19 0.72 12 0.02 0.74 12 0.35 0.51 12 0.66 0.72 12 0.11 0.63
MC + 1D 10 0.18 0.78 8 0.02 0.72 6 0.35 0.51 10 0.60 0.77 9 0.11 0.63
MC + 2D 9 0.20 0.69 8 0.02 0.72 6 0.35 0.50 12 0.66 0.72 9 0.12 0.53

The results for micronutrients are shown in Table 4. In this case, the best model for Fe
was based on using MC + 1D, reaching a low R2 = 0.39 and high RMSEP = 11.56. Concerning
Mn, the best model was obtained with the raw data with a determination coefficient of
R2 = 0.69 and RMSEP = 40.75. Finally, B achieved an R2 = 0.83 and RMSEP = 8.59 using
MC + 1D.

Table 4. Comparative statistics and uncertainty indices (R2 and RMSEP) on reflectance for the test
sets of the model generated by PLS-R for micronutrients (Fe, Mn and B). Mean center (MC), Savitzky-
Golay (SG), Standard Normal Variate (SNV), First Derivative (1D) and Second Derivative (2D).

Pretreatment
Fe Mn B

LV RMSEP R2 LV RMSEP R2 LV RMSEP R2

Raw data 12 11.75 0.37 12 40.75 0.69 12 9.51 0.79
MC 12 11.96 0.35 12 43.84 0.64 12 9.48 0.79
MC + SG 12 12.15 0.33 12 43.09 0.65 12 10.11 0.76
MC+ SNV 12 12.02 0.35 12 41.00 0.68 12 9.53 0.79
MC + 1D 8 11.56 0.39 9 41.11 0.68 10 8.59 0.83
MC + 2D 6 11.88 0.36 9 44.00 0.63 9 9.98 0.77
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4. Discussion

The R2 values for the macronutrients (N, P, K, Ca and Mg) prediction model ranged
from 0.50 to 0.78, with N having the highest R2. For the micronutrients (Fe, Mn and B),
the R2 values ranged from 0.39 to 0.83, with B having the highest R2. Previous studies
on predicting nutrients in persimmon leaves using spectroscopy have not been reported,
but similar studies on other crops can be found. The strength of this study lies in two fac-
tors: the variability introduced in the models due to natural concentration variations
during a vegetative cycle and the direct correlation between the spectra measured and the
concentration of the crop leaves.

The PLS-R model developed to predict foliar N concentration using Vis-NIR spec-
troscopy achieved high accuracy with an R2 of 0.78 and low uncertainty indicated by an
RMSEP of 0.18 in the external validation set. In previous studies for citrus leaves, better
outcomes were obtained in trees fertilized with very different N doses, resulting in a similar
R2 of 0.91 and RMSE of 1.06 using a spectral range of 380–1100 nm [19,43]. Ulissi et al. [32]
achieved an R2 of 0.88 with RMSEP = 0.40 for N in tomato leaves. In olive, Rotbart et al. [44]
reported an R2 of 0.91 with RMSEP = 0.07 for N in a spectral range from 1100 to 1700 nm.
However, they obtained results similar to those presented in this work using the 450 to
1000 nm range, which suggests that NIR can be better than Vis-NIR in predicting N con-
centration. Wang et al. [45,46] obtained similar R2 values of 0.85 with RMSEP = 0.15 and
4.48 in pear leaves but in the range of 350–2500 nm, which requires more expensive and
complex equipment than other studies. Oliveira and Santana [47] predicted the N leaf
concentration in eucalyptus with an R2 of 0.95, using leave-one-out cross-validation and
leaves of different colours, from dark green to yellow.

In this work, P was well predicted with an R2 of 0.75 and an RMSEP of 0.02. Another
study on citrus leaves [43] achieved a similar R2 of 0.77. In contrast, other work predicted
P concentration for sugarcane with an R2 of 0.98 and an RMSEP of 0.008, using a broader
spectral range of 780–2500 nm based on Fourier Transform NIRS (FT-NIRS) [21], which
required very complex equipment. The spectral data did not show a strong correlation with
K concentration, with an R2 of 0.54 and an RMSEP of 0.34. Other studies have achieved
higher R2 values in experiments designed to create extreme variability [19]. Furthermore,
Oliveira and Santana [47] achieved an R2 of 0.76 with an RMSEP of 1.30 when examining
eucalyptus leaves of varying colours and conditions, including healthy leaves and those
showing symptoms of the damage. The PLS-R model developed to predict Ca showed good
accuracy, as evidenced by an R2 value of 0.77 and a low RMSEP of 0.60. Comparable results
have been found for citrus [19]. Osco et al. [43] determined four spectral ranges between
545 and 1020 nm and predicted Ca levels with an R2 value of 0.62 and an RMSEP of 9.40.
Furthermore, Oliveira and Santana [47] used logarithmic transformation preprocessing and
iterative predictor weighting PLS to predict Ca concentrations in eucalyptus with an R2

value of 0.81 but a higher RMSEP of 1.80. Ca concentration was predicted in grapevine with
a higher R2 of 0.88 using NIRS with a spectral range of 908–1676 nm [48]. Mg was predicted
with acceptable R2 = 0.63 and a low RMSEP = 0.11. Other researchers could predict the Mg
of leaves with a better value in other crops, as in citrus [19,43] with R2 = 0.83–0.94 but a
relatively high error of RMSEP = 0.40–0.34 under laboratory conditions. Furthermore, in
sugarcane, Yarce and Rojas [21] predicted Mg with an R2 = 0.97 and an RMSEP = 0.005,
using multiple linear regression (MLR) and PLS-R in the spectral range of 780–2500 nm. On
the contrary, Oliveira and Santana [47] were not able to predict Mg in eucalyptus leaves.

Concerning micronutrients, a relatively low correlation was found for Fe (R2 = 0.39,
RMSEP = 11.56). Other researchers were also unable to predict Fe successfully, as in euca-
lyptus [47] or citrus [43]. The Mn concentration was predicted to a reasonably satisfactory
extent (R2 = 0.69, RMSEP = 40.75). Other studies predicted Mn with reasonable accuracy, as
for Valencia oranges [43]. However, as stated, this work has misconceptions, was based
on few samples, and the sampling method was unreliable since the reflectance of the
leaves indicated leaves with very different conditions, including reflectance that apparently
corresponded to dead leaves. Additionally, for citrus, [15] reported higher results but with
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a particular experimental design favouring extreme variability not found in nature. B
could be predicted with a high level of estimation with an R2 = 0.83 and an RMSEP = 8.59,
which surpasses other works as in eucalyptus [47], in which the predicted values were less
accurate (R2 = 0.68 and RMSEP = 22.66).

The positive results of this study indicate that Vis-NIR spectroscopy has excellent
potential as a non-destructive diagnostic tool for estimating nutrients in persimmon leaves
and improving fertilizer recommendations. The results confirmed that a portable computer-
based system, such as the Vis-NIR spectrometer, can provide good predictions for the
nutritional status of micro and macronutrients in persimmons. Due to its speed, afford-
ability, and non-destructive nature, the technology can be used in precision agriculture
applications that require a significant number of samples. Despite other studies reporting
the use of the NIRS range for predicting nutrients in plants, this research shows that using
the Vis-NIR range (430 to 1040 nm) has the potential to develop satisfactory prediction
models for nutrient prediction, especially for N, P, Ca, Mn and B.

5. Conclusions

The results showed that Vis-NIR reflectance spectroscopy is a feasible technique to
estimate the concentrations of macro and micronutrients in persimmon leaves throughout
a complete vegetative cycle. Results achieved using spectral reflectance in the range
430–1040 nm to predict the concentration of N, P, Ca, Mn and B were satisfactory, with a
coefficient of determination greater than 0.70. Lower scores were obtained for K, Mg and
Fe. Moreover, the RMSEP in all cases was relatively low, which indicates a high degree of
accuracy. Notwithstanding, more research is needed to know how these models, which
have been developed with data for only one year, perform in succeeding years.
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