
Citation: Zhelezova, S.V.;

Pakholkova, E.V.; Veller, V.E.;

Voronov, M.A.; Stepanova, E.V.;

Zhelezova, A.D.; Sonyushkin, A.V.;

Zhuk, T.S.; Glinushkin, A.P.

Hyperspectral Non-Imaging

Measurements and Perceptron

Neural Network for Pre-Harvesting

Assessment of Damage Degree

Caused by Septoria/Stagonospora

Blotch Diseases of Wheat. Agronomy

2023, 13, 1045. https://doi.org/

10.3390/agronomy13041045

Academic Editors: Jian Zhang, Randy

G. Goebel, Zhihai Wu and Alberto

San Bautista

Received: 17 January 2023

Revised: 13 March 2023

Accepted: 30 March 2023

Published: 1 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agronomy

Article

Hyperspectral Non-Imaging Measurements and Perceptron
Neural Network for Pre-Harvesting Assessment of Damage
Degree Caused by Septoria/Stagonospora Blotch Diseases
of Wheat
Sofia V. Zhelezova 1 , Elena V. Pakholkova 1, Vladislav E. Veller 1,2, Mikhail A. Voronov 1 ,
Eugenia V. Stepanova 1 , Alena D. Zhelezova 1,3,* , Anton V. Sonyushkin 4, Timur S. Zhuk 1

and Alexey P. Glinushkin 1

1 Federal State Budgetary Scientific Institution All-Russian Scientific Research Institute of
Phytopathology (VNIIF), Institut Street, 5, Bolshie Vyazemy, Moscow Region 143050, Russia;
soferrum@mail.ru (S.V.Z.); epaholkova@mail.ru (E.V.P.); vellervladislav@gmail.com (V.E.V.);
mvoronov97@gmail.com (M.A.V.); step@vniif.ru (E.V.S.); timurjuk2000@gmail.com (T.S.Z.)

2 BASF, Department of Russian Federation, Leningradsky Ave, 37A Building 4, Moscow 125167, Russia
3 Dokuchaev Soil Science Institute, Department of Soil Biology and Biochemistry, Pyzhyovskiy Lane 7

Building 2, Moscow 119017, Russia
4 Institute of Geography, Russian Academy of Sciences, Staromonetniy Lane, 29, Moscow 119017, Russia;

asonyushkin@opendatabox.info
* Correspondence: zhelezova_ad@esoil.ru

Abstract: The detection and identification of plant diseases is a fundamental task for sustainable
crop production. Septoria tritici and Stagonospora nodorum blotch (STB and SNB) are two of the
most common diseases of cereal crops that cause significant economic damage. Both pathogens
are difficult to identify at early stages of infection. Determining the degree of the disease at a late
infection stage is useful for assessing cereal crops before harvesting, as it allows the assessment
of potential yield losses. Hyperspectral sensing could allow for automatic recognition of Septoria
harmfulness on wheat in field conditions. In this research, we aimed to collect information on the
hyperspectral data on wheat plants with different lesion degrees of STB&SNB and to create and train
a neural network for the detection of lesions on leaves and ears caused by STB&SNB infection at
the late stage of disease development. Spring wheat was artificially infected twice with Septoria
pathogens in the stem elongation stage and in the heading stage. Hyperspectral reflections and
brightness measurements were collected in the field on wheat leaves and ears on the 37th day after
STB and the 30th day after SNB pathogen inoculation using an Ocean Insight “Flame” VIS-NIR
hyperspectrometer. Obtained non-imaging data were pre-treated, and the perceptron model neural
network (PNN) was created and trained based on a pairwise comparison of datasets for healthy
and diseased plants. Both statistical and neural network approaches showed the high quality of
the differentiation between healthy and damaged wheat plants by the hyperspectral signature. A
comparison of the results of visual recognition and automatic STB&SNB estimation showed that the
neural network was equally effective in the quality of the disease definition. The PNN, based on a
neuron model of hyperspectral signature with a spectral step of 6 nm and 2000–4000 value datasets,
showed a high quality of detection of the STB&SNB severity. There were 0.99 accuracy, 0.94 precision,
0.89 recall and 0.91 F-score metrics of the PNN model after 10,000 learning epochs. The estimation
accuracy of diseased/healthy leaves ranged from 88.1 to 97.7% for different datasets. The accuracy of
detection of a light and medium degree of disease was lower (38–66%). This method of non-imaging
hyperspectral signature classification could be useful for the identification of the STB and SNB lesion
degree identification in field conditions for pre-harvesting crop estimation.

Keywords: septoriosis; Septoria tritici blotch; hyperspectral signature; hyperspectral disease detection;
data science; neural network; wheat
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1. Introduction

Sustainable crop production is a basis for food security. Wheat is one of the most
important cereal crops, and its productivity could be significantly constrained by several
pathogenic species. Septoria tritici blotch and Stagonospora nodorum blotch (STB and
SNB), or septoriosis, are widely spread and common diseases of cereal crops. Under this
name, several variants of the disease are combined that are caused by different pathogens
with the similar mechanism of action. This pathogen complex affects wheat, rye, triticale,
barley and many other crops, as well as about 20 types of wild cereals [1]. Septoriosis is a
common disease in all small-grain-cereal-growing territories on all continents, especially in
the medium- and high-rainfall zones [1–6].

Septoriosis causes significant economic damage due to crop losses and increased
fungicide application. Annual economic losses from septoriosis were estimated at EUR
0.28–1.2 billion per year in Europe and more than USD 275 million per year in the United
States [2,7]. In Europe, cereal crop losses in epiphytotic years could range from 20 to 40%
and losses of wheat yields could be up to 50% [2]. In Russia, septoriosis is one of the most
spread leaf–stem fungal diseases of wheat. Mass outbreaks of this disease are noted every
5 years out of 10; crop losses in epiphytotic years can range from 20 to 40% [8–10].

On wheat crops in Russia, two types of STB pathogens are the most common: Zy-
moseptoria tritici (Desm.) Quaedvlieg and Crous (synonym of Septoria tritici Rob. et
Desm) and Parastagonospora nodorum (Berk.) Quaedvlieg, Verkley and Crous (synonym of
Stagonospora nodorum (Berk.) Castellani and E. G. Germano) [8–10]. The first pathogen is
the causative agent of septoria leaf blotch and it affects mainly leaves. The second pathogen
is the causative agent of septoria glume blotch and it affects both leaves and ears equally.
The Septoria pathogens affect plants at any time of the growing season, in several stages
of vegetation, causing the spotting of leaves, stems and ears. The main damage from
septoriosis, as well as other plant leaf diseases, is a reduction in plants’ photosynthetic
assimilation surface area.

Traditionally, visual assessment is used to determine the degree of leaf damage using
the nominal, ordinal and ratio scales [11]. In recent years, the automatic detection of plant
diseases using images has also become widely applied. Many databases on plant diseases
are represented by sets of digital photographic images [12,13]. The results of multi- and
hyperspectral imaging are also used to determine some problems of plant health, such as
salinity stress, drought and fungal and viral diseases [11,14–19]. Various methods are used
to process sets of digital, multi- and hyperspectral images, from non-parametric statistical
methods (principal component analysis, cluster analysis and others) to automatic data
processing based on neural networks. The basis of automatic methods for determining
plant diseases is a comparison of photographs of healthy and diseased plants with clearly
presented disease signs [13,20,21]. With a sufficient number of images in the training
sample, neural networks (NNs) could easily and with high accuracy identify various plant
diseases from digital photographs and hyperspectral survey results.

Currently, different approaches and models of neural networks are used to extract
data and select a classification model. The extraction of an image’s features is the first
important step for successful image classification. The precision of classification depends
on (1) quality of input image (or hyperspectral) information and (2) the advantages and
disadvantages of machine learning algorithms [18,22]. A convolutional neural network
(CNN) is an example of a deep learning neural network. It uses computer vision for image
recognition and classification. For automatically determining plant diseases, the number
of CNN models can be used, for example, AlexNet, GoogLeNet, VGG19, ResNet50 and
others [13,21,23]. CNN is a common method used for image classification and computer
vision. Another method of the neural network is multilayer perceptron (MLP). This method
can be used for non-imaging hyperspectral data [16]. In our research, non-imaging spectral
curves were used instead of images, and there were none applied to the CNN class.

It is necessary to find the effective methods of plant disease detection in plants for
timely diagnostics and the prevention of notable damage. Optical imaging techniques such
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as RGB, thermal, fluorescence, multi- and hyperspectral imaging are non-invasive methods
of plant disease detection [11,15,24,25]. RGB with hyper-spectral imaging was successfully
applied to identify various diseases of sugar beet leaves and other crops [14,25], yellow rust
and Fusarium head blight in cereal crops [26], and STB in wheat [27–29]. Both hyperspectral
imaging and non-imaging measurements are effective for the determination of various
visible symptoms of plant stress or infection [16,28–32]. A specialized library of spectral
characteristics (signatures) of the main foliar diseases of wheat was created for pathogen
detection and identification [32]. Many studies are dedicated to obtaining and analyzing
spectral images in controlled laboratory conditions [33]. The method of disease develop-
ment assessment depends on the scale of research: the cellular level, the level of the leaf, the
individual plant, the canopy of the crop, the field and the landscape [11,14,15,34,35]. Field
conditions make constraints for studies using hyperspectral imaging: the light intensity
can change significantly during the shooting, which makes it difficult to interpret the result.
Some works emphasize that the methods developed for the laboratory for the detection of
plant diseases cannot be transferred to field conditions [33].

The detection of STB pathogens on leaves and SNB on ears in the field is difficult due
to the long latent stage of disease. The visual diagnostic characteristic of Septoriosis on the
leaves and ears is the presence of black fruiting bodies (pycnidia) within pale grey to dark
brown spots. Leaf discoloration is associated with chlorosis and tissue necrosis. The necrotic
phase and the first chlorotic tissue become visible 12–13 days after infection (dai). These
signs can be easily visually detected and by using optical and spectral cameras [11,36]. The
possibilities of hyperspectral imaging and machine learning for assessing the development
of Septoriosis were shown in laboratory conditions at the level of leaves and ears [32,35], in
field conditions at the level of leaves and the crop canopy [27,28] and at the level of plots
and fields [19,29].

All previous studies have stated the indisputable fact that Septoria disease is difficult
to identify in the initial stages of development. To one degree or another, this problem
of disease identification has been solved with the use of hyperspectral surveys. In the
last stages of this disease’s development, it can be easily identified using visual detection,
but researchers can only state the fact that the disease caused weak, medium or severe
damage. However, this knowledge is useful for special aims of inventory. The assessment
of the damage caused by the disease in the pre-harvesting stage of crop development
can be used to predict crop yield losses from septoriosis, to estimate the effectiveness of
protective measures carried out or to compare the cultivars’ sensitivity to this disease.
Visual pre-harvesting crop inspection in fields is limited because of subjective reasons, and
automatic inspection can be more convenient and faster. This study shows the possibility
of automatic assessment of the degree of wheat damage by septoriosis based on the use of
non-imaging hyperspectral analysis and the perceptron neural network.

The aim of the study was to examine the results of automatic identification of the
Septoriosis degree in the pre-harvesting stage of wheat on the basis of hyperspectral non-
imaging measurements in the field condition and a comparison of the results of visual and
automatic STB&SNB estimation.

2. Materials and Methods
2.1. Wheat Cultivation and Pathogen Inoculation

For the dataset creation it was necessary to observe healthy and diseased leaves and
ears with different degrees of Septoria tritici and Stagonospora nodorum blotch. Two
moderately susceptible cultivars of spring wheat (Triticum aestivum) were used: Stepnodar-
90 (originating from Kazakhstan) and Aekada-282 (originating from Tatarstan, Russia).

For the collection of spring wheat cultivars (Triticum aestivum), they were grown
according to standard growth technology in the field condition in the Moscow region,
Russia. The soil of the site was sod-podzolic medium-loamy. The standard technology used
for the growing of the spring wheat cultivar collection included (1) pre-winter soil plowing
after the harvesting of the previous crop sunflower, where the depth of conventional
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plowing was 24 cm; (2) fertilization with cultivation in the spring, two days before sowing,
where the doses of complex fertilizer NPK were 60, 36 and 36 kg·ha−1, respectively;
(3) sowing with the density equivalent to 4.5 million seeds per hectare, where the inter-row
distance was 15 cm and (4) weeding as needed. Since this was a collection of varieties for
studying resistance to STB&SNB, no pesticide treatments were carried out on this collection.
Seeds of the wheat cultivar collection were sown at the 24th of May 2022, and the plants
developed normally during the whole growing season. Inoculation with spores of Septoria
pathogens was carried out twice: for STB on 27th of June in the growth stage BBCH-35-37
(flag leaf just visible, still rolled) and for SNB on 4th of July in earing stage BBCH-55 [37].

To create an artificial infection background, we used pathogenic strains of
Parastagonospora nodorum and Zymoseptoria tritici from the core facility center “State Col-
lection of Phytopathogenic Microorganisms” of the Federal State Budgetary Scientific
Institution All-Russian Scientific Research Institute of Phytopathology (VNIIF).

Inoculation of wheat plots was carried out in the most sensitive phases for each type of
fungus: in the stem elongation phase for Z. tritici, and in the heading phase for P. nodorum.
Inoculums were evenly applied to the plants with a spray gun in the evening after dew
had fallen. The concentrations of suspensions were 1 × 106 spores/mL for P. nodorum and
1 × 107 spores/mL for Z. tritici. A total of 100 mL of suspension was applied to 1 m2 of the
crop’s canopy. The lesions of STB were firstly detected visually on 9th of July, on the 12th
dai (day after infection for STB). Up until the end of July, wheat had reached the growth
stage of the maturity beginning (BBCH-70). On 29th of July (32nd dai of STB and 25th dai
of SNB), wheat leaves and ears were investigated using a non-imaging hyperspectrometer
sensor. Because the early detection of STB&SNB symptoms via non-imaging sensors is
limited, especially for low severity [11], this was a reason to determine the degree of
STB&SNB severity at the mature stage of cultivar–pathogen interaction. Hyperspectral
reflection brightness measurements were carried out on live plants in the field (in situ) at
the leaf and ear level. The degree of disease had previously been assessed visually. Healthy
leaves and leaves with different degrees of lesion (light, medium or severe) were chosen
and observed in situ in the collection for hyperspectral imaging (Figure 1a–c). The same
degrees of disease severity were selected for the wheat ears (Figure 1d–f). For each degree
of STB&SNB severity, 3 replicates of leaves and ears were taken, respectively. After this,
an individual unique dataset of non-imaging hyperspectral signatures was compiled for
each replicate.
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Figure 1. The degrees of septoriosis disease severity on spring wheat leaves and ears: (a) healthy
leaf; (b) medium lesion on leaf; (c) severe lesion on leaf; (d) healthy ear; (e) medium lesion on ear;
(f) severe lesion on ear.
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At the end of the vegetation season, the biological yield of all wheat cultivars was
recorded. The regression equation of the relationship between Septoriosis disease degree
and crop yield was calculated.

2.2. Hyperspectral Non-Imaging Measurements

Hyperspectral non-imaging reflection signatures of wheat leaves and ears were ob-
tained using the Ocean Insight “Flame” VIS-NIR hyperspectrometer [38]. This passive
optical spectrometer registers the intensity of electromagnetic radiation (EMR) in the wave-
length range from 338 to 1018 nm, including visible (VIS) and near infrared (NIR) diapasons.
The spectral resolution (step) of the measurements was 0.3 nm. The data of reflection inten-
sity were recorded in a text file format from which a spectral reflection curve (signature)
could be designed. One signature was extracted from a unit *.txt file. The curve of each
measurement file had an input of 2048 single indicators of spectral reflection for each 0.3 nm
wavelength gradation in the range from 338 to 1018 nm. Immediately before the start of the
non-imaging measurements, the spectrometer device was calibrated via reflection from a
white rough fluoroplastic plate (standard white).

The size of the spectrometer field of vision depends on the distance from the collimator
to the leaf surface; in our experiment, it was a spot with size of about 5 mm × 5 mm. The
leaf necrosis and chlorosis spots can be either larger or smaller than the field of vision
size. Measurements were carried out continuously when the eyepiece of the spectrometer
moved near the surface of the leaves at the distance of 2.5–3 cm. Within the visible area,
spectral information at each wavelength was averaged.

There were 8 unique datasets of leaves, and 8 datasets of ears were created. Every
dataset includes series of non-imaging measurements according to the degree of STB for
leaves and SNB for ears. Leaves and ears were chosen manually according to visual
estimation. There were 2 datasets of healthy leaves, 2 datasets of healthy ears and the other
12 datasets included different stages of STB&SNB severity of leaves or ears. Every dataset
included 2000 non-imaging hyper-spectral signatures for leaves, and 2000 or 4000 signatures
for ears. The volume of the datasets on the ears was larger, because the surface of the ear
is uneven. In such a condition, the raw data had more noise and irrelevant values related
to the absorption and reflection of light by the ear surface. So, increasing the size of the
dataset was necessary, because increasing the sample size reduces the standard error, and
the training of neural networks is expected to be more reliable.

The time-line period for one dataset containing 2000 values depended on the intensity
of the external light flux and usually ranged from 2 to 10 min. Measurements were
performed in the field conditions on midday under natural bright sunlight, and it took
1–2 min time-lines for one survey (unique dataset). In total, 16 datasets (each of 2000 or
4000 records) were collected in half an hour; so, the change in the angle of sun inclination
and the illumination conditions could be neglected.

2.3. Hyperspectral Data Analysis and Neural Network

Raw hyperspectral reflection data vary in a wide range of values, especially in the NIR
diapason. Data preprocessing and the design of spectral brightness curves were carried out
in a specially created Python script, using numpy, scipy and matplotlib standard libraries.
Noise, outliers and irrelevant values were removed in each unique dataset (raw spectral
reflection data). There were discarded values, whereby deviations exceeded 3σ from the
average value of the dataset for a given wavelength. Hyperspectral brightness reflection
curves were designed in a software module and inspected visually and by using classic
statistics methods. The spread distribution of values over the entire spectrum range was
estimated, and a quantile analysis and comparison of the spectral brightness curves were
performed based on the values averaged for each dataset.

The neural network was created and trained on the basis of pairwise comparison of
standard datasets of “healthy leaf”/”severely damaged leaf” and “healthy ear”/”severely
damaged ear” for further classification of plants with signs of disease. We used the
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perceptron model of the neural network, PNN (Figure 2) [39]. Two datasets were used
to train the neural networks: hyperspectral characteristics of healthy (1) and severely
damaged, diseased (2) plants (Supplementary File S1). The training datasets were divided
into proportions of 80% and 20% for training and validation parts, respectively. Several
perceptron neural network models were created and tested, and a model with two layers of
neurons was chosen. There were 5 neurons on the first layer and 2 neurons on the second
layer; the number of training epochs was 5000 for the leaves datasets and 10,000 for the
ears datasets. In such a configuration of the neural network, the predicted percentage of
correct answers was 89% for leaves and 78% for ears. After the training and testing of the
neural network, every new dataset of leaves and ears with different damage degrees was
tested in this neural configuration. The metrics of the PNN model after 10,000 learning
epochs were 0.99 accuracy, 0.94 precision, 0.89 recall and 0.91 F-score.
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Other traditional convolution neural network models (CNNs) earlier proposed for
plant disease classification by images could not be used in our investigation because we
worked with non-imaging signatures. So, we used only one PNN model and the results
were compared with the visual estimation of STB severity via a nominal scale [11].

3. Results
3.1. Hyperspectral Data Visualization and Distribution Quantile Analysis

A total collection of spectrograms (spectral reflection curves) in the range from 330 to
1018 nm was created. For each dataset of hyperspectral measurement survey, 2000 curves for
leaves (or 4000 for ears) were obtained. Every set of curves, designed using the computing
module of Python, illustrates a wide range of values of spectral reflection (Figure 3). Due to
a comparable size of the device’s field of vision and necrosis-chlorosis spots on leaves, every
shooting txt-file included individual spectral reflections that differed from each other—the
hyperspectral signature. Shooting an individual hyperspectral reflectance could include
a damaged spot, a healthy part of the leaf or a part that was partially damaged/healthy.
Every individual curve is unique, but in the cases of healthy leaves, the shapes of the curves
were approximately the same (Figure 3a). In the cases of damaged leaves, the shapes of
the curves demonstrated significant variation (Figure 3b). Therefore, a very large spread
of spectrogram curves appears and a large error appears during averaging in the visible
(VIS) range.
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Figure 3. Hyperspectral curves of one dataset after preprocessing of raw data (each chart includes
2000 curves): (a) curves of healthy leaf, (b) curves of leaf in medium stage of Septoria disease.

For the determination of the curves obtained for healthy and damaged leaves, the
data clusterization procedure was carried out, and twenty-four data clusters were formed
for every dataset. The same clustering procedures were carried out for datasets with
data on leaves and ears in the light, medium and severe stages of the disease. Clusters
of curves of healthy and damaged plants were visually different according to the shape
of the curves. After clustering, the selection of data for further analysis was carried out
manually according to the correspondence of the curves’ shapes and the number of curves
in the clusters. To classify clusters, an approach based on two indicators was applied:
(1) the shape of the curve and (2) the number of curves in every cluster. The shape of the
curves was evaluated visually and was compared with previously published data, which
provide examples of spectral brightness curves for healthy plants and for those affected
by diseases [14,15,22,25,35,40]. The number of spectral curves in one dataset was 2000 or
4000. The number of curves in clusters ranged from 1 to 1680. Small clusters with fewer
than 20 curves were excluded from the analysis. Uncharacteristic curves selected visually
were excluded from the analysis. From each dataset with a volume of 2000 or 4000 curves,
a combined cluster with a volume of at least 1000 spectral reflection curves was formed
for further statistical analysis. After this classification, for every dataset, two clusters were
formed: (1) cluster of typical curves and (2) cluster of invalid curves that were not reflecting
the condition of leaves (Figure 4).

The approximate data ratio was as follows: typical curves were no less than 70% of the
total primary volume of the dataset, and invalid curves ranged from 5 to 30%, depending
on the dataset and the degree of the disease development. The most difficult classification
of curves was for plants, especially ears, damaged by septoriosis in the middle degree.

Further distribution quantile analysis was carried out with relevant data curves,
excluding the invalid ones.

At the beginning of the VIS range (wavelength 350 to 450 nm), a minimal spread in
the values of the spectral brightness was observed at any stage of the development of
the disease, i.e., the reflection in this range was similar for healthy and damaged plants.
The biggest difference in average meanings was found in the red radiation spectrum on
the wavelength of about 680 nm (Figure 5a,c,e). The change in the spectral brightness of
reflection in the diapason of 550–680 nm was approximately −10% of the entire range of the
reflection scale for healthy plants, approximately −2% for a medium lesion and +20% for a
severe lesion. Additionally, in damaged and healthy plants, the difference in reflections
in the red slope area (Red-Edge, 705–745 nm) was pronounced: the stronger the degree
of disease infestation, the smaller the slope of the curves and the larger the total quantile
range (from 1-quantile to 99-quantile)in this area (Figure 5b,d,f). At 700–705 nm, the total
quantile range was 10% for healthy leaves, 26% for a medium lesion and 44% for a severe
lesion. The same trend was observed for ears, an increase in the total quantile range of 35,
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38 and 41%, respectively (Figure 6). Thus, the more pronounced the disease, the greater the
total quantile range of values at the beginning of the red edge.

When comparing the ears with different degrees of lesion caused by Septoria, we
observed higher variability in reflectance meanings at the beginning of the spectrum
(wavelength 350–450 nm) compared to those observed for leaves (Figure 6). The total
quantile range was also higher. This suggests that the ear itself is an object with a much
more uneven coloration than the leaf. However, in general, the characteristics of the curves
of the spectral reflection of the ears are similar in shape to the characteristics of the curves
of the reflection of the leaves (Figures 5 and 6).

As a measure of the differences in the type of spectral brightness curves (hyperspectral
signatures), the angle between the branches of the graph can be proposed (Figure 7). The
left branch of the graph is a reflection in the VIS diapason of the spectrum. The reflection at
wavelengths of 550 to 680 nm corresponds, respectively, to the maximum and minimum
reflection of a healthy plant. The right branch of the graph is the reflection of the red
edge and NIR diapason. For our investigation, the attention was focused on the red edge.
The red edge slope is always more gentle in plants under stress [41]. Therefore, the angle
between the branches of the graph for healthy and diseased plants differs significantly.
Since the angle in degrees will depend on the scale of the axes, the numerical angle is
represented in % of 100, where 100% is an angle of 180 degrees, or a straight line without a
break. In healthy wheat plants, the average value of the angle between the branches of the
graph was 59–65%. With a medium disease severity degree, the value was 76–78%, and
with a high severity degree the value was 86–93%. When comparing spectral signatures,
this pattern can be used to assess the degree of the STB disease.
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medium-damaged and severely damaged leaves and ears, respectively, and values of the angle (%)
between the branches of the graph.

3.2. Classification of Diseased Plants by Non-Imaging Hyperspectral Signatures with
Neural Network

The task of creating a neural network was to divide healthy and diseased wheat
plants by spectral characteristics in the automatic mode. The first step was to recognize
disease on leaves; the second step was to recognize STB severity on ears. The algorithm
for creating a neural network was the same, but the training samples (datasets) for leaves
and ears were different. Each dataset of leaves and ears contained 2000 or 4000 files,
respectively. Every file included the numerical values of the spectral reflection curve for
the range 338–1018 nm, with a spectral resolution step of 0.3 nm. Each of the 2000 files
contained 2048 numeric values for a given individual curve. The algorithm for preparing
primary raw data included (1) reducing the hyperspectral scale range from 338–1018 nm
to 350–950 nm, (2) smoothing the data using the sliding window technique with a step
(window) of 6 nm and (3) forming a new dataset after limiting the range boundaries and
smoothing procedure. Limiting the range was necessary to reduce the influence of noise
at the ends of the spectral brightness curve, since the largest measurement errors were in
the region of less than 350 nm and more than 950 nm. The sliding window smoothing also
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reduced the impact of individual outliers in the primary raw data. The size of the sliding
window was chosen at 6 nm, so 16 consecutive measurements in 0.3 nm increments were
placed into this window. Using a sliding window method, every 6 nm of the spectrum,
the average mean of spectral brightness was calculated and recorded. When forming a
new dataset, the raw primary information was minimized and optimized: from a set of
2048 numeric values of hyperspectral brightness with a step of 0.3 nm, a set of 100 values
with a step of 6 nm was formed. There were still 2000 such sets in each dataset of leaves
and 4000 sets for each dataset of ears.

The neural network was trained on two datasets of 2000 files which were converted
from 2048 numeric to 100 consecutive values of the hyperspectral brightness. These datasets
were the reference for the neural network training. The first training dataset corresponded
to healthy plants, and the second contained data for plants severely damaged by septoriosis
disease. Two independent neural networks were trained and tested for leaves and ears.
The neural network had two layers of neurons. On the first layer there were five neurons,
and the second layer contained two neurons. The number of training epochs for the neural
network for leaves was 5000, and for ears it was 10,000. Each neuron on the first layer
contained one dataset of 100 spectral brightness values in the total range of the investigated
spectrum in increments of 6 nm. To train the network, data were fed to the neural network
in the form of a training sample (80% of the entire dataset) and a test part (20% of the
dataset). This ratio of 80 and 20% was formed randomly from a set of 2000 files for leaves
or 4000 for ears. As a result of the training and testing of the neural network, a forecast
of the operability of this network configuration was obtained: the expected number of
correct answers was 100% with an average error of 27%. During subsequent testing on
other datasets, when leaves and ears were affected by septoriosis, it was revealed that the
neural network worked with higher accuracy on leaf materials than on ears. Thus, out of
100% of the total data of a sample of healthy leaves, 88.1% of the data was classified as
healthy, 10.6% of the data was classified as damaged and about 1% of the data was not
classified. The stronger the degree of damage to the leaves and ears, the higher the accuracy
of the neural network in determining it. The most difficult task was classifying the medium
stage of the disease manifestation. From the entire dataset, samples with an average lesion
of 33 to 65% of all values could be classified as being both healthy and damaged (Table 1).

Table 1. Checking the results of the neural network determining the septoriosis diseases of wheat
leaves and ears: the average value of the feature definition in % with a confidence interval of the
average (detection percentage).

Defined with Neural Network Cohen’s Kappa

Healthy, % Damaged, % Uncertain, %

Nominal scale
Leaves

Healthy leaves 88.1 ± 2.4 10.6 ± 2.5 1.1 ± 0.1 0.90
Light lesion of Septoria 84.0 ± 5.5 10.8 ± 6.1 5.0 ± 0.1 0.64
Medium lesion of Septoria 60.5 ± 5.6 38.3 ± 5.9 1.2 ± 0.3 0.13
Severe lesion of Septoria 7.1 ± 2.9 92.7 ± 3.1 0.1 ± 0.1 0.98
Dead leaves 2.3 ± 3.0 97.7 ± 3.2 0.1 ± 0.1 0.99

Ears
Healthy ears 94.9 ± 4.8 4.9 ± 4.7 0.1 ± 0.1 0.96
Light lesion of Septoria 70.2 ± 6.5 29.2 ± 6.3 0.6 ± 0.2 0.40
Medium lesion of Septoria 33.3 ± 7.6 65.6 ± 7.9 1.2 ± 0.2 0.24
Severe lesion of Septoria 0.6 ± 1.0 99.4 ± 1.0 0.0 ± 0.0 0.99

The quality of disease identification by the neural network was good. In the automated
mode, the precision of determining diseased/healthy leaves ranged from 88.1 to 97.7% for
different datasets. It was more difficult to identify the presence of the disease on wheat ear.
Only severely damaged plants were precisely identified (up to 99.4%). Light and medium
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stages of septoriosis disease were classified with a higher error. This is due to the uneven
ear surface. A comparison of visual and automatic (PNN) assessment was carried out
according to Cohen’s kappa for each gradation of the disease (Table 1, column Cohen’s
kappa). A strong coincidence of estimates for healthy and STB&SNB highly damaged
plants was observed, and the Kappa coefficient was 0.90–0.98. For light and medium
degrees of the disease, the visual and automatic assessments coincided less, and the Kappa
coefficient was 0.13–0.64. The average value of Cohen’s kappa together, according to all of
the data, was 0.69.

3.3. Estimation of Yield Losses Due to Septoriosis

The biological yields of every wheat cultivar were determined during harvesting.
Yield losses were recorded for different degrees of STB&SNB lesion. A strong positive
relationship was shown between the lesion degree and yield losses (Figure 8). Yield losses
from disease were described using the logarithmic equation. For evaluation according to
leaves, the relationship was stronger than for evaluation according to ear: R2 = 0.7993 and
0.4941, respectively (p < 0.05). A severe lesion caused by STB on flag-leaf (more than 70%)
led to 35–45% yield losses. A severe lesion caused by SNB on ears (more than 70%) led to
20–40% yield losses.
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Figure 8. Regression relationship between the degree of septoriosis lesion and yield loss: (a) STB
lesion of flag-leaf; (b) SNB lesion of ears. Every circle is an individual measurement from the plot
with studied wheat cultivar.

The loss of biological yield is usually associated with the loss of the photosynthetic
surface area of the leaves and ears under the influence of the disease. The main reason for
crop loss in this case was a decrease in the mass of 1000 grains.

4. Discussion

The identification of septoriosis symptoms in the beginning of the vegetation season
is difficult because of a long latent period. In the second half of the growing season, at the
beginning of the wheat maturation phase, the lesion of leaves and ears becomes obvious;
however, at this time, it is too late to protect wheat crops. However, it is possible to predict
yield losses due to STB by the amount of affected plants and the degree of their lesion.
Under septoriosis, plant tissues with spots necrotize and die prematurely, so the leaf surface
area decreases and the active growing season becomes shorter. With a degree of leaf damage
of 30%, the yield is reduced by 10%; with leaf damage of 51–75%, the yield is reduced by
30%; and when leaf and ear damages come to 75% and more, the yield is reduced by 40%
and more [10]. The disease has the strongest effect on grain size and on its quality, which is
expressed by a decrease in gluten [35]. With an increase in the lesion of the ear by 10%, the
gluten content decreases by 2.5% [42]. With the chemical parameters of the grain change,
in particular, the content of protein nitrogen decreases. The sowing qualities of seeds, such
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as germination energy and field germination, are noticeably degraded. Different wheat
cultivars could demonstrate susceptibility or resistance to STB, and the use of cultivar
mixtures may help to reduce the damage caused by this pathogen [43–46]. It has also been
shown that the mass of 1000 grains becomes lower with the development of ear disease
caused by STB [35].

If the investigation is carried out for the collection of crops of different varieties, it could
allow for the assessment of the cultivar resistance to Septoria tritichi blotch. Visual, manual
and laboratory assessment of STB development is time-consuming, even for an experienced
expert in phytopathology [35,46–48]. Therefore, the use of optical sensors, including
hyperspectral non-imaging cameras, could be useful and time-saving for assessing the state
of cereal crops.

The main difficulty in our study was the processing and interpretation of field hyper-
spectral survey data for Sertoriosis lesion identification and the comparison of the degrees
of lesion. In the field, the development of the disease is usually estimated via points of
marking damage scale or percentages [11]. The results of hyperspectral imaging could
not be presented in points; instead, it was necessary to compare the shape of the spectral
brightness curves (signatures) for different degrees of lesion. The raw data, as the basis
for curve creation, had a large range of values; so, a two-step procedure for preparing
the initial data was required, including automatic clustering and the manual culling of
clusters with an unsuitable shape of curves. Based on the results of data preprocessing
and processing, curves characteristic of different degrees of the disease were constructed.
Thus, for diseased plants, the spectral reflection in the visible range (350–690 nm) was
approximately 20% higher than that of healthy plants. In addition, the spectral reflection
curves of the diseased plants had a flat shape in the region of the red edge (705–745 nm).
As a measure of STB&SNB severity on green plants, we suggest using values of the angle
(%) between the branches of the hyperspectral reflection curve graph.

Our results are consistent with a previous study on STB and SNB detection using
hyperspectral measurements, when a 350–1150 nm wavelength range was used, and several
spectral vegetation indices (calculated from the reflectance measured for two or more
wavelengths) were indicative of the disease development on the 15th–17th dai [27]. These
spectral vegetation indices were related to the different levels of chlorophyll, anthocyanin
and carotenoid content in the infected leaves, and the variation in these levels could be
detected in the visible range. The changes in the reflections in the NIR range were also
proven to be indicative of various plant stresses and diseases [49–53].

However, there are other options for STB&SNB detection using hyperspectral mea-
surements. In the study of Iori et al., where a spectrograph worked in a range from 1000 to
1700 nm, the variation in reflectance on the wavelength 1650 nm was proclaimed as being
indicative of Septoria nodorum blotch, even in the early stages (1st–3rd dai) of disease
development [35].

The neural network could successfully recognize the degree of STB&SNB disease on
the leaves and ears in the pre-harvesting period. Hyperspectral survey raw data were
loaded into the neural network for both training and testing. The results of determination
of STB&SNB via the perceptron neural network are comparable with the nominal scale of
the STB&SNB disease. Thus, the created neural network based on the processing of raw
hyperspectral survey data successfully coped with the assessment of the presence of STB
on wheat leaves and SNB on ears in the late stage.

These studies were carried out at the level of individual plants and at the level of an
experimental plot. For food production crops, studies should be conducted at the level of
the crop cover area (a single field or a group of fields). This can be useful for predicting
crop yield losses in the fields [54,55]. In this case, the use of a manual spectrometer is not
applicable, and it is necessary to use remote assessment methods using an unmanned aerial
vehicle or satellite imagery.
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5. Conclusions

This study suggests an automatic approach to detect the degree of STB&SNB disease
damage on spring wheat in the pre-harvesting period in field conditions using hyperspec-
tral non-imaging measurements and the trained perceptron neural network. With all of
the possibilities of modern data processing, the results largely depend on the quality of
the input information. Septoriosis is a difficult-to-identify disease in the early stages of
development. Therefore, for our research, we chose a rather late detection period in the
field in the pre-harvesting stage of wheat growth, when the disease could be unmistakably
determined visually, and the training dataset was relevant. The proposed perceptron neural
network model successfully coped with the identification of healthy leaves and ears, and
also determined the % of occurrence of affected leaves and ears. The results were consistent
with the visual expert assessment of the development of the disease; the average value of
Cohen’s kappa was 0.69 (substantial agreement). In the case of healthy plants and a high
degree of STB&SNB severity, Cohen’s kappa reached 0.90–0.98.

Looking ahead, further research is needed for STB severity degree estimation in
different cultivars with varying degrees of resistance to STB. Hyperspectral reflection
measurements of healthy/diseased plants in the field condition and with machine learning
algorithms are prospective for the determination of disease.

Supplementary Materials: The following supporting information can be downloaded at https:
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