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Abstract: The maximum quantum efficiency of photosystem II (Fv/Fm) is a widely used indicator of
photosynthetic health in plants. Remote sensing of Fv/Fm using MS (multispectral) and RGB imagery
has the potential to enable high-throughput screening of plant health in agricultural and ecological
applications. This study aimed to estimate Fv/Fm in spring wheat at an experimental base in
Hanghou County, Inner Mongolia, from 2020 to 2021. RGB and MS images were obtained at the wheat
flowering stage using a Da-Jiang Phantom 4 multispectral drone. A total of 51 vegetation indices
were constructed, and the measured Fv/Fm of wheat on the ground was obtained simultaneously
using a Handy PEA plant efficiency analyzer. The performance of 26 machine learning algorithms
for estimating Fv/Fm using RGB and multispectral imagery was compared. The findings revealed
that a majority of the multispectral vegetation indices and approximately half of the RGB vegetation
indices demonstrated a strong correlation with Fv/Fm, as evidenced by an absolute correlation
coefficient greater than 0.75. The Gradient Boosting Regressor (GBR) was the optimal estimation
model for RGB, with the important features being RGBVI and ExR. The Huber model was the optimal
estimation model for MS, with the important feature being MSAVI2. The Automatic Relevance
Determination (ARD) was the optimal estimation model for the combination (RGB + MS), with the
important features being SIPI, ExR, and VEG. The highest accuracy was achieved using the ARD
model for estimating Fv/Fm with RGB + MS vegetation indices on the test sets (Test set MAE = 0.019,
MSE = 0.001, RMSE = 0.024, R2 = 0.925, RMSLE = 0.014, MAPE = 0.026). The combined analysis
suggests that extracting vegetation indices (SIPI, ExR, and VEG) from RGB and MS remote images
by UAV as input variables of the model and using the ARD model can significantly improve the
accuracy of Fv/Fm estimation at flowering stage. This approach provides new technical support for
rapid and accurate monitoring of Fv/Fm in spring wheat in the Hetao Irrigation District.
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1. Introduction

Spring wheat is an important crop in northern China, with a wide planting range and
high yields. The Hetao Irrigation District is one of the major production areas for spring
wheat in China, and it plays a significant role in ensuring food security [1]. Chlorophyll
fluorescence has proven to be a useful indicator of photosynthetic system health and is
widely employed in assessing photosynthesis [2]. Fv/Fm, a commonly used chlorophyll
fluorescence parameter, represents the ratio of variable fluorescence (Fv) to maximum fluo-
rescence (Fm) of chlorophyll. Fv represents the fluorescence emitted by open PSII reaction
centers, whereas Fm represents the maximum fluorescence emitted by fully open PSII
reaction centers under saturating light conditions. Fv/Fm reflects the efficiency of energy
transfer within the PSII antenna and the proportion of open PSII reaction centers [3,4]. The
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Fv/Fm parameter is critical in understanding the physiological status of plants and is a
measure of a plant’s capacity to convert light energy into chemical energy, which can offer
insights into the health and productivity of crops [5]. In the case of spring wheat, Fv/Fm
can be utilized to monitor crop growth and identify potential stress factors, such as water
and nutrient deficiencies, that may adversely impact crop yield [6]. Traditionally, Fv/Fm
has been estimated using portable instruments such as pulse amplitude modulated (PAM)
fluorometers, which necessitate darkening the leaf with a leaf clamp for 15–20 min before
measurement. PAM measurements can be laborious and time-consuming, particularly
when large areas require monitoring. To overcome these limitations, researchers have
explored the use of remote sensing technology.

Remote sensing is a powerful tool for monitoring plant growth. Remote sensing ap-
proaches retrieve chlorophyll fluorescence, which is excited by the absorption of sunlight,
using spectral reflectance. Since the fluorescence emission spectrum is superimposed on
leaf or canopy reflectance that can be obtained by handheld, ground-mounted, aerial, or
space-borne sensors, remote sensing technique opens a new way for upscaling chloro-
phyll fluorescence from leaf to landscape levels. Fv/Fm has been estimated in many
studies. Zhao et al. [7] collected spectral data and Fv/Fm values from potato leaves using
a hyperspectral imaging system and a closed chlorophyll fluorescence imaging system,
decomposed the spectral data by continuous wavelet transform (CWT), and developed
an estimation model using partial least squares. Yi et al. [8] used hyperspectral and PAM
fluorescence data along with correlation and regression analyses to develop Fv/Fm es-
timation models for aspen and cherry leaves. Jia et al. [9] calculated vegetation index
using hyperspectral data to estimate Fv/Fm for wheat through linear regression. With
these Fv/Fm estimation studies, the time-consuming issue of traditional fluorescence deter-
mination methods were addressed, but ground-based hyperspectral data collection was
not only expensive but also incapable of estimating Fv/Fm at high spatial and temporal
resolution. Unmanned aerial vehicle (UAVs) equipped with RGB sensors and multispectral
sensors may solve the problem at low cost [10]. Most research on estimating Fv/Fm has pri-
marily relied on ground-based hyperspectral measurements, with few studies employing
unmanned aerial vehicles equipped with multispectral and visible sensors. This study fills
a critical gap in the literature by demonstrating the feasibility of using UAV-based remote
sensing to estimate Fv/Fm, offering new opportunities for efficient and high-throughput
monitoring of plant health and productivity.

Machine learning techniques have revolutionized the field of data analysis by iden-
tifying complex patterns and trends that are often challenging to detect using traditional
methods. In recent years, the application of machine learning methods to analyze data ac-
quired by UAVs has gained significant traction [11–15]. However, the majority of previous
studies have focused on using a limited number of machine learning methods (one to four)
to estimate the desired parameters, with few investigations comparing the performance
of more than twenty different techniques. Given the subtle variation of Fv/Fm and the
limited spectral resolution of multispectral and RGB sensors compared to hyperspectral, it
is crucial to employ multiple machine learning methods to achieve higher accuracy. This
approach allows for the exploitation of the complementarity of various algorithms and
enables robust and comprehensive estimation of Fv/Fm from remote sensing data. In this
study, the goal is to estimate Fv/Fm in spring wheat using UAV-acquired RGB and MS
remote sensing data by multiple machine learning methods to improve accuracy, which is
important for rapid and accurate detection of wheat stress and timely adjustment of field
management measures.

2. Materials and Methods
2.1. Study Site and Experimental Design

During the wheat flowering stage, both RGB and MS remote sensing images were
obtained, resulting in the calculation of 51 vegetation indices (comprising 25 RGB and
26 multispectral). Following this, critical spectral features were extracted, while multi-
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collinearity was eliminated, and feature selection was conducted to estimate the Fv/Fm
values. An array of 26 machine learning techniques were utilized, with their respective
performances assessed based on accuracy, stability, and interpretability. In conclusion, a
high-precision UAV remote sensing monitoring model for the Fv/Fm of spring wheat in
the Hetao Irrigation District was developed, thus providing a robust scientific foundation
and theoretical underpinning for local agricultural advancement.

The study was conducted from 2020 to 2021 at the experimental field of the Bayannur
Institute of Agriculture and Animal Husbandry Science, located in the Inner Mongolia
Autonomous Region at 40◦04′ N, 10◦03′ E and an altitude of 1038 m above sea level
(Figure 1). The soil type at the experimental site was loam, and the baseline fertility
information is presented in Table 1. A split-plot design was utilized, with nitrogen (N)
fertilizer application methods serving as the main plot and cultivar as the subplot. The
main plot, which included five levels (CK, N1, N2, N3, and N4), featured various N
application methods. N1 (0.8/0.2), N2 (0.7/0.3), N3 (0.5/0.5), and N4 (0.3/0.7) had the
same N application rate of 180 kg/ha but differed in seeding fertilizer rates and follow-up
fertilizer rates, while CK had no fertilizer applied. The subplot comprised three cultivars of
spring wheat: “Baimai 13”, “Nongmai 730”, and “Nongmai 482”. The experiment included
a total of 15 treatments with three replications, resulting in 45 experimental plots, each
measuring 12 m2. The plots were arranged in randomized groups. The sowing rate was
set at 300 kg/ha. Phosphorus fertilizer was applied as a basal fertilizer during sowing,
and no potassium fertilizer was applied during the entire reproductive phase. Three flood
irrigations were performed at the tillering, heading, and grain filling stages, each with a
volume of 900 m3/ha.
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Table 1. Soil base fertility information of the experimental site.

Year Organic Matter
(g/kg)

Alkaline-N
(mg/kg)

Available-P
(mg/kg)

Available-K
(mg/kg) PH

2020 14.31 59.63 21.32 117.71 7.62
2021 13.94 56.27 20.83 110.47 7.59

2.2. UAV Multispectral Data Acquisition and Processing

Remote images were obtained during the flowering stage of the wheat plant (12 June
2020; 15 June 2021) using a DJI Phantom 4 multispectral drone (Da-Jiang Innovations,
Shenzhen, China). The drone (P4M, Figure 2) features 6 CMOS, including 1 color sensor
(ISO: 200–800) for visible (RGB) imaging and 5 monochrome sensors (Table 2) for multi-
spectral (MS) imaging. The images were acquired on clear and windless days, with a fixed
and consistent takeoff location. The D-RTK 2 (Da-Jiang Innovations, Shenzhen, China)
high-precision GNSS mobile station was utilized to assist in the positioning of the UAV and
enhance its positioning accuracy. Prior to takeoff, the UAV was manually placed directly
above three reflectivity gray plates of 20%, 40%, and 60%, and reflectivity plate photos were
taken. The flight path was automatically planned by DJI GS Pro (Da-Jiang Innovations,
Shenzhen, China) after calculating the current solar azimuth, with a flight altitude of 30 m,
the ground sampling distance was 1.59 cm/pixel, a heading overlap of 85%, and a collateral
overlap of 80%. Following the flight, DJI Terra (Da-Jiang Innovations, Shenzhen, China)
was used to perform radiometric correction for multispectral images, followed by image
stitching to generate a single-band reflectivity orthophoto. RGB images were stitched to
produce color ortho images without a radiation correction step.
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Figure 2. A photo for Phantom 4 multispectral.

Table 2. Spectral parameters of multispectral sensors.

Band Center Wavelength/nm Bandwidth/nm

Blue (B) 450 16
Green (G) 560 16

Red (R) 650 16
Red Edge (RE) 730 16
Infrared (NIR) 840 26

2.3. Construction and Selection of Spectral Indices

The digital number values for each RGB band and the reflectance of each MS band in
each treatment plot were extracted using the zonal statistics function of ENVI. Subsequently,
two types of vegetation indices (VIs) were computed, as presented in Tables 3 and 4.
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Table 3. Vegetation indices based on RGB digital number value and calculation method.

Index Name Calculation Formula References

Red (R), Green (G), Blue (B) Raw digital number value of each band /
Normalized Red r = R/(R + G + B) /

Normalized Green g = G/(R + G + B) /
Normalized Blue b = B/(R + G + B) /

Green Red Ratio Index GRRI = G/R /
Green Blue Ratio Index GBRI = G/B /
Red Blue Ratio Index RBRI = R/B /

Excess Red Vegetation Index ExR = 1.4× r− g [16]
Excess Green Vegetation Index ExG = 2× g− r− b [16]
Excess Blue Vegetation Index ExB = 1.4× b− g [16]

Excess Green Minus Excess Red Index ExGR = ExG− ExR [16]
Woebbecke Index WI = (G− B)/(G + R) [17]

Normalized Difference Index NDI = (r− g)/(r + g + 0.01) [17]
Color Intensity INT = (R + B + G)/3 [18]

Green Leaf Index 1 GLI1 = (2× G− R− B)/(2× G + R + B) [19]
Green Leaf Index 2 GLI2 = (2× G− R + B)/(2× G + R + B) [19]
Vegetative Index VEG = G/

(
R(2/3) × b(1/3)

)
[20]

Combination COM = 0.25× ExG + 0.3× ExGR + 0.33× CIVE + 0.12×VEG [21]
Color Index of Vegetation CIVE = 0.441× r− 0.811× g + 0.3856× b + 18.79 [22]

Normalized Green–Red Vegetation Index NGRVI = (G− R)/(G + R) [23]
Kawashima Index IKAW = (R− B)/(R + B) [24]

Visible-band difference vegetation Index VDVI = (2× g− r− b)/(2× g + r + b) [25]
Visible Atmospherically Resistance Index VARI = (g− r)/(g + r− b) [26]

Principal Component Analysis Index IPCA = 0.994×|R− B|+0.961×|G− B|+0.914×|G− R| [27]
Modified Green Red Vegetation Index MGRVI =

(
G2 − R2)/(G2 + R2) [28]

Red Green Blue Vegetation Index RGBVI =
(
G2 − B× R

)
/
(
G2 + B× R

)
[28]

Table 4. Vegetation indices based on MS sing-band reflectance and calculation method.

Index Name Calculation Formula References

Difference vegetation index DVI = Rnir − Rred [29]
Enhanced Vegetation Index EVI = 2.5× (Rnir − Rred)/(Rnir + 6× Rred − 7.5× Rblue + 1) [29]

Leaf chlorophyll index LCI = (R nir − Rrededge

)
/(Rnir + Rred) [29]

Green Normalized
Difference Vegetation GNDVI =

(
Rnir − Rgreen

)
/
(

Rnir + Rgreen
)

[30]

Ratio Between NIR and
Green Bands VI(nir/green) = Rnir /Rgreen [31]

Ratio Between NIR and
Red Bands VI(nir/red) = Rnir /Rred [32]

Ratio Between NIR and Red
Edge Bands VI(nir/rededge) = Rnir /Rrededge [33]

Napierian Logarithm of The
Red Edge lnRE = 100× (lnnir − lnred) [34]

Modified Soil-Adjusted
Vegetation Index 1 MSAVI1 = (1 + L)

(
Rnir−Rred

Rnir+Rred+L

)
(L = 0.1) [35]

Modified Soil-Adjusted
Vegetation Index 2 MSAVI2 = Rnir + 0.5−

√
(2× Rnir + 1)2 − 8× (Rnir − Rred)/2 [35]

Optimized Soil-Adjusted
Vegetation Index OSAVI = (1 + 0.16)× (Rnir−Rred)

(Rnir+Rred+0.16)
[36]

Modified Triangular Vegetation
Index 2 MTVI2 =

1.5×[1.2×(Rnir −Rgreen )−2.5×(Rred −Rgreen )]√
(2×Rnir+1)2−(6×Rnir−5×

√
Rred )−0.5

[37]

Normalized Difference Red
Edge Index NDRE =

(Rnir −Rrededge )
(Rnir +Rrededge )

[38]

Normalized Difference
Vegetation Index NDVI = (Rnir −Rred )

(Rnir +Rred )
[39]
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Table 4. Cont.

Index Name Calculation Formula References

Modified Simple Radio MSR = (Rnir − Rred − 1)/
(√

Rnir + Rred + 1
)

[40]
Soil-Adjusted Vegetation Index SAVI = (Rnir−Rred)

(Rnir+Rred+0.5) × (1 + 0.5) [41]

Simplified Canopy Chlorophyll
Content Index SCCCI = NDRE

NDVI [42]

Modified Chlorophyll
Absorption Reflectance Index MCARI =

(
Rrededge − Rred − 0.2×

(
Rrededge − Rgreen

))
×
(

Rrededge
Rred

)
[43]

Structure-Insensitive
Pigment Index SIPI = (Rnir −Rblue )

(Rnir+Rred)
[44]

Transformed Chlorophyll
Absorption Reflectance Index TCARI = 3×

((
Rrededge − Rred

)
− 0.2×

(
Rrededge − Rgreen

)
×
(

Rrededge
Rred

))
[45]

Normalized Difference Index NDI = (Rnir −Rrededge )
(Rnir +Rred )

[46]

Red-Edge Chlorophyll Index 1 Cl1 = Rnir
Rrededge

− 1 [47]

Red-Edge Chlorophyll Index 2 Cl2 =
Rrededge
Rgreen

− 1 [48]

Modified Chlorophyll
Absorption Reflectance Index 2 MCARI2 = 1.5× (2.5×(Rnir −Rrededge )−1.3×(Rnir −Rgreen))

(2×(Rnir+1)2−(6×Rnir−5×(Rred)
2)−0.5)

[49]

TCARI/OSAVI TCARI
OSAVI [49]

MCARI/OSAVI MCARI
OSAVI [49]

2.4. Fluorescence Data Acquisition and Processing

The collection of fluorescence data was synchronized with the UAV flight, and the
fluorescence information of wheat canopy leaves was obtained using the Handy PEA plant
efficiency analyzer (Hansatech Instruments Ltd., Norfolk, UK). In each plot, 20 leaves were
randomly collected, and the average value was adopted as a representative value of the
plant. Prior to collection, the target leaves were subjected to a dark treatment for 20 min
using the leaf clips that were provided with the instrument.

2.5. Construction of Regression Model

In this study, 26 machine learning regression models (listed in Table 5) were devel-
oped using PyCaret to estimate Fv/Fm. PyCaret is a user-friendly, open source, low-code
machine learning library in Python that enables users to easily prepare data, train and eval-
uate machine learning models, and deploy models to production. PyCaret offers various
features for data preparation, feature engineering, model training and evaluation, model
interpretation, and model deployment. Additionally, it includes built-in visualizations and
interactive plots that help users to interpret model results.

Table 5. Machine learning models.

Model Abbreviation References

AdaBoost Regressor ADA [50]
Automatic Relevance Determination ARD [51]

Bayesian Ridge BR [52]
CatBoost Regressor CatBoost [53]

Decision Tree Regressor DT [54]
Dummy Regressor Dummy [55]

Elastic Net EN [56]
Extra Trees Regressor ET [57]

Extreme Gradient Boosting EGB [58]
Gradient Boosting Regressor GBR [59]

Huber Regressor Huber [60]
K Neighbors Regressor KNN [61]

Kernel Ridge KR [62]
Lasso Least Angle Regression LLAR [63]

Lasso Regression Lasso [64]
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Table 5. Cont.

Model Abbreviation References

Least Angle Regression LAR [63]
Light Gradient Boosting Machine LGBM [65]

Linear Regression LR [66]
Multilayer Perceptron Regressor MLP [67]

Orthogonal Matching Pursuit OMP [68]
Passive Aggressive Regressor PAR [69]

Random Forest Regressor RF [70]
Random Sample Consensus RANSC [71]

Ridge Regression Ridge [72]
Support Vector Machine Regression SVM [73]

TheilSen Regressor TR [74]

To prepare the data, a normalization technique was applied to transform the data
into a fixed range between 0 and 1, thereby ensuring that all features were on the same
scale. Multicollinearity, which refers to high correlation between multiple features, was
addressed by removing highly correlated features to ensure data stability.

Feature selection was performed to select key features and reduce noise, thereby
enhancing the accuracy and efficiency of the algorithm. Once all the models were built,
the model with the highest accuracy was selected based on the accuracy ranking, and
hyperparameter optimization was conducted to further improve model accuracy. This
study used the feature selection scheme of the embedding method, implemented by calling
the SelectFromModel API in sklearn, relying on the algorithmic model of random forests.

2.6. Segmentation of Dataset and Accuracy Evaluation

The 90 samples were randomly partitioned into a training set and a test set in a
0.7/0.3 ratio; a K-fold cross-validation (K = 5) was employed to train and optimize the
model. Seven indicators were utilized to assess the accuracy of the model in the test set:

MAE (Mean Absolute Error) is a measure of the average magnitude of the errors in a
set of predictions, without considering their direction. It measures the average absolute
difference between the actual and predicted values. A smaller MAE indicates a more
accurate prediction;

MSE (Mean Squared Error) is a measure of the average magnitude of the errors in a
set of predictions, considering both the magnitude and direction of the errors. It measures
the average of the squared differences between the actual and predicted values. A smaller
MSE indicates a more accurate prediction;

R2 (Coefficient of Determination) is a statistical measure that represents the proportion
of the variance in the dependent variable that is predictable from the independent variables.
In regression analysis, R2 is used to evaluate the goodness of fit of the model. Generally, it
ranges from 0 to 1, with a higher value indicating a better fit. An R2 of 1 indicates that the
model perfectly predicts the target variable, while an R2 of 0 indicates that the model does
not explain any variance in the target variable;

RMSE (Root Mean Squared Error) is the square root of MSE. It is a measure of the
average magnitude of the errors in a set of predictions, considering both the magnitude
and direction of the errors. A smaller RMSE indicates a more accurate prediction;

RMSLE (Root Mean Squared Logarithmic Error) is similar to RMSE, but instead of
taking the difference between the actual and predicted values, it takes the logarithmic
difference. It is used in cases where the target variable has a skewed distribution;

MAPE (Mean Absolute Percentage Error) is a measure of the average error as a
percentage of the actual values. It measures the average percentage difference between the
actual and predicted values. A lower MAPE indicates a more accurate prediction;

TT (Total Time) is defined as the amount of time spent on building the machine
learning model. The value of TT represents the computational cost of constructing the
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model, including the time spent on training and validating the model. A smaller value of
TT indicates that the model has a lower computational cost and can be built more efficiently.
This can be beneficial in scenarios where the model needs to be constructed in a timely
manner, or when computational resources are limited. A lower TT value also indicates that
the model may be more scalable and can be trained on larger datasets without excessive
computational cost.

MAE =
1
n

n

∑
i=1
|yi − ŷ| (1)

MSE =
∑n

i=1 (yi − ŷi)
2

n
(2)

RMSE =

√
∑n

i=1 (yi − ŷi)
2

n
(3)

R2 = 1− ∑n
i=1 (yi − ŷi)

2

∑n
i=1

(
yi −

−
y i

)2 (4)

RMSLE =

√
1
n ∑

i=1
(log(yi + 1)− log(ŷi + 1))2 (5)

MAPE =
100%

n

n

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (6)

where n is the number of samples, yi is the observed value,
−
y i is the mean of the observed

value, and ŷi is the predicted value.

3. Results
3.1. Basic Statistical Information of the Fv/Fm Dataset

As shown in Table 6, the basic statistics of the measured Fv/Fm, indicating a range
of values with a minimum of 0.550, a maximum of 0.848, a mean of 0.773, a standard
deviation of 0.081, and a coefficient of variation (CV%) of 10.4. These statistics suggest that
the Fv/Fm measurements demonstrate moderate variability within the total dataset. Both
the training and test sets were derived from the total dataset and displayed similar ranges
of Fv/Fm values. Specifically, the training set showed a minimum of 0.551, a maximum of
0.846, a mean of 0.775, a standard deviation of 0.077, and a CV% of 9.900, while the test
set demonstrated a minimum of 0.550, a maximum of 0.848, a mean of 0.768, a standard
deviation of 0.090, and a CV% of 11.700. The distributions of Fv/Fm values in the training
and test sets were comparable, with a slightly higher mean and lower CV for the training
set than the test set. These findings indicate that the training and test sets are representative
of the total dataset and can be utilized for model development and validation.

Table 6. Basic statistics of the measured Fv/Fm.

Dataset Minimum Maximum Mean STDEV CV (%)

Total Dataset 0.550 0.848 0.773 0.081 10.4
Training set 0.551 0.846 0.775 0.077 9.900

Test set 0.550 0.848 0.768 0.090 11.700

3.2. Correlation Analysis of Fv/Fm with Multispectral and RGB Vegetation Indices

The correlation coefficients between Fv/Fm values and MS, RGB vegetation indices
are shown in Table 7. The highest correlation coefficients of multispectral vegetation indices
were NDVI, followed by SIPI, EVI, and MSAVI2. The highest correlation coefficients of
RGB vegetation indices were RGBVI, followed by VDVI, GLI, and CIVE. Most of the multi-
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spectral vegetation indices and half of RGB vegetation indices showed good correlation
with Fv/Fm. Overall, the correlation between the multispectral vegetation indices and
Fv/Fm was higher than that of the RGB vegetation indices.

Table 7. Correlation coefficients between MS, RGB vegetation indices, and Fv/Fm.

Multispectral Correlation RGB Correlation
Vegetation Indices Coefficient Vegetation Indices Coefficient

DVI 0.857 b −0.679
EVI 0.869 g 0.827

NDVI 0.899 r 0.283
GNDVI 0.888 GRRI 0.309
NDRE 0.850 GBRI 0.737

LCI 0.797 RBRI 0.502
OSAVI 0.892 INT −0.816

VI(NIR/G) 0.784 GRVI 0.319
VI(NIR/R) 0.724 NDI −0.324

VI(NIR/RE) 0.807 WI 0.769
lnRE 0.86 IKAW 0.501

MSAVI1 0.895 GLI 0.832
MSAVI2 0.896 GLI2 −0.126
MTVI2 0.863 VARI −0.55
MSR 0.849 ExR −0.435
SAVI 0.88 ExG 0.827

SCCCI 0.756 ExB −0.743
MCARI −0.793 ExGR 0.829

MCARI2 0.754 VEG 0.767
TCARI −0.71 IPCA −0.821

NDI 0.865 CIVE −0.831
CL1 0.807 COM 0.827
CL2 0.835 RGBVI 0.843
SIPI 0.898 MGRVI 0.324

TCARI/OSAVI −0.784 VDVI 0.832
MCARI/OSAVI −0.893

3.3. Important Features Selected after Data Pre-Processing

The process of feature selection was conducted to identify the most crucial variables
that significantly influence the estimation of the chlorophyll fluorescence parameter Fv/Fm
in spring wheat using UAV remote sensing. Table 8 illustrates the significant features that
were selected after the application of data pre-processing techniques, including the visible
light vegetation indices (RGB), multispectral vegetation indices (MS), and a combination of
both (RGB + MS). The pre-processing methodology involved eliminating feature collinearity
and implementing tree-based feature selection methods. The table highlights that RGBVI
and ExR were the vital features for the RGB dataset, MSAVI2 was the only critical feature
for the MS dataset, and SIPI, ExR, and VEG were the essential features for the RGB +
MS dataset.

Table 8. Important features selected after data pre-processing.

VIs Type Important Features

RGB RGBVI, ExR
MS MSAVI2

RGB + MS SIPI, ExR, VEG

3.4. Model Based on RGB VIs Development and Evaluation

Table 9 presented the results of the performance evaluation of 26 machine learning
models for estimating vegetation indices using RGB vegetation indices. The models were
ranked according to their R2 accuracy scores, with the top performing model listed first.
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Evaluation metrics such as mean absolute error (MAE), mean squared error (MSE), root
mean squared error (RMSE), relative mean squared logarithmic error (RMLSE), mean
absolute percentage error (MAPE), and computation time (TT) were used to assess model
performance. The gradient boosting regression (GBR) model achieved the highest accuracy
with an R2 score of 0.800, followed closely by the random forest (RF) model with an R2

score of 0.795. Most of the other models performed relatively poorly, with R2 scores ranging
from 0.789 to −116.050. Notably, the worst performing models, including lasso, elastic net,
least angle regression (LLAR), dummy, support vector machine (SVM), and kernel ridge
regression (KR), had negative R2 scores. In addition to the R2 scores, the evaluation metrics
indicated that the best performing models also had the lowest MAE, MSE, RMSE, RMLSE,
and MAPE scores, demonstrating the models’ ability to make accurate predictions with
low error rates. However, there was considerable variation in computation time among
the models, with some taking significantly longer than others. In conclusion, the results
suggest that GBR models are the most accurate and efficient for estimating Fv/Fm using
RGB vegetation indices.

Table 9. Accuracy assessment of different estimation models based on RGB vegetation indices.

Model MAE MSE RMSE R2 RMLSE MAPE TT (s)

GBR 0.023 0.001 0.033 0.800 0.019 0.032 0.010
RF 0.024 0.001 0.033 0.795 0.019 0.032 0.058

XGB 0.026 0.001 0.034 0.789 0.020 0.036 0.106
Catboost 0.024 0.001 0.034 0.785 0.020 0.033 0.192

ET 0.024 0.001 0.034 0.782 0.020 0.033 0.048
KNN 0.026 0.001 0.035 0.771 0.020 0.035 0.008
ADA 0.028 0.001 0.035 0.767 0.021 0.038 0.018

Huber 0.030 0.002 0.039 0.711 0.022 0.040 0.006
Ridge 0.031 0.002 0.039 0.707 0.023 0.041 0.006

LR 0.030 0.002 0.039 0.707 0.023 0.040 0.006
LAR 0.030 0.002 0.039 0.707 0.023 0.040 0.006
BR 0.030 0.002 0.039 0.707 0.023 0.041 0.006

OMP 0.031 0.002 0.039 0.707 0.022 0.041 0.004
ARD 0.031 0.002 0.039 0.707 0.022 0.041 0.006
DT 0.031 0.002 0.040 0.688 0.023 0.042 0.004
TR 0.036 0.003 0.049 0.572 0.029 0.051 0.178

PAR 0.042 0.003 0.050 0.528 0.029 0.056 0.006
LGBM 0.049 0.004 0.063 0.283 0.036 0.067 0.018

RANSC 0.043 0.005 0.065 0.195 0.037 0.062 0.008
MLP 0.055 0.005 0.067 0.158 0.038 0.072 0.014
lasso 0.058 0.006 0.076 −0.059 0.045 0.082 0.006
EN 0.058 0.006 0.076 −0.059 0.045 0.082 0.006

LLAR 0.058 0.006 0.076 −0.059 0.045 0.082 0.008
Dummy 0.058 0.006 0.076 −0.059 0.045 0.082 0.004

SVM 0.072 0.006 0.077 −0.104 0.044 0.093 0.006
KR 0.792 0.632 0.795 −116.050 0.523 1.030 0.006

3.5. Model Based on MS VIs Development and Evaluation

Table 10 presented an accuracy assessment of 26 machine learning models for estimat-
ing vegetation indices using multi-spectral data. The top seven models with the highest
R2 scores, ranging from 0.860 to 0.849, were Huber, LR, Ridge, LAR, OMP, BR, ARD, and
TR. These models had the lowest MAE, MSE, RMSE, and RMLSE values among all the
models, indicating that they produced the most accurate estimates of vegetation indices.
The computation time for these models ranged from 0.004 to 0.316 s, with the LR model
having the longest computation time. The next group of models, with R2 scores ranging
from 0.794 to 0.684, included KNN, RF, CatBoost, ADA, GBR, ET, and PAR. These models
had higher MAE, MSE, RMSE, and RMLSE values than the top models, indicating that they
produced less accurate estimates of vegetation indices. The computation time for these
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models ranged from 0.006 to 0.190 s. The last group of models, with R2 scores ranging
from 0.668 to −0.567, included XGB, DT, RANSC, LGBM, SVM, Lasso, EN, LLAR, Dummy,
MLP, and KR. These models had the lowest R2 scores and the highest MAE, MSE, RMSE,
and RMLSE values, indicating that they produced the least accurate estimates of Fv/Fm.
The computation time for these models ranged from 0.004 to 0.298 s, with the KR model
having the longest computation time. Overall, the Huber model was the most accurate for
estimating Fv/Fm using multispectral vegetation indices.

Table 10. Accuracy assessment of different estimation models based on MS vegetation indices.

Model MAE MSE RMSE R2 RMLSE MAPE TT (s)

Huber 0.021 0.001 0.027 0.860 0.015 0.028 0.006
LR 0.022 0.001 0.027 0.860 0.015 0.029 0.316

Ridge 0.022 0.001 0.027 0.860 0.015 0.029 0.264
LAR 0.022 0.001 0.027 0.860 0.015 0.029 0.004
OMP 0.022 0.001 0.027 0.860 0.015 0.029 0.004

BR 0.022 0.001 0.027 0.860 0.015 0.029 0.004
ARD 0.022 0.001 0.027 0.860 0.015 0.029 0.006
TR 0.022 0.001 0.028 0.849 0.016 0.029 0.020

KNN 0.026 0.001 0.033 0.794 0.019 0.035 0.006
RF 0.032 0.001 0.038 0.737 0.022 0.043 0.054

Catboost 0.033 0.002 0.039 0.723 0.022 0.045 0.190
ADA 0.031 0.002 0.039 0.716 0.023 0.042 0.012
GBR 0.034 0.002 0.040 0.704 0.023 0.046 0.010
ET 0.034 0.002 0.041 0.695 0.023 0.046 0.044

PAR 0.035 0.002 0.041 0.684 0.023 0.046 0.006
XGB 0.036 0.002 0.042 0.668 0.024 0.049 0.132
DT 0.037 0.002 0.043 0.652 0.025 0.050 0.006

RANSC 0.035 0.003 0.047 0.546 0.027 0.049 0.006
LGMB 0.045 0.004 0.062 0.299 0.036 0.064 0.016
SVM 0.064 0.005 0.069 0.097 0.039 0.082 0.006
Lasso 0.058 0.006 0.076 −0.059 0.045 0.082 0.298

EN 0.058 0.006 0.076 −0.059 0.045 0.082 0.006
LLAR 0.058 0.006 0.076 −0.059 0.045 0.082 0.004

Dummy 0.058 0.006 0.076 −0.059 0.045 0.082 0.004
MLP 0.076 0.008 0.090 −0.567 0.052 0.101 0.016
KR 0.784 0.619 0.787 −113.552 0.528 1.024 0.006

3.6. Model Based on RGB and MS VIs Development and Evaluation

Table 11 presented an accuracy assessment of 26 machine learning models for the
estimation of vegetation indices (VIs) using both RGB and multispectral data. The ARD
and OMP models achieved the highest R2 accuracy scores of 0.868, followed closely by
the Ridge, LR, LAR, BR, and Huber models, all with R2 values of 0.858. The Tr model
obtained an R2 of 0.849, while RANSC, KNN, RF, ET, ADA, Catboost, and XGB models
had R2 values ranging from 0.830 to 0.723. The GBR and DT models had R2 values of
0.721 and 0.690, respectively. The PAR model had an R2 of 0.593, indicating lower accuracy
than the previous models. On the other hand, the LGMB, Lasso, EN, LLAR, and Dummy
models had negative R2 values, indicating poor accuracy. Moreover, the SVM and MLP
models had low R2 values of −0.073 and −0.292, respectively. The KR model had the worst
performance with high MAE, MSE, RMSE, and RMLSE values and a very low R2 value of
−118.159. In summary, the ARD and OMP models demonstrated the same highest accuracy
for estimating Fv/Fm using both MS and RGB data. However, the computation time of
OMP was found to be higher than that of ARD. Therefore, the optimal model is ARD.
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Table 11. Accuracy assessment of different estimation models based on RGB and MS indices.

Model MAE MSE RMSE R2 RMLSE MAPE TT (s)

ARD 0.021 0.001 0.026 0.868 0.015 0.028 0.006
OMP 0.021 0.001 0.026 0.868 0.015 0.028 0.007
Ridge 0.022 0.001 0.027 0.858 0.015 0.029 0.006

LR 0.022 0.001 0.027 0.858 0.015 0.029 0.514
LAR 0.022 0.001 0.027 0.858 0.015 0.029 0.006
BR 0.022 0.001 0.027 0.858 0.015 0.029 0.006

Huber 0.022 0.001 0.027 0.857 0.016 0.029 0.006
TR 0.022 0.001 0.028 0.849 0.016 0.030 0.178

RANSC 0.024 0.001 0.030 0.830 0.017 0.032 0.010
KNN 0.023 0.001 0.030 0.826 0.017 0.031 0.006

RF 0.025 0.001 0.033 0.800 0.019 0.033 0.052
ET 0.025 0.001 0.034 0.785 0.020 0.033 0.050

ADA 0.027 0.001 0.036 0.756 0.021 0.037 0.020
Catboost 0.026 0.001 0.036 0.753 0.021 0.036 0.214

XGB 0.027 0.002 0.038 0.723 0.022 0.037 0.092
GBR 0.028 0.002 0.039 0.721 0.022 0.037 0.012
DT 0.032 0.002 0.041 0.690 0.024 0.043 0.006

PAR 0.039 0.002 0.047 0.593 0.027 0.051 0.006
LGBM 0.043 0.003 0.055 0.429 0.032 0.060 0.018
Lasso 0.058 0.006 0.076 −0.059 0.045 0.082 0.006

EN 0.058 0.006 0.076 −0.059 0.045 0.082 0.008
LLAR 0.058 0.006 0.076 −0.059 0.045 0.082 0.006

Dummy 0.058 0.006 0.076 −0.059 0.045 0.082 0.004
SVM 0.071 0.006 0.076 −0.073 0.043 0.092 0.006
MLP 0.063 0.008 0.082 −0.292 0.047 0.085 0.020
KR 0.799 0.646 0.803 −118.159 0.512 1.042 0.006

3.7. Hyperparameter Optimization of the Highest Accuracy Model in Three Modes

Table 12 and Figure 3 show the hyperparameter-optimized performance of the most
accurate machine learning models in three different image types (RGB, MS and MS + RGB).
The results show that the performance of these models varies according to the different
image types and data sets. Notably, the ARD model achieves the highest accuracy on the
test set of MS + RGB VIs mode (test set MAE = 0.019, MSE = 0.001, RMSE = 0.024, R2 =
0.925, RMSLE = 0.014 and MAPE = 0.026).

Table 12. Hyperparameter optimization of the highest accuracy model in three image types.

Image Type Model Dataset MAE MSE RMSE R2 RMLSE MAPE

RGB GBR Training set 0.014 0.000 0.021 0.925 0.012 0.019
Test set 0.027 0.001 0.036 0.838 0.020 0.037

MS Huber Training set 0.021 0.001 0.027 0.878 0.015 0.028
Test set 0.018 0.001 0.025 0.920 0.014 0.024

MS + RGB ARD Training set 0.021 0.001 0.026 0.882 0.015 0.028
Test set 0.019 0.001 0.024 0.925 0.014 0.026
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4. Discussion

Chlorophyll fluorescence is a potent indicator of photosynthesis, where Fv/Fm serves
as a measure of the maximum photochemical efficiency of photosystem II in chloroplasts
and can be utilized as an indicator of plant health [75]. For many plant species, the optimal
Fv/Fm range is approximately between 0.79 and 0.84, with lower values indicating higher
plant stress [76]. The wheat flowering period is a critical stage of growth and development,
as it signifies the transition of wheat plants from vegetative to reproductive growth stages,
where the focus of growth shifts from leaves and roots to flowers and seeds [77]. During
this period, wheat plants require significant amounts of nutrients and energy to support
the normal development and maturation of flowers and seeds [78]. Therefore, providing
sufficient water and nutrients is crucial for wheat plants during the flowering period. Stress
during this phase can significantly affect the yield and quality of wheat [79]. Monitoring
Fv/Fm during the flowering period is crucial in detecting stress and implementing timely
agricultural management practices to optimize wheat production and achieve high yields.

In this study, both multispectral vegetation indices and RGB vegetation indices were
found to be effective in estimating Fv/Fm values. The R2 of test set was 0.920 for multispec-
tral vegetation indices and 0.838 for RGB vegetation indices, indicating that the former had
a higher accuracy in estimating Fv/Fm values. Multispectral images acquired by UAVs can
provide information about the spectral reflectance of vegetation, which changes simultane-
ously in the canopy when stress occurs [80], and this can be used to estimate Fv/Fm. The
key idea of this approach is that Fv/Fm is related to the fluorescence yield of photosystem
II, which in turn is related to the chlorophyll content of leaves. The chlorophyll content
can be estimated from the reflectance in the red and near-infrared (NIR) bands [81]. The
important spectral index MSAVI2 extracted from the multispectral estimation in this study
was calculated precisely from the red and NIR bands. In addition to multispectral images,
RGB images can also be used to estimate Fv/Fm values by color information. In general,
the color of plants changes when they are under stress, and although some color changes
are difficult for the human eye to observe, color values can be quantified by computer
technology [82]. However, due to the lack of vegetation-sensitive red edge and infrared
bands, the RGB images do not provide enough spectral information, so the estimated
Fv/Fm is not as accurate as the MS images.

This study shows that the machine learning models have high accuracy and stability
and can effectively use RGB and MS data to estimate Fv/Fm, which is consistent with the
findings of other studies [83] using machine learning for remote sensing estimation. The
effects of different machine learning models and different types of vegetation indices on the
accuracy of Fv/Fm estimation are obvious. Firstly, different types of vegetation indices can
provide different information in estimating Fv/Fm, and different machine learning models
have different adaptation and fitting ability to different datasets [84]. The MS + RGB model
exhibits superior accuracy compared to both the MS and RGB models in estimating Fv/Fm.
This suggests that the integration of RGB and MS data provides benefits in enhancing
the accuracy of the estimation. Additionally, the findings suggest that utilizing multiple
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data sources can enhance the accuracy of the model as compared to relying solely on
single-source data. These results are consistent with previous studies that have reported
improved accuracy in multi-source data estimation [85,86]. However, the improvement in
accuracy when combining (MS + RGB) is only marginally better than using MS alone in this
study. The ARD model cannot be quantified for the percentage contribution of RGB and
MS, so the random-forest-model-based feature importance assessment was implemented,
the result was shown in Figure 4. The importance of multispectral vegetation index in
the model was higher than that of RGB vegetation indices, and the RGB contributed less
valid information.
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Figure 4. Feature importance assessment based on random forest model. 

Zhao et al. [7] developed two estimation models for Fv/Fm of potato leaves with test 
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sion (LR), ridge regression (Ridge), least angle regression (LAR), and orthogonal matching 
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Zhao et al. [7] developed two estimation models for Fv/Fm of potato leaves with test
set R2 of 0.807 and 0.822 and RMSE of 0.018 and 0.017, respectively. Yi et al. [8] developed a
generalized estimation model of Fv/Fm for poplar leaves and cherry leaves with R2 = 0.88.
In a study [9] estimating Fv/Fm in winter wheat, training set R2 = 0.50, RMSE = 0.012,
test set R2 = 0.55, RMSE = 0.014. In these previous estimation studies of Fv/Fm based
on hyperspectral, the highest R2 was of 0.88, and the highest accuracy combined model
without hyperparameter optimization in this study had R2 of 0.868, which shows that the
estimation accuracy of multispectral and RGB is not as good as hyperspectral. However,
Yang et al. [87] showed that hyperparameter optimization can be helpful in improving the
estimation accuracy of the model. In this study, the test set R2 of both the MS estimation
and the estimation of the MS and RGB combination reaches 0.92 after hyperparameter
optimization, indicating that the accuracy gap caused by the sensors can be narrowed
or even surpassed by algorithm optimization. Negative values of R2 were observed in
all three estimation models, which are usually uncommon, indicating that the prediction
results using the model are worse than the estimation results using the mean, because the
mean reflects the central tendency of the data, while the prediction results of the model
deviate more from the true value than the mean [88]. Notably, the performance of linear
regression (LR), ridge regression (Ridge), least angle regression (LAR), and orthogonal
matching pursuit (OMP) models was almost identical. Moreover, the reason for this was
that only MSAVI2 was screened in the multispectral vegetation indices and LR, Ridge, LAR,
and OMP are all linear models, indicating that different linear models may not have a
significant effect on the accuracy of estimation when a single vegetation index was used as
a characteristic variable.

The present study has important practical implications for agriculture and environ-
mental monitoring. By demonstrating the feasibility of using UAV-based remote sensing to
estimate Fv/Fm in spring wheat, our research offers new opportunities for efficient and
high-throughput monitoring of plant health and productivity. This can help to improve
crop management strategies, enhance yield and quality of agricultural products, and reduce
the environmental impact of farming practices. In addition, the integration of machine
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learning methods with multispectral and RGB imagery can further enhance the accuracy
and reliability of Fv/Fm estimation, enabling more precise and targeted interventions in
crop management.

5. Conclusions

Integration of multiple machine learning methods with multispectral and RGB im-
agery acquired from UAV-based remote sensing can improve the accuracy and reliability
of Fv/Fm estimation in spring wheat during the flowering stage. The important features
and the optimal Fv/Fm estimation models for different types remote sensing images were
different: with gradient boosting regressor (GBR) as the optimal estimation model for
RGB, the important features were RGBVI and ExR; with Huber as the optimal estimation
model for MS, the important feature was MSAVI2; and automatic relevance determination
(ARD) as the optimal estimation model for combination (MS + RGB), the important fea-
tures were SIPI, ExR, VEG. The highest accuracy was achieved using the ARD model for
estimating Fv/Fm with RGB + MS vegetation indices (Test set MAE = 0.019, MSE = 0.001,
RMSE = 0.024, R2 = 0.925, RMSLE = 0.014, MAPE = 0.026). Based on the results of this
study, there is great potential for the use of remote sensing and machine learning for
efficient and sustainable plant health monitoring and management.

In conclusion, while the present study provides a valuable contribution to the use of
remote sensing and machine learning for estimating Fv/Fm in wheat during the flowering
stage, there are several limitations. Firstly, the study was conducted at a single ecological
site over a two-year period, which may limit the generalizability of the findings to other
regions and ecosystems. Future studies conducted at multiple sites with varying environ-
mental conditions would provide a more comprehensive understanding of the applicability
of the proposed methods. Secondly, the study focused solely on the flowering stage of
wheat growth, which is only one phase of the crop’s development. It is possible that the
performance of the proposed remote sensing and machine learning methods may differ
at other stages of wheat growth, such as germination, tillering, or grain filling. Further
research is needed to examine the feasibility and accuracy of the methods across multiple
growth stages. Thirdly, while the proposed methods show promise for estimating Fv/Fm in
wheat, it should be noted that these methods may not be directly applicable to other plant
species or crops. The optimal settings and parameters for remote sensing and machine
learning may vary depending on the physiological and structural characteristics of the
target plants. Future studies should explore the generalizability and adaptability of the
methods to other crops and plant species.
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