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Abstract: Accurate calculation of the flow regime index in the design and development stage of a
drip irrigation emitter plays an essential role. In this study, machine learning technologies were used
to establish the relationship between flow channel structural parameters of the novel stellate water-
retaining labyrinth channel (SWRLC) irrigation emitter and its flow regime index. The training dataset
and test dataset were built by computational fluid dynamics (CFD) simulation and experimental study.
The extreme learning machine (ELM), backpropagation neural network (BPNN), and traditional
multiple linear regression (MLR) models were developed for the prediction of the flow regime index
of the SWRLC emitter. The input parameters matrix consisted of the length of the trapezoid baseline,
angle between the hypotenuses of adjacent trapezoids, trapezoid height, radius of stellate water-
retaining structure, spacing of two symmetric trapezoids, path depth, and SWRLC unit number,
while flow regime index x was the output of the models. The comprehensive indicator (CI) was
proposed, and root mean square error (RMSE), mean absolute error (MAE), mean bias error value
(MBE), and coefficient of determination (R?) were used to introduce the reliable assessment of the
three models. The comparison results showed that the ELM model had the lowest errors, with the CI,
RMSE, MAE, and R? were 1.96 x 101, 0.00163, 0.00126, and 91.49%, respectively. The BPNN model
had the lowest MBE error with the value of 1.03 x 10~*. The ELM and BPNN models were available
and had acceptable accuracy for predicting the flow regime index of the emitter, saving both time and
cost and increasing efficiency in the design and development stage. According to the CI, the ELM
model performed best, followed by the BPNN model with a minor discrepancy.

Keywords: drip irrigation; flow regime index; computational fluid dynamics; extreme learning
machine

1. Introduction

Rational conservation and full utilization of water resources is an important measure
to improve agricultural yield. Drip irrigation is one of the most water-saving irrigation
technologies for farmland irrigation, which has several advantages over other watering
methods, such as water consumption reduction, improving fertilizer and nutrients in plant
roots, and increasing production and quality [1]. The drip irrigation emitter is the key
component of a drip irrigation system, which reflects the uniformity of irrigation [2]. In
other words, the performance of a drip irrigation system largely depends on the discharge
uniformity of a drip irrigation emitter. The success of discharge uniformity of a drip
irrigation emitter relays on its hydraulic properties [3]. The flow regime index is a crucial
index to measure the hydraulic properties of an emitter, and its values (between 0 and 1)
provide the superiority level of the hydraulic performance [4].

The smaller the flow regime index, the less sensitive the discharge of the emitter
is to working pressure [5]. The flow regime in the emitter flow channel is divided into
three categories of laminar flow (flow regime index is 1), turbulent flow (flow regime index
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is 0.3-0.8), and absolute pressure compensation (flow regime index is 0) based on flow
regime index values. The regime flow in the labyrinth emitter flow channel is turbulent
flow [6]. The flow regime index is one of the indicators to be considered in the design
and development stage of the labyrinth channel emitter. Different flow channel units of
emitters have different flow regime index values [7]. Even if the same flow channel shape
is the same, different flow channel structure parameters lead to considerable differences in
flow regime index. Therefore, it is very important to establish the relationship between key
flow channel structural parameters of the emitter and its flow regime index accurately and
quickly in the stage of design development and optimization.

In recent decades, CFD has been widely used in the design and optimization stage of
labyrinth emitters because it saves development cycle time and economic cost. Feng et al. [8]
used CFD simulation and digital particle image velocimetry (DPIV) methods to study the
hydraulic performance of tooth labyrinth channel emitters, and the results showed that
the flow regime index errors of LES model and RNG k — ¢ model were relatively smaller.
Xu et al. [9] obtained the smaller flow regime index error (about 0.6%) for a pit drip irrigation
emitter by CFD simulation combined with a hydraulic performance test. Guo et al. [10]
analyzed the errors of three kinds of wall function and seven classes physical models and
showed that the numerical simulation accuracy of the enhanced wall function was better
and the calculation accuracy of RNG k — ¢ model was best, taking the macroscopic flow
rate index as the evaluation standard. Xing et al. [11] applied physical experiments and
CFD simulation calculations to improve the hydraulic performance of perforated drip
irrigation emitters and found that the calculation method of the CFD software package was
reliable. Although many researchers have achieved good results with the use of CFD to
simulate the hydraulic performance and flow regime index of labyrinth channel emitters,
the relationship between the key structural parameters of a flow channel and its flow
regime index cannot be directly established.

At present, a single-factor test method, multi-factor orthogonal test method, and
regression model are used to research the relationship between structural parameters
and the flow regime index by many scholars. Ai-Alamoud et al. [12] found that trape-
zoidal unit (dentations) numbers and height variables had the most significant influence
on hydraulic performance compared with other parameter variables. Yu et al. [13] in-
dicated that the flow regime index declined with the decrease in dentation angle of the
tooth labyrinth channel by the single-factor test method combined with CFD simulation.
Zhang Zhong et al. [14] showed that the flow regime indices of 13 fractal flow paths were
around 0.49 and the flow coefficient had a significantly positive relationship with flow path
width and depth, while a highly significant negative correlation with flow path length was
observed. Zhang et al. [15] showed that the turning angle of tooth was the most important
factor affecting pressure loss coefficient followed by the width of tooth top and tooth height
using an orthogonal design method combined with a multivariable regression method.
Only the independent influence of each structural parameter of a labyrinth irrigation
emitter on its hydraulic performance or flow regime index are discussed, and interaction
between parameters is not considered in many studies. The relationship between the
structural parameter of a labyrinth irrigation emitter on its hydraulic performance or flow
regime index has also not been determined directly.

Recently, with the rapid development of computer technology, machine learning
technologies have been developed as helpful methods to solve nonlinear, uncertain, mul-
tivariable, and complicated issues. The models, e.g., backpropagation neural network
(BPNN) and extreme learning machine (ELM), established by machine learning technolo-
gies have been widely applied in various fields, such as health monitoring [16], wind
speed prediction [17], signal processing [18], flume discharge estimation [19], agricultural
robotics [20], detection and classification of plant leaf diseases [21], fruit quality identi-
fication [22], fruit detection and counting [23], soil moisture prediction [24], modelling
and forecasting reservoir sedimentation of irrigation dams [25], irrigation decisions for
tomato seedlings [26], saturated hydraulic conductivity estimation [27], computing of the
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crop water stress index [28], and irrigation water allocation optimization [29]. In terms of
wisdom irrigation systems, machine learning techniques are used to predict the hydraulic
performance of drip irrigation emitters by many researchers. Mattar and Alamoud [30]
developed an artificial neural network (ANN) model and multiple linear regression (MLR)
model to estimate the hydraulic performance of labyrinth channel emitters and found that
the relatively low errors obtained by the ANN approach led to high model predictability.
Lavanhoil et al. [31] employed nonlinear regression and an ANN model to predict pressure—
discharge curves of trapezoidal labyrinth channels and revealed that both models were
accurate and enabled rapid prediction of the emitter’s discharge. Mattar et al. [32] exploited
gene expression programming (GEP) to model and predict flow variation and manufac-
turer’s coefficient of variation of different labyrinth channel emitters and discovered that
the performance of the developed GEP models was better at predicting flow variation
and manufacturer’s coefficient of variation for non-pressure-compensating emitters than
pressure-compensating ones. Seyedzadeh et al. [33] applied five machine learning models
to predict modified coefficient of drip tape irrigation and uncovered that the least square
support vector machine (LS-SVM) model had the lowest error, followed by the neuro-
fuzzy sub-clustering (NF-SC) model with a slight difference. Mattar et al. [34] used an
ANN model and GEP model combined with experimental study to predict flow variation
and manufacturer’s coefficient of variation of labyrinth channel emitters, and confirmed
that ANN models were superior to the GEP models for the prediction of the hydraulic
performance of emitters.

Although the application of machine learning technologies in the prediction of hy-
draulic performance (discharge, modified coefficient, flow variation, and manufacturer’s
coefficient) of drip irrigation emitters had achieved good results, there is no literature
to estimate the flow regime index during the design and development of drip irrigation
emitters. A review of the literature by the scholars showed that there has also been no
attempt to employ machine learning technologies to establish the relationship between
flow channel structural parameters of an irrigation emitter and its flow regime index in
the design and development stage. As we all know, since the determination of the flow
channel structure parameters of the emitter means that the flow regime index of the emitter
is determined, it is particularly important to determine its flow regime index in the design
and development stage. Additionally, most scholars did not study the relationship between
the structural parameters of the novel labyrinth drip irrigation emitter and its flow regime
index, and instead examined the widely used tooth drip irrigation emitter. In this study, the
ELM, BPNN, and MLR models were developed to build the relationship between the flow
channel structural parameters of the SWRLC emitter and its flow regime index combined
with CFD simulation and experimental study indices. The three models were evaluated
in terms of their accuracy and precision for predicting the flow regime index of a SWRLC
emitter in the design and development stage.

2. Materials and Methods
2.1. Geometric Design of Study

For increasing the diversity of flow channel cross-sectional structure types and the
generation of head loss, a new type of stellate water-retaining labyrinth channel (SWRLC)
structure was proposed and designed in this study. The SWRLC unit was composed of
a stellate water-retaining structure and two symmetrical isosceles trapezoid structures
without baselines [35]. The characteristics and parameters of the SWRLC unit are shown
in Figure 1. The three-dimensional model of the SWRLC emitter is shown in Figure 2.
Therefore, each emitter was characterized by its structural design in terms of the key
parameters of length of the trapezoid baseline (s), angle between the hypotenuses of
adjacent trapezoids (8), trapezoid height (1), radius of stellate water-retaining structure
(r), and spacing of two symmetric trapezoids (a), as well as path depth (d) and SWRLC
unit number (). Generally, the discharge of the emitter is required to be less than or equal
to 12 L/h. The range of the crucial geometric parameters was selected in light of design
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requirements and discharge rules of emitters. The key design parameters of emitters are
provided in Table 1.
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Figure 1. Schematic diagram of SWRLC unit structure.

SWRLC unit

Filter grids

Outlet
Inlets

Figure 2. 3D physical model of SWRLC emitter.

Table 1. Key design parameters of SWRLC emitter.

s (mm) 0(°) h (mm) r (mm) a (mm) d (mm) n

2.10-2.50 20-60 0.60-1.00 0.60-1.00 0.45-0.60 0.90-1.30 10-19

2.2. Selection of Data

An increasing number of scholars employ numerical simulation methods to design
and develop emitters [36-38]. For saving costs and shortening the development cycle,
computational fluid dynamics (CFD) technology was applied for establishing the dataset.
To obtain the simulated data, computational fluid dynamics (CFD) was used to simulate the
internal flow field of the SWRLC emitter. Water flow in the SWRLC emitter was considered
as a viscous incompressible fluid. The heat exchange of the SWRLC emitter could be
ignored. Therefore, the two basic governing equations are as follows.

The continuity equation is as follows:

divu =20 @)

The Navier-Stokes equations are as follows:

d(pu) .. Yy _op
“or + div(puu) = div(y - grad u) e 2)
a(pv) = .. o _op
5 T div(pvu) = div(p - grad v) E 3)
Ipw) . o _op
TI div(pwu) = div(p - grad w) e (4)
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where u is velocity, p is the density, p represents pressure, i is dynamic viscosity coeffi-
cient, u, v, and w are the components of the velocity vector u in the x, y, and z direction,
respectively.

A total of 135 three-dimensional models of the SWRLC emitter with different geo-
metric parameters were established using SolidWorks2018 software (Dassault Systemes,
Waltham, MA, USA). The three-dimensional fluid domain models of the SWRLC emitter
were established using SpaceClaim2021R1 software (ANSYS, Canonsburg, PA, USA). The
grids were created using FluentMeshing2021R2 software (ANSYS, Canonsburg, PA, USA),
and their qualities were examined. The skewness, based on the deviation from a normalized
equilateral angle, was less than 0.5, which indicated that the mesh quality was acceptable.
The realizable k — ¢ model was chosen as the turbulence model. The wall function was set
to standard. The volume meshes were filled by poly-hexcore-type mesh for the realizable k
— ¢ model. The meshes were constructed with y+ < 10 for the realizable k — ¢ model in
order to refine more mesh close to the wall.

The independence of the meshing was performed to verify the reliability of the
realizable k — & model simulation results. The velocities of point 1 (coordinates were
X = —454 mm, y = 235 mm, z = —0.75 mm) and point 2 (coordinates were
x = =329 mm, y = 3.50 mm, z = —0.75 mm) for different mesh elements are shown in
Figure 3. The results of the mesh independence study showed that the change in velocity
was minor when the mesh cell number was at least 2.51 x 10°. It is considered that the
influence of mesh can be ignored at this point. Therefore, the mesh cell numbers for the
realizable k — ¢ model were selected as 2.51 x 10°. In that way, the accuracy of simulation
result was not dependent on meshing.

22
21 - m
2.0 —— Point 1
—— Point 2
1.9 5
1.8
T
2174
gl
X
1.6 -
1.5 1
1.4 -
1.3 4 \ A A
12 I I I I I I I
270 570 1190 1740 2510 4560 7020

Number of mesh elements(thousand)

Figure 3. The results of the mesh independence study for the realizable k — ¢ model.

For the flow field calculation of the SWRLC emitter flow channel, the boundary
condition of inlet was set to the pressure inlet that was set as 20 kPa, 60 kPa, 100 kPa,
140 kPa, and 180 kPa, respectively. The settings of the other simulation parameters were
the same as those of Li et al. [35].

Empirically, the flow regime index might be obtained from the relationship between
emitter discharge and operating pressure as follows:

q=kP* ()
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where g represents the emitter discharge, k is the discharge coefficient, x is the flow regime
index, and P is the operating pressure.

2.3. Backpropagation Neural Network (BPNN)

A BPNN is a feedforward neural network, which is characterized by signal forward
transmission and error backpropagation. Its topological structure is shown in Figure 4.
Here, x1,2, ... n,Y1,2,... n and wij ,B]-k are input values, predicted values, and weights of
BPNN, respectively. As can be seen from the figure, BPNN can be regarded as a nonlinear
function, and the input value and predicted value of the network are the independent and
dependent variables of the function, respectively.

Input layer Hidden layer Output layer

Figure 4. The topological structure of BPNN.

The training process enables BPNN to gain memory and prediction, which includes
the following steps:

1. Initialization. Weights between the input layer and hidden layer (w;;), weights between
the hidden layer and output layer (Bj), thresholds of the hidden layer (b), thresholds of the
output layer (c), and learning rate () are initialized, and activation function (f ()) is selected.

2. Hidden layer output. The hidden layer output (H) can be represented as follows:

n
Hj = f()_ wijx; — b)) (6)
i=1
wherej =1,2,...,/, ], and f are the number of nodes and activation function in hidden

layer, respectively.
3. Output layer output. The output layer output (O) can be expressed as follows:

I
Or =) Hifjx — @)
=1

where k = 1,2,...,m and m is the number of nodes in output layer.
4. Error calculation. The predicted error of BPNN can be given as follows:

er = Y — O (8)

where Y is the desired output.
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H(wy,wy, - -

5. Updating weights. Updated weights between the input layer and hidden layer (w;)
and updated weights between the hidden layer and output layer (B;x) might be obtained

as follows:
m

wij = wij +nH;j(1 — Hj)x(i) ), Bixex ©)
k=1

Bik = Bjx + 1nH,ex (10)

6. Updating thresholds. The updated thresholds of the hidden layer (b) and updated
thresholds of the output layer (cx) might be obtained as follows:

m
bj = bj+nH;(1— H]’)kz Bikex (11)
=1

Cx = C + e (12)

2.4. Extreme Learning Machine (ELM)

An ELM is a single-hidden layer feedforward neural network (SLENN). The structure
of an ELM is similar to that of a BPNN with a single hidden layer (Figure 4). Generally, we
set the input matrix X and output matrix ¥ of the training set with Q samples as follows:

R b L () yii Y12 o Y10
X21 X222 X2 21 2 2

x= |2 7 o T L 2a (13)
Xnl Xn2  XpQ nxQ Ym1 Ym2 - YmQ mxQ

According to the topological structure in Figure 4, the output T of the ELM network
can be obtained as follows:

- -
X Bif(wixj +b;)
tlj z:ll
taj L Biof (wixj + b;)
T = [tl,tz, ’tQ]me't' : = | iz (14)
tmj mx1 l
'21 Bim f (wixj + b;)
Li= ]

i T
where ] = 1/ 2/ Tty Q/ w; = [wil/ Wip, - -+ /win}/ xj - [xlj/ ij/ te /xnj] 7 and
b = [blrbZI cet rbl]lTxl-

Equation (14) is rewritten as follows:
HR =T (15)

where H is the output matrix of the hidden layer of the ELM neural network. The specific
form is as follows:

f(wl-xl + by )f(wz-xl + bz)f(wl-xl + bl)
f(wy-x2 + by) f(wa-xp + ba) f (wy-2x2 + by)

,wi, by, by, by Xy, X, xQ) = : (16)

f(wl.xQ + b])f(ZUz'x.Q + bz)f(wl~XQ + bl) OxI
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According to Theorem 1 proposed by Huang [39], if the number of neurons in the
hidden layer is equal to the number of samples in the training set, the SLFNN can approach
the training sample with zero error for any w and b, as follows:

Q
Yt = =0 a7)
j=1

T,.
where y; = [y1j, 25, ] /=12, Q).

In the case of a large number of samples (Q) in the training set, the number of neu-
rons in hidden layer (K) is usually smaller than Q. It can be seen from the reference
Theorem 2 [40] that the training error of SLFNN can be approximated to an arbitrary € > 0,
as follows:

Q
L[~y << as)
j=1

Therefore, when the activation function (f(x)) is infinitely differentiable, the parameters
of SLFNN do not all need to be updated. w and b can be randomly selected before the
training process and remain unchanged during the training process. f might be obtained
by the least squares algorithm as follows:

rnﬁinHHB -7 (19)

The solution of Equation (19) is as follows:
B=H"T (20)

where H* is the Moore-Penrose inverse of H.

Therefore, the training process of ELM includes the following steps:

1. The number of neurons in the hidden layer is identified. w and b are
randomly assigned.

2. An infinitely differentiable function is selected as the activation function of the
hidden layer neurons, and then the output matrix (H) of the hidden layer is obtained.

3. The weight matrix (f3) of the output layer is determined.

2.5. Multiple Linear Regression (MLR)

MLR is a straightforward statistical method that allows for establishing the linear
relationship that occurs between one dependent, response variable (the flow regime index
of each studied SWRLC emitter in this work) and a number of independent, explanatory
variables (data of key structural parameters of the SWRLC emitter flow channel here)
through a set of coefficients B. In other words, the MLR model is used to find a higher-
dimensional plane that best represents the dataset. MLR with n explanatory variables can
be expressed as follows:

y = PBo+Pi1x1+ Paxa+ -+ Puxn (21)

where y is the response variable, x1, x2, - - - , x,; are explanatory variables, and the regression
coefficients ; reflect the amount of change in y caused by a change in unit x when other
variables are constant. Since both the response and explanatory variables are known, these
coefficients can be adjusted by minimizing the residual sum of squares as follows:

Y [yi — (Bo + Brxii + Paxai+ - + Pux)) (22)

i

The standard error (SE), t statistic (f-stat), and probability (p-value) of explanatory
variables are evaluated, as it is important to estimate these regression coefficients. The
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performance of the MLR model is examined by two key indicators (13, x and p-value).
121, g Tepresents what percentage of variation in response variable can be explained by
the MLR model. Significance level (p-value) quantifies the probability that the difference
between sample and hypothetical population is caused by chance. The p-value was 0.05 in
this study.

2.6. Assessment Indices

It is obvious that prediction itself has uncertainties connected with data acquisition
and processing and model precision. The difference between the observed and estimated
data is called model error. In this study, root mean square error (RMSE), mean absolute error
(MAE), mean bias error (MBE), coefficient of determination (R?), and the comprehensive
indicator (CI) were introduced to evaluate the performance of the abovementioned models.
The five indicators are described below.

2.6.1. Root Mean Square Error (RMSE)

The RMSE, also known as the standard error, is the square root of the ratio of the square
of the deviation between predicted and observed values to the number of samples [41]. The
RMSE is sensitive to very small or large errors in a set of data, so it can reflect the forecasting
accuracy of model. The smaller the value of the RMSE, the better the performance of the
model. It can be expressed as follows:

(23)

where O; and P; are the values of observed and predicted data, respectively. 7 is the total
number of observed flow regime indices.

2.6.2. Mean Absolute Error (MAE)

The mean absolute error (MAE) is the average of the absolute value of the deviation
from the arithmetic mean of all individual predicted values [42]. More significantly, the
MAE is less affected by outliers. Therefore, it can better reflect the actual situation of the
predicted value error. The MAE might be obtained as follows:

n
¥ |0; — P

MAE = 1:1# (24)

2.6.3. Mean Bias Error (MBE)

Mean bias error (MBE) is applied when evaluating the overestimation (positive value)
and underestimation (negative value) of a model [43]. In this study, a positive value means
that the model overestimates the flow regime index, while a negative value means that
it underestimates it. The more accurate the model, the closer the MBE is to zero. The
defect of MBE is that it cannot reflect the correct performance when the model presents
overestimated and underestimated values at the same time. The MBE can be expressed
as follows:

M=

Y (P—0)
MBE = ”T (25)

2.6.4. Coefficient of Determination (R?)

The coefficient of determination (R?), also known as goodness of fit, reflects the
proportion of variation in dependent variable that can be explained by the model [43]. The
R? determines the degree of correlation, and it ranges from zero to one. The larger the
value of R?, the denser the predicted points near the regression line. This index examines
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the linearity, and it is extremely helpful for improving the performance of the model. The
R? can be obtained as follows:

2
(0 =0) (P = P)

n
i—1

R* =

(26)

(0,-0)° % (P, - P)°
i=1

/

where O and P are the mean values of observed and predicted flow regime indices.

It

2.6.5. Comprehensive Indicator (CI)

Over the past decades, many researchers have investigated the prediction of hydraulic
performance of drip irrigation emitters. Most of the scholars have chosen RMSE and MBE to
test the accuracy of the models. Each indicator has its own advantages and disadvantages.
Therefore, one or two indicators cannot be used to determine whether a model is good or
bad. Inspired by Behar [43], a new evaluation index, called the comprehensive indicator
(CI), was introduced, as illustrated in Equation (27). The CI is a multiplication of four
statistical indices. CI comprehensively considers the advantages of the four indicators
mentioned above. The greatest advantage of CI is that evaluating the performance of
models become more comprehensive and realistic. The higher the model precision, the
closer the CI value is to 0.

CI = RMSE x MAE x MBE x (1 - RZ) 27)

2.7. Experimental Procedure

The SWRLC emitter products were manufactured by electrical discharge machining
(EDM) and injection molding. The manufacturing processes are shown in Figure 5. The
molds of the SWRLC emitter were manufactured by EDM, and its products were realized
using injection molding.

Figure 5. The manufacturing processes of the SWRLC emitter: (a) mold manufacturing by EDM;
(b) injection molding production.

For conducting the experiments, the hydraulic performance test bench was built
at the Advanced Manufacturing Laboratory at Shandong University [35,37], as shown in
Figure 6. This test bench consists of a pressure gauge (the precision is at the 0.4 level and the
measuring range is 0~0.6 MPa; Xiyi Group Co., Ltd., Xi’an, China), a test area for irrigation
emitters, several measuring cups (the volume is 2000 mL), an electronic weighing scale
(the precision is 0.1 g and the measuring range is 0~10 kg; Shenzhen Qianxue Electronics
Co., Ltd., Shenzhen, China), as well as a data acquisition unit and a pressure regulating
valve. A total of 25 emitters were randomly selected to be connected to the testing region
of the emitters. In the test, tap water was selected as the test water, and its temperature
was about 18 °C. During the experiment, the outlet flow of the emitters was measured
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every three minutes under different pressures (20-180 kPa, at intervals of 40 kPa). The
experimental results take the average of the two measured flow results as the final value.

Figure 6. Laboratory experimental platform for measured emitter discharge.

3. Results
3.1. CFD Simulated Data Verification

To examine the reliability of CFD simulated data, a set of key parameter combinations
of the SWRLC emitter was randomly selected and manufactured by EDM technology and
the IM method. SWRLC emitters selected the drip belts with a 16 mm inner diameter and
0.3 mm wall thickness. The distance between SWRLC emitters on drip belts was 40 cm.
The physical models of the SWRLC emitter and drip belts are shown in Figure 7.

' @
(b)
Figure 7. (a) SWRLC emitter; (b) drip irrigation belts.

The simulated and test results of the SWRLC emitter are listed in Table 2, from which
it can be seen that the discharge of the SWRLC emitter rose with the increase in working
pressure. The error between simulated discharge and measured discharge of the SWRLC
emitter was about 0.2 L/h. The simulated and measured flow regime indices were 0.477
and 0.472, respectively. The errors between the simulated data and measured data were
very small based on the above analysis. Therefore, in order to shorten the development

time and save economic costs, the CFD simulated data, named as observed data, was used
for the establishment of the dataset in this study.

Table 2. Hydraulic performance statistics of SWRLC emitter.

It Flow Rate (L/h)
ems 20 kPa 60 kPa 100 kPa 140 kPa 180 kPa

Simulations 3.257 5.521 7.044 8.276 9.348 0.477
Measurements 3.449 5.651 7.237 8.499 9.626 0.472

X
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3.2. Analysis and Division Data

Many studies have shown that the geometrical parameters of a flow channel play
an important role in the values and changes in the flow regime index of an emitter [44].
Therefore, the length of the trapezoid baseline, angle between the hypotenuses of ad-
jacent trapezoids, trapezoid height, radius of stellate water-retaining structure, spacing
of two symmetric trapezoids, path depth, and SWRLC unit number were used as input
parameters. The flow regime index x was the model’s output. A total of 135 samples were
collected, and the numerical characteristics of the dataset are presented in Table 3.

Table 3. Numerical characteristics of the dataset.

Parameter Minimum Maximum Median Mean SD (@AY Skewness Kurtosis
s (mm) 2.10 2.50 2.30 2.2822 0.1481 6.49 0.1417 —1.3886

0 (°) 20 60 40 39.7778 14.0078 35.22 0.0069 —1.2690

h (mm) 0.60 1.00 0.80 0.7948 0.1411 17.75 0.0440 —1.2870

r (mm) 0.60 1.00 0.80 0.7956 0.1392 17.50 0.0295 —1.2574

a (mm) 0.45 0.65 0.55 0.5481 0.0706 12.87 0.0177 —1.2899
d (mm) 0.90 1.30 1.10 1.0933 0.1399 12.80 0.0534 —1.2644
n 10 19 15 14.6889 2.8741 19.57 0.1114 —1.2425

X 0.4779 0.5023 0.4905 0.4907 0.0049 1.010 —0.0202 —0.3256

Among all of the parameters, the 8 and a2 showed the maximum and minimum mean
values of 39.7778 and 0.5481, respectively. 6 and x showed the maximum and minimum
standard deviation (SD) values of 14.0078 and 0.0049, respectively. Since the units and
mean values of all of the parameters were different, coefficient of variation (CV) was used
instead of standard deviation to measure the degree of variation. It can be seen from Table 2
that 6 had highest data deviation (35.22) from the mean values, followed by n (19.57). Since
the mean values and CV values of some parameters were very different, the dataset was
normalized before model training so that its characteristics were all of the same order
of magnitude. This was beneficial to improve the predictive accuracy of the model and
shorten the training time. Nonetheless, the severely skewed data distribution indicates that
the data is abnormal and may affect the predictive performance of the machine learning
model. Skewness is a numerical characteristic of the asymmetrical degree of the data
distribution. Generally, the skewness is between —0.5 and 0.5, indicating that the data is
approximating symmetry. Table 3 showed that all the input parameters had a positively
skewed distribution, and the output parameter (the flow regime index) had a negatively
skewed distribution. The s and a showed the maximum and minimum skewness values of
0.1417 and —0.0202, respectively. The skewness values of all parameters were in the range
of —0.5 to 0.5, which indicated that the data distribution was approximating symmetry. In
order to intuitively check the data distribution of each parameter, the quantile-quantile
plots of seven input variables and an output variable are shown in Figure 8. It is obvious
that the dataset had a normal distribution based on the results of the quantile-quantile
plots. In addition, the values of the skewness and kurtosis for each parameter were small.

A vast amount of data is required to acquire a high-precision machine learning model.
It is also crucial to input typical data so that the model learns and obtains more available
information. The data of seven variables were randomized and divided into training
and testing subsets. In this study, the original dataset was divided into training and
testing dataset in a ratio of 7:3 [45]. Then, the model was trained by the training dataset
(95 samples), and its accuracy was evaluated by the testing dataset (40 samples).

3.3. Performance of BPNN Model

In this study, the influences of different transfer functions and the number of hidden
layer neurons on the BPNN model performance were studied. The RMSE, MAE, MBE,
and R? values were verified as the number of hidden layer neurons in the BPNN model
increased, as shown in Figure 9. The performance of the BPNN model prominently im-
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proved with the increase in the number of neurons in the hidden layer, as reflected in the
values of the four evaluation indices for three activation functions. The low values of RMSE
and MAE, the high values of R?, and the values of MBE close to zero, manifesting good
performance, were achieved by increasing the hidden neurons to more than eight. It can be
seen from Figure 9 that the performance of the Tansig function was better than that of the
Logsig and Hardlim functions for flow regime index x. When Tansig function was used
and the number of hidden layer neurons was 10, there was an obvious improvement in
the BPNN model for flow regime index x. The RMSE and MAE were 0.00188 and 0.00148,
respectively. The MBE and R? were 1.0342 x 10~* and 88.50%, respectively. The CI was
3.32 x 107! at this point which was closest to zero. The optimal BPNN architecture was
7-10-1 (input neurons, hidden neurons, and output neuron, respectively) with the Tansig
function, as the best x prediction was achieved. The developed BPNN architecture is shown
in Figure 10.
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Figure 8. Quantile-quantile plot of the dataset.
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Figure 9. Statistical performance of the BPNN model with different transfer functions and hidden
neurons in the testing stage.
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Figure 10. Optimal architecture of the developed BPNN model.
3.4. Performance of ELM Model

The influences of different transfer functions and the number of neurons in hidden
layer on ELM model were also studied in order to determine the optimal model structure.
In the training process, when the number of neurons in the hidden layer ranges from 1 to 10,
the model gave a poor x prediction (the values of RMSE and MAE were too large, the value
of MBE was too far from 0, and the value of R? was too small). Figure 11 demonstrated
that increasing the number of hidden layer neurons from 10 to 40 generated a conspicuous
improvement in ELM model performance using 3 functions for x. The Tansig function
performed best among the three activation functions. The values of RMSE and MAE were
firstly decreased and then increased with the rise in the number of hidden layer neurons.
The value of RBE oscillated around zero and the value of R? firstly increased and then
decreased as the number of hidden neurons increased. In particular, the value of CI was
1.96 x 10~ (the lowest) when the number of neurons in the hidden layer was 37 and the
Tansig function was used. The RMSE and MAE at this point were 0.00163 and 0.00126,
respectively. The MBE and R? were 1.128 x 10~ and 91.49%, respectively. Therefore, the
most appropriate ELM model structure was 7-37-1 (input neurons, hidden neurons, and
output neuron, respectively), which gave the best performance for predicting flow regime
index x. The proposed ELM model structure is shown in Figure 12.

3.5. Performance of MLR Model

The MLR model had been used by some scholars to study the prediction of drip
irrigation emitter discharge. The MLR model was established to confirm the predicted
ability of the proposed BPNN and ELM model. The MLR model for flow regime index x
was developed by employing the training dataset (95 samples). The best fitting formula of
the MLR model as follows:

x = 0.46444 + 0.00969s + 0.0001346 + 0.01494h — 0.01317r + 0.02174a — 0.00291d — 0.000754n (28)
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The SE, t-stat, p-value, F and VIF of input parameters, and ”%\/IL r of the MLR model are
presented in Table 4. The t-stat absolute values of all independent variables were greater
than 2 except d (—1.885), indicating that these parameters had a large contribution to the
MLR model for x. The p-value also illustrated this phenomenon. The p-value of d was
6.84 x 1072 (p > 0.05), manifesting that it was not significantly affected. The n was the most
significant independent variable, followed by k. The VIF values of all independent variables
were less than 5 due to the weak linear relationship between them. In addition, Table 4
indicated that the 73, ; of the MLR model was 85.76%, confirming the goodness of fit. The
fitted MLR model was employed for prediction using the testing dataset (40 samples). The
indicators RMSE, MAE, MBE, and R?, reflecting the predicted performance of the MLR
model, are presented in Table 5.
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Figure 11. Statistical performance of the ELM model with different transfer functions and hidden
neurons in the testing stage.
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Figure 12. Most appropriate structure of the proposed ELM model.
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Table 4. Regression analysis of independent variables for the MLR model.

Items SE t-Stat p-Value F VIF LR
Intercept 0.004694 98.95 0 - - -
s 0.001593 6.086 8.38 x 108 37.04 1.16 -
6 0.000016 8.391 9.39 x 10712 70.40 1.11 -
h 0.001672 8.938 1.09 x 10712 79.88 1.14 -
r 0.001539 —8.559 483 x 10712 73.26 1.05 -
a 0.003274 6.642 952 x 10~? 4412 1.11 -
d 0.001571 —1.855 6.84 x 1072 3.441 1.11 -
n 0.000073 —10.380 420 x 10715 107.7 1.08 -
MLR - - - - - 85.76%
Table 5. Statistical prediction performance of the MLR model.
Model RMSE MAE MBE R?
MLR 0.00404 0.00287 0.00081 51.08%

3.6. Comparison of Developed Models

Figure 13 indicated that ELM model with the lowest RMSE and MAE values (0.00163
and 0.00126, respectively) and highest R? value (91.49%) performed better than the others.
The MBE value ranked the BPNN model performance (1.03 x 10~*) as excellent followed
by ELM model. It is testified that different assessment indices may bring about a different
evaluation result of model performance since each assessment indicator had a specific eval-
uation level. The choice of model with best performance based on the different assessment
indicator was not a responsible method.
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Figure 13. The test phase performance indicators of three best developed models.
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Therefore, the CI index was introduced and used in this study to overcome this
problem. The model with minimum CI value (near zero) was superior in performance than
others. The MLR model had worst performance in predicting the parameter of flow regime
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index x with CI = 4.84 x 10~?. The MLR model was not evaluated by CI index shown in
Figure 14 on account of presenting CI > 10710, The CI values of developed BPNN and
ELM models were shown in Figure 14. The ELM model performed best performance with
CI=1.96 x 10~ followed by the BPNN model. The introduced CI index eliminated any
doubts about the selection of high performance and quality model.

3.32x1071!

1.96 x 107!

BPNN ELM
Figure 14. The CI values of the developed BPNN and ELM models.

Next, the errors that equaled differences between the predicted and observed values
were compared, as shown in Figure 15. The distribution in Figure 15 showed that the errors
of the three models were concentrated around zero. The median value of the ELM model
was 0.00008, which was lower than the BPNN (Q2 = 0.00028) and MLR (Q2 = 0.00028).
This indicated that the average level of ELM error was closer to 0. In other words, the
predicted values of the ELM were closer to the observed values. The interquartile range
(IQR) for ELM, BPNN, and MLR were 0.00196, 0.00248, and 0.00412, respectively. In the
lower quartile, the ELM with Q1 = —0.00058 performed better than BPNN (Q1 = —0.00116)
and MLR (Q1 = —0.00177). Additionally, the upper quartile in BPNN (Q3 = 0.00132) was
lowest, followed by ELM with a slight difference (AQ3 = 0.00006). Figure 14 showed that
the lower and upper edge values in the ELM model (—0.00298 and 0.00302, respectively)
were lower than in the BPNN model (—0.0047 and 0.00361, respectively) and the MLR
model (—0.00478 and 0.00754, respectively), confirming the ability of the ELM model to
predict flow regime index x.

Finally, the Taylor diagram was employed to intuitively compare the performance
of the three developed models. Due to the smaller standard deviation (SD) and RMSE
values, the values expand by a factor of 1000 in Figure 16. The ELM model had the smallest
difference with the standard deviation of observed flow regime index x values. In the RMSE
index, the ELM and BPNN models were in the first radius relative to the observed point,
while the MLR model was not, and the ELM model had the smallest distances. In addition,
the correlation coefficient of the ELM model was greater than 0.95, and the others were less
than 0.95. Therefore, the ELM model had excellent ability to build relationship between
key parameters of the labyrinth channel and flow regime index by the above analyses.
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Figure 15. The boxplot of errors distribution of the three developed models in the test stage.
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Figure 16. The Taylor diagram showing a comparison of the three developed models.

4. Discussion

The flow regime index is an important indicator to measure irrigation uniformity
of a drip irrigation emitter, and it is mainly determined by the structural parameters of
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the emitter. Generally, the flow regime index of the emitter is obtained in two steps: the
first is to measure the flow under different working pressures; the second is to obtain the
flow regime index by fitting the flow and pressure with the empirical formula. If CFD
simulation is carried out, grid division and simulation calculation are required. Using a
high-performance computer (Intel(R)Core(TM) i9-10900K CPU @3.70GHz), it takes about
6 h to obtain the flow regime index of a set of structural size SWRLC emitters. If the
processing test, the emitter processing cost, the drip irrigation tape cost, the test bench
cost, the processing cycle time, and the test time are to be considered, this process requires
a lot of time and money. The ELM model established in this study based on machine
learning technology can directly describes the relationship between a SWRLC'’s structural
parameters and its flow mode index. This can greatly save time and economic costs in the
design phase of a SWRLC emitter, which is conducive to rapid development. This is also
beneficial for water-saving irrigation.

In this paper, the models were built based on all structural parameters as the inputs,
so the seven input variables are not compared. It is not necessarily true that the more input
variables, the better the effect of the model. In the future, different combinations of inputs
variables can be considered to further expand the data set, and the predictive performance
of other machine learning models can also be explored.

5. Conclusions

The main purpose of this study is to establish the relationship between the flow channel
structure parameters and its flow regime index based on machine learning technologies,
the CFD method, and experimental study for rapid, efficient, and low-cost design and
development of novel types of emitters. In this study, the ELM, BPNN, and MLR models
were developed to predict flow regime index x of the novel SWRLC emitter. The hydraulic
performance test results showed that the CFD simulation had high reliability. In order to
address the problem of different evaluation results of existing assessment indices, the CI
index was introduced. Based on the obtained results, the architectures of best performance
of ELM and BPNN models were 7-37-1 and 7-10-1, respectively. The results showed that
the performance of the ELM model with a minimum CI value (1.96 x 10~!!) was superior
to the other models. In the design and development stage of the emitters, the flow regime
index can be obtained by directly inputting the structural parameters of the emitters into
the trained ELM model. The findings of this study showed that the ELM model can be a
good substitute for laboratory and field measurements to obtain the flow regime index x of
a SWRLC emitter in the design and development stage, saving both time and money and
increasing efficiency.
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