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Abstract: To find suitable farming management approaches in the semi-arid climate of Iran, we set
up an experiment combining three farm management practices with four crop rotation systems over
four growing seasons (two winter and two summer seasons), from 2018 to 2020. The three farm
management practices comprised: intensive (IF, with inorganic inputs, removal of crop residues from
the soil, and weeds chemically controlled), organic (OF, with organic inputs, a return 30% of crop
residues in the soil, and weeds mechanically controlled), and integrated (INT, with mineral/organic
inputs, return 15% of crop residues to the soil, integrated weed control). The four crop rotation
systems were: fallow-wheat (F-W), maize-wheat (M-W), sesame-wheat (S-W), and mung bean-wheat
(B-W). Treatment effects were assessed by chlorophyll (Chl) content, photosynthetic parameters, and
wheat grain quality and quantity measurements. All management practices from the first to the
second year resulted in increases in the total Chl content and post-anthesis photosynthesis (PAP). The
total Chl content under INT was improved through a greater increase in Chl-b compared to Chl-a.
Dry matter remobilisation (DMR) was higher under INT than under IF. The highest (39) and lowest
(23) grain number per spike were obtained in IF under B-W and OF under F-W, respectively. B-W
produced the highest grain yield (541.4 g m−2). The protein contents in farming with organic matter
inputs were higher than that under IF. INT produced an optimum level of wheat yield despite a
50% reduction in chemical inputs, and this was achieved through the fast absorption of chemical
elements at the beginning of growth, and having access—at the grain filling stage—to elements
derived from organic matter decomposition, and through the utilisation of DMR. Our results indicate
that implementing B-W and S-W under INT is a promising strategy for this region. However, the
results need to be further evaluated by long-term experiments.

Keywords: integrated farming management; crop residue; chlorophyll; wheat production; remobilisation;
protein content; crop rotation system; organic matter

1. Introduction

Increasing crop yields of recent decades have been strongly linked to the intensive use
of chemical inputs, e.g., fertilisers, herbicides, and pesticides [1]. Such intensive farming
practices have been implemented due to population growth, and the resulting pressure on
agricultural lands has changed the soil nutrient status [2], soil and plant biodiversity [3],
and agricultural landscapes [4]. Intensive farming management (IF) involves the intensive
use of chemical fertilisers [5], removal of crop residues [6], and deep tillage to prepare
the seed bed [7], all of which lead to high productivity [8]. In contrast to IF, the set of
management practices implemented in organic farming (OF), e.g., returning crop residues
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to the soil, using organic and biological fertilisers, controlling weeds bio-mechanically,
conservation tillage, applying different crop rotation systems, and intercropping [9,10],
lead to improved recycling of soil nutrients, enhanced soil and crop biodiversity [11], and
better yield quality [12]. However, the average productivity of OF is lower than that of IF,
and it may not be sufficient for the future food needs of a growing population. Integrated
farming (INT), which has been offered as an intermediate solution, is the integration of IF
and OF management practices in a manner that focuses on high quantity and quality of
crop production, environmentally friendly cultivation [13], and long-term maintenance of
soil health and fertility to ensure food security [14].

Many studies have investigated ways to enhance crop productivity through the ap-
propriate use of mineral and organic fertilisers, crop residue management, selection of
optimal crop species adapted to specific conditions, and the replacement of pesticides
with bio-mechanical methods of pest control [15–17]. However, the use of organic matter
(e.g., compost and crop residues) in the soil reduces grain yield due to the immobilisation
of nutrients, especially during the initial growth stage of plants. This situation can be
improved by the combined use of these organic resources with inorganic fertilisers, which
can improve wheat (Triticum aestivum L.) grain yield by positively affecting the biological–
chemical–physical properties of the soil [18]. For example, the application of organic and
inorganic nutrient resources to wheat improved the nitrogen supply and remarkably en-
hanced wheat yield components (e.g., 1000-grain weight), tillers, wheat yield, and nitrogen
uptake by the grain compared to wheat supplied with only inorganic fertilisers [19,20].

Apart from farming management, designing a proper crop rotation leads to sustain-
able crop yields [21]. Some of the positive effects of implementing crop rotation systems
are: improved and stable crop yield, high soil nutrient availability, increased nutrient use
efficiency, improved soil biochemical and structural properties, as well as reductions in
weed stress and pest invasion incidence [22,23]. Geng et al. [1] reported that the yields of
both wheat and maize (Zea mays L.) under long-term crop rotation systems were signifi-
cantly higher than those of each monocultured crop. Similarly, double cropping systems
based on winter wheat and summer crops, e.g., sorghum (Sorghum bicolor L.) and sesame
(Sesamum indicum L.) improved annual net production and long-term sustainability com-
pared to a summer-fallow rotation system [24]. In addition, soybean (Glycine max L.) grown
in rotation with wheat was more successful in reducing the incidence of pests and increasing
wheat productivity compared to a succession of maize-wheat [23]. Furthermore, a compari-
son of different cropping systems comprising wheat, soybean, and maize to monocropped
wheat revealed that wheat grain yield obtained from monocropping was remarkably lower
than those of the other cropping systems [25]. The results of similar studies show that
including legumes in cereal cropping systems (e.g., wheat) barely (Hordeum vulgare L.)
improves the grain yield of wheat [26,27].

Farming management and crop rotation affect crop productivity by influencing factors
such as soil properties and plant characteristics such as leaf chlorophyll (Chl) content and
its photosynthetic activity [1]. The production of dry matter through the photosynthetic
activity of leaves is the most important source of grain filling in cereals. Chl content,
which reflects the health of crop leaves, plays a crucial role in the photosynthetic process
and therefore dry matter production [28,29]. The slow but steady release of minerals
from organic matter resources increases cereal grain yield by improving the photosynthetic
capacity and Chl content, especially during flowering and grain filling [1,30]. Iqbal et al. [29]
noted that a combination of organic manure and chemical fertiliser application increases the
levels of Chl-a and Chl-b and also increases the production of photoassimilates. Aside from
photosynthesis, crop yields can also be improved by remobilising dry matter accumulated
in vegetative parts before anthesis to the grains during grain filling [31,32]. However, Chl
content and the translocation of photoassimilates within a plant can be affected by a variety
of farming practices and climate conditions [30,33,34]. Therefore, investigating dry matter
production and its translocation, particularly during grain filling, is important to optimise
farming management, e.g., timing and amount of fertiliser application.



Agronomy 2023, 13, 1007 3 of 17

Different agricultural practices are known to impact wheat grain yield [15,21,35];
however, little is known regarding how Chl content, carbon assimilation, and remobilisation
of pre-anthesis dry matter contribute to wheat grain yield under different farm management
practices in combination with various wheat-based rotation systems in the semi-arid regions
of Iran.

Because of this knowledge gap, we aimed to (1) determine the effect of different
combinations of organic matter (compost, vermicompost, crop residue, humic acid) and
inorganic fertilisers (N-P-K) on Chl content and photosynthetic parameters; (2) investigate
how the quality and quantity of wheat grains respond to different double cropping systems
of winter wheat and summer crops; and (3) study the effects of various combinations of
fertiliser/crop residue management practices and crop rotation systems on post-anthesis
biomass re-translocation and wheat grain yield.

2. Materials and Methods
2.1. Study Area

The field experiment was conducted at the field research farm of Shahid Chamran
University, Ahvaz, Khuzestan province (48◦41 E and 31◦20 N, altitude: 22.5 m), located
in the southwestern part of Iran (Figure 1a). Khuzestan province produces 12% of the
country’s wheat, and it is known for the high quantity and quality of its wheat grain
production [36]. The average rainfall in the region is 213 mm yr−1, 85% of which falls during
the winter wheat growing season. The average temperature is 25 ◦C, with the maximum
and minimum temperatures of 48 ◦C and 4 ◦C occurring in the summer and winter,
respectively [37] (Figure 1b). The dominant soil texture in the topsoil at the experimental
site is sandy-loam. Other topsoil properties are: total nitrogen content of 0.039%; total
organic carbon of 0.452%; total phosphorus of 13 mg kg−1; potassium of 159 mg kg−1;
electrical conductivity of 3.4 dS m−1; and pH of 7.8. This site was already under wheat
cultivation and managed using both organic and inorganic fertilisers for three years before
the start of the experiment.

2.2. Experimental Design

The experiment includes two factors, i.e., main factor of farming managements and
subfactor of crop rotation systems (12 treatments). The main factors consisted of three
combinations of fertiliser and crop residue management practices. The following farm
management practices were included: (1) intensive farming (IF), in which 100% of inorganic
inputs were used, and crop residues were completely removed from the soil after harvesting
each crop and before planting the next crop; (2) organic farming (OF), in which 100% of
organic and biological inputs were used, and 30 percent of crop residues from the preceding
year were returned to the soil; (3) integrated farming (INT), in which a combination of
inorganic, organic, and biological fertilisers was used, and only 15% of the crop residues
from the preceding year were returned to the soil. More details about the three different
farm management practices are given in Table 1.

Subfactors consisted of four types of crop rotation systems and comprised: fallow-
wheat (F-W), maize-wheat (M-W), sesame-wheat (S-W), and mung bean (Vigna radiata L.)
-wheat (B-W) (Figure 1c). The size of each experimental plot was 12 m2 (3 m × 4 m) with
three replications.

Under OF and INT, air-dried manure was evenly spread on the surface of the exper-
imental plots and then mixed with the soil before planting the crops. Table S1 presents
the detailed chemical properties of the two types of manure used in the experiment as
well as the crop residues returned to the soil. The organic and biological fertilisers used
in OF were also used in INT. The experiment began in July 2018 with the cultivation of
summer crops and ended in May 2020 (Figure 1c). The furrow planting method was used to
cultivate summer crops. After harvesting the summer crops, wheat was planted in rotation
in rows with inter- and intra-row spacing of 7 and 2 cm, respectively. At the beginning
of the experiment, a mouldboard plough was used to prepare furrows. Subsequently, to
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prevent mixing between the experimental plots, a shovel and rake were used to prepare
furrows for summer crops and rows for wheat. Complete descriptions of all agronomic
operations, such as planting date, the types of organic and inorganic fertilizers, plant
density, harvest date, cultivar type, as well as the method of cultivation, are provided in our
previous work “[36]”. Additionally, descriptions of the implementation of these operations
are summarised in the supplementary information (Tables S1 and S2).
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Figure 1. (a) Location of Khuzestan province and the experimental site in Iran, (b) average monthly
rainfall, average temperature, and humidity in the experiment site during the period of 2018–2020,
and (c) schematic diagram of the cultivation calendar for winter and summer crop rotation systems
during the study period. N.P. = no planting.

Table 1. Complete information on applied organic/biological (air-dried vermicompost and compost,
humic acid, and biological phosphate) and inorganic fertilisers (N-P-K), crop residues, herbicides,
and fungicides in the three farm management practices consisting of intensive (IF), integrated (INT),
and organic (OF) practices. The four crops consisted of wheat (W), mung bean (B), maize (M), and
sesame (S). The experiment lasted from 2018 to 2020 at the experimental plots in Ahvaz, Khuzestan
province, Iran.

IF OF INT

W B M S W B M S W B M S

Organic/biological fertilisers
Vermicompost (t ha−1) - - - - 3.3 3.3 3.3 3.3 1.7 1.7 1.7 1.7
Manure compost (t ha−1) - - - - 10 10 13.3 10 5 5 6.7 5
Humic acid (kg ha−1) 1 - - - - 20 - - - 10 - - -
Biological phosphate (l ha−1) 2 - - - - 4 - - - 2 - - -
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Table 1. Cont.

IF OF INT

W B M S W B M S W B M S

Crop residues return to soil (t ha−1) Removed from the soil 0.9 2.88 3.93 1.29 0.45 1.44 1.965 0.645

Inorganic fertilisers

Nitrogen (kg ha−1) 3 110 30 200 75 - - - - 55 15 100 37.5
Phosphorus (kg ha−1) 100 50 100 50 - - - - 50 25 50 25
Potassium (kg ha−1) 100 50 100 50 - - - - 50 25 50 25

Control of weed 4 10 L ha−1

Roundup
- - - Manually 5 L ha−1

Roundup+Manually
Manually

Fungicide (g kg−1 seed) 5 160 45 - - - - 80 - 23 -
1 Humic acid was sprayed at the wheat flowering stage at a concentration of 5 mL L −1. 2 One kg of seeds was
soaked in 25 mL biological phosphate (3R-BioPhosphate: Pseudomonas putida and Pantoea agglomerans: 107 bacteria
g−1) one hour before planting. 3 Two-thirds of nitrogen fertiliser was applied at planting time and one-third at the
tillering stage of wheat growth. 4 The dominant weed was Cynodon dactylon L. 5 Difenoconazole was sprayed on
the seeds before planting.

2.3. Sampling and Analysis
2.3.1. Determination of Chlorophyll Content and Photosynthesis Parameters

The contents of Chl-a, Chl-b, and total Chl were measured from leaf samples collected
from the spot closest to the wheat spike at the flowering stage. Twenty leaves were
randomly selected from each experimental plot. All samples of fresh leaves were cut
into small pieces, and one gram of freshly chopped leaves was placed in a volumetric
flask containing 10 mL of 80% acetone solution and kept in the dark for 24 h [38,39]. The
absorbance of the extracted solution was measured with spectrophotometer (S2100, UV-Vis,
UNICO, Fairfield, NJ, USA) at 663 and 645 nm. The contents of Chl-a, Chl-b, and total Chl
were calculated using the following equations [40,41]:

Chl − a
[

mg
g f resh lea f

]
= [(12.7 × A663)− (2.69 × A645)]×

(
V

1000
× W

)
(1)

Chl − b
[

mg
g f resh lea f

]
= [(22.9 × A645)− (4.68 × A663)]×

(
V

1000
× W

)
(2)

Total Chl
[

mg
g f resh lea f

]
= Chl − a + Chl − b (3)

where A is the absorbance of the sample solution at the aforementioned wavelengths.
To determine how much of the dry matter in wheat grains originated from either

photosynthesis during grain filling or from the remobilisation of assimilates in vegetative
organs (stems and leaves) during grain filling, the vegetative parts were weighed at anthesis
and maturity. The date of anthesis was defined as the time when 50% of the spikelets within
a spike showed visible anthers [42]. At both growth stages, 20 plants were randomly cut
from the centre of each plot at the ground level. The vegetative parts, including stems and
sheaths, leaves, and glumes (spike axis and kernel husks) were separated. All samples
were then dried at 75 ◦C until they reached a constant weight [43]. The dry weights of
vegetative parts at anthesis and maturity were used to calculate dry matter remobilisation
during grain filling (DMR: re-transfer of dry matter stored in vegetative parts after anthesis
to the grains) and post-anthesis-produced carbohydrates (PAP: grain filling carbohydrates
that originate from photosynthesis) [32,42,44] using the following equations:

DMR
[

g
plant

]
= DMAnthesis − [DMleaves+ culms + chaff]maturity (4)
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PAP
[

g
plant

]
= [Grain Yield]− [DMR] (5)

2.3.2. Measurement of Quantity and Quality of Grain Wheat

In addition to grain yield, we measured three yield components: spikes per m2,
the number of grains per spike, and 1000-grain weight. Measurements were conducted
on plants that were collected after maturity from the centre of each experimental plot
measuring 4 m2. The samples were then dried in the oven at 75 ◦C for 48 h. Grain quality
was assessed by measuring the concentration of nitrogen in the grains according to the
Kjeldahl method. Protein content was calculated from the nitrogen concentration [45] using
the following equation:

Grain protein [%] = Grain nitrogen [%]× 5.7 (6)

where the value of 5.7 refers to the protein factor for wheat [46].

2.4. Statistical Analyses

The effects of time (year), crop rotation system, farming management and their inter-
action on Chl contents, dry matter translocation, and yield components were evaluated
by analysis of variance (ANOVA) using SAS version 9.4, ref. [47] implementing the mixed
model. The effect of year was considered to be random, and the effects of the crop rotation
system and farming management were considered fixed. To compare and explain the
results, the means of the interactions between two and three of the experimental factors
were considered. Statistical mean comparisons between treatments were evaluated by
the least significant difference at a probability (p) level of 0.05 and 0.01 by the Duncan
method [48].

3. Results
3.1. Effect of Year and Treatment Interactions on Chlorophyll Contents

The year, farming management, crop rotation system, as well as their interaction all
had significant (p ≤ 0.01) effects on Chl-a, Chl-b, and total Chl (Table 2). The Chl-a content
increased significantly from the first experimental year to the second under the interaction
effects of the three treatments. The highest concentration of Chl-a (1.32 mg g−1 fresh leaf)
was obtained in F-W, followed by S-W (1.22 mg g−1 fresh leaf) and B-W (1.26 mg g−1 fresh
leaf) under IF during the second year of the experiment (Figure 2a). INT and OF had
no statistically significant effect on Chl-a in all crop rotation systems in both years of the
experiment, with the exception of S-W under OF, which produced a significant increase in
Chl-a content. Similarly, levels of Chl-b were higher in IF than in OF (Figure 2a,b).

Interestingly, Chl-b levels under INT increased significantly in the second year of the
experiment; moreover, under INT and most of the crop rotation systems, Chl-b levels did
not differ significantly (p ≤ 0.05) from those of IF (Figure 2b). IF management with B-W
and M-W crop rotation systems produced the highest amounts of total Chl, with values of
1.94 and 1.8 mg g−1 fresh leaf, respectively (Figure 2c). Meanwhile, the lowest content of
total Chl was obtained under OF management with F-W crop rotation (1.3 mg g−1 fresh
leaf).
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Table 2. Effects of year (Y), farm management practice (F), crop rotation system (CS), and their
interactions on chlorophyll-a, chlorophyll-b, total chlorophyll, dry matter remobilisation (DMR), and
post-anthesis dry matter photosynthesis (PAP) in winter wheat during the period of 2018–2020, as
determined by ANOVA.

Source df Chl-a Chl-b Total
Chl DMR PAP

Year (Y) 1 0.51 ** 0.35 ** 1.7 ** 1726 NS 62078 **
Farming management
practice (F) 2 0.13 ** 0.191 ** 0.53 ** 6753 ** 152919 **

Crop rotation system (CS) 3 0.012 * 0.045 ** 0.05 * 9044 ** 10988 **
Y × CS 3 0.041 * 0.03 ** 0.04 NS 1509 NS 1172 NS

Y × F 2 0.054 * 0.007 NS 0.02 NS 1918 * 1727 NS

F × CS 6 0.023 NS 0.015 ** 0.03 NS 2622 ** 6588 **
Y × F × CS 6 0.053 ** 0.012 ** 0.09 ** 1749 * 2584 *
Error Y (Y × R) 4 0.023 0.002 0.03 188 688
Error F × Y (F × Y × R) 8 0.0121 0.0013 0.013 991 805
Error 36 0.012 0.002 0.017 532 970
C.V 11.16 12.1 9.2 15.5 9.08

*, **, and NS display the level of significant at p ≤ 0.05, p ≤ 0.01, and no significant difference by Duncan test,
respectively.
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Figure 2. Effects of the interaction between three farm management practices (intensive, IF; organic,
OF; and integrated, INT) and four crop rotation systems (fallow-wheat, F-W; maize-wheat, M-W;
sesame-wheat, S-W; and mung bean-wheat, B-W) on (a) chlorophyll-a, (b) chlorophyll-b and (c) total
chlorophyll at flowering time during the two-year experiment. Means were compared by Duncan’s
test, and different letters above each bar indicate a significant difference at p ≤ 0.05.
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3.2. Effects of Year and Treatment Interactions on Dry Matter Translocation Parameters

All treatments and their interactions (i.e., year × farming management × crop rotation
system) had significant (p ≤ 0.01 and p ≤ 0.05) effects on DMR and PAP, except for the
individual effect of year, which had no effect on DMR (Table 2). DMR played a positive
role in grain filling under the INT strategy implementing any of the crop rotation systems,
but particularly M-W (Figure 3a). M-W under OF and F-W under IF produced the lowest
DMR values of 127 and 95 mg plant−1, respectively (Figure 3a). IF management had a more
pronounced role in the production and translocation of dry matter from photosynthesis
(PAP in grain filling, Figure 3b). In general, the three farm management practices produced
PAP in the following descending order: IF > INT > OF. The combination of B-W and IF
produced the highest PAP (Figure 3b). Overall, the differences described above can be
seen by comparing the means of the individual effects of the experimental treatments
(Figures S1a,b and S2a,b).
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Figure 3. Effects of interaction between three farm management practices (intensive, IF; organic, OF;
and integrated, INT) and four crop rotation systems (F-W, fallow-wheat; M-W, maize-wheat; S-W,
sesame-wheat, and B-W, mung bean-wheat) on (a) DMR (dry matter remobilisation), and (b) PAP
(post-anthesis dry matter photosynthesis). Means were compared by Duncan’s test, and different
letters above each bar indicate a significant difference at p ≤ 0.05.

In contrast to IF, the interaction between year, farming management, and CS under
INT and OF management and most of the CSs resulted in increased DMR and PAP values in
the second year of the experiment (Figure 4a). The strong role of INT on DMR improvement
was more apparent under S-W. Additionally, the lowest values of DMR were observed
under IF implementing F-W. The PAP values further increased from 230, 394, and 317 mg
plant−1 with the ratio of 1.3, 1.18, and 1.11 in the second year under OF, IF, and INT,
respectively (Figure 4b). PAP increased in all CSs in the second year of the experiment
(Figure 4b), although we observed no differences between M-W and B-W under IF and
B-W under INT. In the 2019–2020 cropping seasons, the lowest PAP was obtained in B-W
under OF, with a value of 272 mg plant−1 (Figure 4b).

3.3. Effect of Year and Interaction of the Treatments on Wheat Yield Components

ANOVA results reveal that the effect of each factor, i.e., year, farming management, and
CS on wheat grain yield, grain number per spike, and 1000-grain weight was statistically
significant at both p ≤ 0.01 and p ≤ 0.05 (Table 3). In contrast, these treatments did not
affect the number of spikes per square metre significantly (Table 3). The interaction effect
of the three treatments was not significant for all target variables, and therefore, the mean
effect of farming management × CS on the quality and quantity of grain wheat, which was
significant for most of the measured variables (Table 3), was also considered. Comparing
the means of farming management × CS reveals the highest (39) and lowest (33) grain
numbers were obtained under IF implementing B-W and F-W, respectively. Under IF
management, we observed no significant difference in the grain numbers of M-W and S-W
(Figure 5a). Under INT management, the S-W grain number was higher than that of M-W,
but it was not significantly different from that of B-W (Figure 5a). The highest 1000-grain
weight (40.6 g) was obtained under OF implementing S-W, while the lowest (36.79 g) was
observed under INT implementing M-W (Figure 5b). Under INT and OF, the grain yields
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for wheat cropping systems in rotation with mung bean and sesame were higher than those
for maize CSs as well as that of monocropped wheat. Under IF, meanwhile, the grain yields
were higher with B-W and M-W than with S-W and F-W (Figure 5c). In addition, the grain
yields of S-W under IF and INT did not differ significantly (p ≤ 0.05). An individual mean
comparison of experimental treatments also provides the range of the difference in the
target parameters under the influence of farming management and crop rotation systems
(Figures S3a–d and S4a–d).
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Table 3. Effects of year (Y), farm management practice (F), crop rotation system (CS), and their
interactions on the yield, yield components, and grain protein content in winter wheat during the
period of 2018–2020, as determined by ANOVA.

Source df
Yield Components Quality Parameter

Grain Number
per Spike 1000 Grain Weight Spike per m−2 Grain Yield Grain Protein

Year (Y) 1 194.8 ** 53.102 ** 13.34 NS 93071.1 ** 4.67 **
Farm management practice (F) 2 692.9 ** 9.54 ** 7.59 NS 148671 ** 7.88 **
Crop rotation system (CS) 3 115.4 ** 4.8 * 42.9 NS 33530 ** 9.25 **
Y × CS 3 7.11 ** 3.44 NS 4.16 NS 959 NS 1.31 NS

Y × F 2 0.56 NS 7.4 * 1.93 NS 1386.4 * 2.58 *
F × CS 6 8.99 ** 5.5 ** 10.37 NS 3316 ** 9.72 **
Y × F × CS 6 8.69 ** 2.85 NS 6.48 NS 1959 ** 1.12 NS

Error Y (Y × R) 4 1.054 0.548 3.97 115.15 0.48
Error F × Y (F × Y × R) 8 1.4 1.35 6.28 208 0.31
Error 36 1.38 1.46 5.42 428.45 0.49
C.V 3.73 3.09 0.65 4.19 7.2

*, ** indicate significantly different at p ≤ 0.05 and p ≤ 0.01, respectively; NS, no significant difference by Duncan
test based on a mixed split-plot statistical design.
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integrated, INT) and four crop rotation systems (fallow-wheat (F-W); maize-wheat (M-W); sesame-
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Under the interaction effects of the three treatments, the values of all measured vari-
ables markedly increased in the second year of the experiment (2019–2020) from the
previous year (2018–2019) (Figure 6a–c). However, the rates of increase varied depending
on the yield component. The highest average number of grains per spike (41) was produced
under IF management implementing B-W, while the lowest (22.2) was produced under
OF implementing the S-W crop rotation system (Figure 6a). Meanwhile, we observed no
significant difference (p ≤ 0.05) between 1000-grain weights, with values varying between
37.5 and 42.9 g for most of the farming management and crop rotation systems (Figure 6b).
Comparison of grain yields among all CSs showed the highest increases: under OF and
INT implementing S-W, increasing by rates of 1.4 and 1.27, respectively; and under IF
implementing M-W, which increased by a rate of 1.14 from the first to the second year
(Figure 6c and Table S3).

3.4. Main and Interaction Effects of the Treatments on Wheat Grain Protein Content

The responses of grain protein to year, farming management, crop rotation system,
and the interaction between farming management and CSs were significant at p ≤ 0.01
(Table 3). Overall, the highest grain protein content was obtained for B-W with a value of
10.5%, followed by OF (10.35%), INT (9.56%), and IF (9.23%) (Figure S5a,b). Comparing
means of the interaction effect of farming management and crop rotation system reveals the
highest grain protein contents under INT implementing B-W and under OF implementing
M-W and B-W (Figure 7, no significant differences between treatments). The lowest grain
protein content (8.48%) was obtained under IF implementing M-W (Figure 7). Grain protein
contents in M-W and S-W crop rotation systems under IF and INT were not significantly
different (p ≤ 0.05). The wheat grain protein contents of F-W and B-W were similar under
IF management.
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4. Discussion
4.1. Effect of Year and Treatment Interactions on Chlorophyll Contents and Dry Matter
Translocation

Chl content is an index used to evaluate the health of leaves and the photosynthetic
ability of crops, which is highly influenced by environmental conditions such as nutrition
and temperature. Among the three farm management practices, the highest levels of Chl-a
and total Chl were observed at the flowering stage under IF, which was due to higher
nitrogen availability from mineral fertilisation, although we did not consistently observe
this for all crop rotations and years. Chl-b content, on the other hand, showed a different
trend: i.e., in the second year of the experiment, Chl-b levels under INT were as high as
those under IF, and in fact, the former levels were even higher, except for crop rotation
B-W. High contents of Chl-b maintain the continuity of photosynthetic activity, resulting in
carbohydrate supplies going to physiological sinks (grains). Therefore, the difference in
yields between IF and INT was smaller in the second year of the experiment, and in the
crop rotation systems S-W and B-W, grain yields under INT were even higher than those
under IF (Figure 6). These findings are consistent with the results reported by [49]. The
increase in the content of Chls from the first experimental year to the next may be due to
the gradual release of nutrients such as nitrogen and manganese from organic fertiliser
sources (e.g., manure, biofertilisers, and humic acid) and their incorporation into loops of
chlorophyll [50,51].

After the increase in Chl contents under IF, we observed an enhancement in pho-
tosynthetic sources (leaves, stems, sheaths), leading to higher PAP at the grain-filling
stage [52–54]. The high leaf area index value under IF may be another reason that its
PAP value was higher than those of the other farm management practices (Figure S3c).
An extended wheat canopy favours light and carbon dioxide absorption, thus improv-
ing photosynthetic performance [55]. Favourable weather conditions during the second
year improved PAP, which was due to the absorption of more light by the leaves and the
prolongation of photosynthetic activity [56,57]. Carbohydrate production during grain
filling improved, and this was more evident in the second year of the experiment for OF
and INT (especially for INT implementing B-W). This improvement may be due to the
gradual release of mineral nitrogen from decomposing crop residues and organic fertilisers,
as well as the growth and expansion of the photosynthetic green surface area owing to the
availability of mineral resources, especially at the flowering stage of the [58,59]. Under OF,
we observed a remarkable increase in physiological sinks but only a slight improvement in
physiological resources (leaves) in the second year of the experiment. PAP alone cannot
supply the requirements of the physiological sinks during the grain filling. The ability of
leaves to produce enough photoassimilates is strongly linked to the contents of Chl-a and
Chl-b, which were low under OF [60,61]. Under INT, organic and inorganic inputs were
managed in a manner that balanced the plant nutrient requirements in the soil and plant
growth stages. This equilibrium in growth stages enabled the plants to use both PAP and
DMR to support the physiological sinks [62,63].

OF implementing M-W produced only low amounts of DMR in the second year of the
experiment. This may be due to the low production of physiological sources, e.g., leaves
before anthesis. Thus, the grains in the M-W crop rotation benefited from PAP during grain
filling [64]. The rotation of legumes with wheat under IF, particularly in the second year of
the experiment, produced higher grain numbers, which was due to the contribution of the
DMR in grain filling. The relative contribution of DMR to grain yield is basically related to
source/sink interaction during grain filling [65].

4.2. Effect of Year and Treatment Interactions on Wheat Yield Components

Although the content of Chl-a and consequently the PAP were higher under IF, the
grain yields under IF (B-W) and INT (B-W and S-W) did not differ significantly (slightly
higher values under IF as expected) in the second year of the experiment. Therefore, it
is possible to decrease the application of chemical inputs by replacing them with organic
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fertilisers without drastically reducing grain yield. Applying organic matter together
with inorganic fertiliser improves the fertility and bio-chemical properties of soil, which
significantly increases wheat grain number and yield [66]. Under INT management, higher
levels of Chl-b and DMR of the stored pre-anthesis carbohydrates, particularly in the
S-W crop rotation system, are the reasons for increased grain yield in the second year.
Furthermore, although INT management relies on the availability of inorganic nutrients at
the beginning of plant growth, the gradual improvement in soil physical characteristics
and the permanent release of nutrients from organic resources (e.g., crop residues, compost,
and vermicompost) result in crop yield improvement [67].

Despite the low values of grain number and yield under OF in the first year, these
parameters improved in the second year of the experiment. Generally, organic and biologi-
cal inputs need sufficient time to release crop-available nutrients in the soils to the plant
(e.g., due to the conversion of plant residues into mineral components) [68,69]. Therefore,
this management strategy requires sufficient time to build up plant nutrients in the soil [70]
that ultimately improve crop yield. By comparing the number and weight of grains under
OF, we demonstrated a compensatory effect of DMR together with PAP at the grain filling
stage, which increased grain yield by improving 1000-grain weight. Considering that the
numbers of spikes per square metre and 1000-grain weights did not differ significantly
across all the farm management practices (Figure S6a,b), the relatively low yield under OF
was mostly due to the low number of grains. This may be due to the slow initial growth
of wheat because of low levels of nitrogen from organic compounds [71]. However, the
efficacy of both OF and INT was also partially linked to climatic variables, particularly dur-
ing the grain filling stage (from February to April, Figure 1). For example, wet conditions
during the second year accelerated the decomposition rate of crop residues and organic
manures, which provided more nutrients for plant growth under OF and INT.

Various summer crops in in wheat-based rotation systems had different effects on
yield and its components due to variations in the root and shoot residues of these crops.
These may have impacts on improving soil nutrient availability, especially nitrogen. In
this study, all summer crops had a positive effect on the grain number and yield of wheat
compared to the F-W crop rotation system. Other studies have found similar results, i.e.,
the yields of wheat in rotation with soybean and maize were higher than that monocropped
wheat [23,26]. In contrast, ref. [25] observed no significant difference in grain yield in
wheat crops rotated with soybean and maize. The legume–wheat crop rotation system
(here, mung bean with wheat) was the most beneficial in terms of grain number, 1000-grain
weight, and yield. This was because under this system, nitrogen use was more efficient, due
to the symbiosis of legume roots with rhizobium bacteria. Overall, all of these processes
associated with organic fertiliser/crop residue management had a positive effect on soil
structure and soil quality [36,72,73].

4.3. Effect of Year and Treatment Interactions on Wheat Grain Protein Content

All crop rotation systems, except for F-W, did not improve grain protein content under
IF compared to those implemented under OF and INT. Nitrogen availability during grain
filling is one of the most important factors affecting grain protein content [74]. Under IF
management, the high number of grains per spike decreased the contribution of protein
allocation to each physiological sink. Furthermore, under IF, inorganic nitrogen fertiliser
was applied to the soil at two stages (i.e., planting and tillering) before anthesis, and thus,
the crops used a large amount of the absorbed nitrogen to produce the physiological sources
and sinks. Therefore, less soil nitrogen was available to the crops at the time of grain filling.
Our results contradict those of [75], in which it was reported that the availability of minerals
derived from organic fertiliser decomposition was lower during the early stage of wheat
growth, which later resulted in reduced grain weight and protein storage. Grain protein
content is directly (through nitrogen absorption from the soil) and indirectly (through
remobilisation of nitrogen stored in other organs in the pre-anthesis phase to the grain)
linked to the availability of sources of nitrogen during grain filling [74]. When organic and
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biological compounds (in INT and OF) are used, the decomposition of crop residues into
minerals occurs gradually, and therefore, the required minerals (especially nitrogen) are
only slowly accessible to plants. This can improve nitrogen availability to crops at the time
of grain filling [76].

Our results show that grain protein content was highest when implementing B-W in
all three types of farming management. Legume residues have a relatively low C/N ratio
(14.7, Table 2), which supports faster rates of decomposition and release of mineral nitrogen
into the soil [77]. Thus, legumes can provide nitrogen during grain filling, which improves
grain protein concentration compared to other crop rotation systems.

5. Conclusions

In this 2-year experiment, all farming management and crop rotation systems pro-
duced similar 1000-grain weight values, although this parameter increased from the first
experimental year to the next. The contents of Chl-a, Chl-b, and total Chl, the levels of DMP
and PAP, as well as grain number per spike and grain yield were remarkably affected by
the type of farming management. Under INT, particularly with B-W and S-W, we observed
improved levels of Chl-b, resulting in higher PAP as well as the remobilisation of stored pre-
anthesis carbohydrates to the grains, leading to high wheat grain yield in the second year
of the experiment, despite a 50% reduction in chemical inputs. Moreover, returned crop
residues and organic fertiliser in the soil under INT resulted in the highest grain protein
content among the treatments. Among the three wheat crop rotations with sesame, mung
bean, and maize, the B-W rotation had the most positive effect on wheat yield, followed
by S-W, M-W, and F-W. For this region, this is a novel and promising finding, because it
contradicts the assumption of farmers that sesame is an exhaustive crop that negatively
affects soil properties and hence wheat yields due to its aggressive tendency to consume
soil nutrients at different depths. This study, however, suggests that future investigations
should examine different varieties of wheat in rotation with summer crops under integrated
farming management over larger spatial scales. Such investigations should be conducted
as long-term experiments, with the aim of finding the most compatible wheat variety for
INT management.
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