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Abstract: Obtaining complete and consistent spectral images of wheat ears in the visible areas of
in situ wheat canopies poses a significant challenge due to the varying growth posture of wheat.
Nevertheless, detecting the presence and degree of wheat Fusarium head blight (FHB) in situ is
critical for formulating measures that ensure stable grain production and supply while promoting
green development in agriculture. In this study, a spectral quantitative analysis model was developed
to evaluate the infection degree of FHB in an in situ wheat canopy’s visible areas. To achieve this, a
spectral acquisition method was used to evaluate the infection degree of FHB in a wheat canopy’s
visible areas. Hyperspectral images were utilized to obtain spectral data from healthy and mildly,
moderately, and severely infected wheat ear canopies. The spectral data were preprocessed, and
characteristic wavelengths were extracted using twelve types of spectral preprocessing methods
and four types of characteristic wavelength extraction methods. Subsequently, sixty-five spectral
quantitative prediction models for the infection degree of FHB in the in situ wheat canopy visible
areas were established using the PLSR method, based on the original spectral data, preprocessed
spectral data, original spectral characteristic wavelengths extracted data, and preprocessed spectral
characteristic wavelengths extracted data. Comparative analysis of the models indicated that the
MMS + CARS + PLSR model exhibited the best prediction effect and could serve as the spectral
quantitative analysis model for the evaluation of the infection degree of FHB in an in situ wheat
canopy’s visible areas. The model extracted thirty-five characteristic wavelengths, with a modeling
set coefficient of determination (R2) of 0.9490 and a root-mean-square error (RMSE) of 0.2384. The
testing set of the coefficient of determination (R2) was 0.9312, with a root-mean-square error (RMSE)
of 0.2588. The model can facilitate the spectral quantitative analysis of the infection degree of FHB
in the in situ wheat canopy visible areas, thereby aiding in the implementation of China’s targeted
poverty alleviation and agricultural power strategy.

Keywords: in situ wheat canopy; fusarium head blight; spectrum; infection degree; visible areas

1. Introduction

Wheat is a crucial food crop, providing sustenance for approximately 35~40% of the
world’s population [1,2]. China, as the largest wheat-producing country globally, boasts
perennial planting areas and total output that accounts for over 20% of the country’s grain
crops [3,4]. Wheat Fusarium head blight (FHB), an irreversible disease mainly caused by
Fusarium species, such as Fusarium graminearum Schwabe [5], significantly impacts crop
yields. The disease may cause a reduction of 10~20% in yield, while severe cases may lead
to a reduction of 80~90% or even no production at all [6,7]. However, obtaining accurate
information on wheat FHB in situ is challenging due to the complexity and diversity of the
Chinese farmland environment.

Currently, there exist several methods for detecting wheat FHB, including artificial
field detection [8], biological detection [9], machine vision detection [10,11], and spectral
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imaging detection [12–14]. However, artificial field detection and biological detection
methods are often time-consuming, laborious, and inefficient. Machine vision detection
techniques can only obtain superficial image information [15]. In contrast, spectral imaging
detection methods can provide not only superficial information but also internal informa-
tion, making it an effective tool for disease detection [16–19].

Several studies have been conducted to identify and diagnose FHB in wheat using
spectral data. Huang employed Fisher linear discriminant analysis (FLDA) and support
vector machine (SVM) to establish disease severity identification models based on spectral
data obtained from ex situ wheat ears under a black background [20]. PSO-SVM algorithm
was also used to fuse spectral, texture, and color features to build a diagnosis model for FHB
infection degree [21], achieving a validation set accuracy of 92%. Additionally, a PSO-SVM
FHB detection model was developed by combining wavelet features, achieving an overall
accuracy of 93.5% [22]. Zhang collected spectral data from infected wheat ears at non-
original locations and developed a DCNN FHB recognition model based on fusion features,
which achieved an R2 of 0.97 [23]. Moreover, a new FHB index (FDI) was established based
on spectral information ranging from 384 to 1050 nm, which showed a better ability to
distinguish the FHB infection degree than the other 16 existing spectral indices [24]. Zhang
also obtained hyperspectral microscopic image data of infected ex situ wheat ears, and
established an FHB classification index, achieving good results [25]. Jin used black cloth to
obtain pure hyperspectral images of wheat ears and constructed a 2D-CNN-BidGRU hybrid
neural network model to identify and distinguish healthy and infected wheat ears [26].
Furthermore, Jin collected hyperspectral images of wheat ears under the same conditions
and used a convolutional neural network to classify and model the pixel features of FHB,
achieving a rapid determination of the disease in hyperspectral images [27]. Bauriegel
collected spectral data under a black background and conducted early identification of
wheat FHB [28]. Liu Linyi analyzed the spectral characteristics SIPI and TVI with the
highest sensitivity to canopy FHB, using the least-square method to construct a canopy
wheat FHB monitoring model from ex situ spectral data obtained under a black background,
achieving better results [29]. Han also obtained spectral data from ex situ wheat ears under
a black background, achieving a recognition accuracy of 86.2% for the testing set of the
model constructed using the MSC + XLW + SVM algorithm [30]. It is worth noting that
ex situ spectral information can avoid interference from other factors and obtain better
modeling results than in situ spectral information, which is affected by the soil background,
crop varieties, canopy structure, and other factors that require further exploration and
improvement. Żelazny collected spectral data from in situ wheat and explored the effect of
the sequential support vector machine algorithm on FHB identification [31]. Whetton also
obtained in situ spectral data in the laboratory and the field, and preliminary FHB detection
was realized through the combination of image and spectrum analysis, supporting follow-
up research [32,33].

Limited studies have been conducted on the in situ spectral imaging detection of
FHB in wheat, with most research focusing on ex situ detection. This study aims to
address this gap by exploring the detection of FHB in the in situ wheat canopy using
hyperspectral imaging. In this process, the wheat ear growth posture varies significantly
due to the influence of ear weight. In the horizontal plane, the central axis of wheat ears
is seldom parallel to the plumb line, and most ears exhibit a certain inclination angle.
As such, obtaining hyperspectral images of wheat ears with consistent integrity poses a
challenge. Statistical analysis shows that the wheat ear inclination angle fluctuates within
a range of −15◦~15◦, but the spectral fluctuation within this range is minor, enabling the
true reflection of wheat FHB to some extent. By aligning the hyperspectral camera lens
plane parallel to the horizontal plane, only hyperspectral information from the visible
areas of wheat ears in the canopy can be obtained. Research indicates that the number of
wheat spikelets in the visible areas of each wheat ear accounts for approximately 50% of
the total spikelets. Given the irreversible nature of FHB disease, the early detection and
prompt implementation of corresponding measures are critical for minimizing crop losses.
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Therefore, obtaining spectral information from 50% of wheat ears in the visible areas of the
canopy can reflect and predict the degree and trend of wheat FHB infection to a certain
extent. This information can provide a valuable reference for the formulation of measures
aimed at promoting stable grain production and supply, encouraging green development
in agriculture, and facilitating the implementation of the precise poverty alleviation and
agricultural power strategies of the country.

2. Materials and Methods
2.1. Experimental Design

The experiment was conducted at the outdoor experimental area of the College of
Engineering, Nanjing Agricultural University, spanning from September 2021 to June 2022.
The test sample selected was Huaimai 33, the leading wheat variety in Jiangsu Province [34].
This wheat variety is susceptible to FHB, thus, making it conducive to the infection of
Fusarium graminearum Schwabe and the outbreak of FHB in the later stages. The test soil
was chosen to have a constant nutrient distribution ratio and sterilization. Hole sowing
in the soil trough was utilized as the cultivation method. Four groups of soil troughs
measuring 5000 × 400 mm were set up, with two groups in the control and experimental
groups. Each hole was planted with three to five seeds, and the hole spacing was set at
100 mm. After sowing, the soil was covered with a film to preserve moisture. Watering was
regularly performed to ensure the healthy and balanced growth of wheat. The Fusarium
graminearum Schwabe spore suspension was evenly sprayed on the wheat ear when the
wheat was flowering by more than 50%. The wheat ear was then moisturized for 48 h to
ensure the outbreak of FHB [35]. Spectral data were obtained and analyzed seven days
after the inoculation of Fusarium graminearum Schwabe from 10:00 to 14:00 under sunny,
windless, and cloudless weather conditions with slight fluctuations in light intensity [36].
The experimental procedures are illustrated in Figure 1.
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Figure 1. Schematic of experiment procedures.

2.2. Data Acquisition
2.2.1. Spectral Data Acquisition

The in situ hyperspectral imaging acquisition system comprised a SOC710-VP portable
hyperspectral imager (manufactured by Surface Optics Company in the San Diego, CA,
USA), a tripod, a power supply, a computer with hyperspectral data acquisition software
(Hyper Scanner), a test bench, soil troughs, and wheat samples, as shown in Figure 2. This
system can collect wavelengths ranging from 375 to 1050 nm, with a spectral resolution of
2.10 nm and 128 wavelengths. The system can capture hyperspectral images of the wheat
canopy visible areas, where the wheat ear inclination angle ranges from −15◦ to 15◦.
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Figure 2. In situ hyperspectral imaging acquisition system.

During the in situ hyperspectral imaging acquisition process, noise was inevitably
generated by the relevant components of the system and environmental fluctuations. To
minimize the effect of noise on the spectral data, the Spectral Radiance Analysis Toolkit
was utilized to correct the original data using a gray plate [37]. This enabled the acquisition
of corrected hyperspectral images of the wheat canopy visible areas, which were further
analyzed in subsequent steps.

RGB images are created by synthesizing red light (approximately 620~750 nm), green
light (approximately 495~570 nm), and blue light (approximately 450~495 nm), and do not
correspond to a specific wavelength range. In order to better visualize and differentiate
between healthy and infected wheat ear, as shown in Figure 3a, the present study employed
ENVI 5.6 software to synthesize RGB images using three wavelengths, namely, 648.68 nm,
549.33 nm, and 451.61 nm, from hyperspectral images. The Build 3D Cube tool was utilized
to visualize the overall three-dimensional hyperspectral imaging data, and the resulting 3D
maps effectively represented the healthy and infected wheat ears. The selection of region of
interest (ROI) was accomplished using the ROI Tool region of interest selection tool, which
extracted circular ROIs with a dimension of 5 × 5 pixels for healthy and infected wheat ears.
The average reflection spectrum of the pixels within the ROIs was calculated to generate
the reflection spectrum curve of the healthy and infected wheat ears [38]. Figure 3b depicts
the reflection spectrum curves obtained through the aforementioned process.
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Figure 3. Schematic of spectral data acquisition. (a) Region of interest division and spectral data
extraction; (b) average reflectance spectral curves of healthy and infected area of wheat ears.

The spectral data obtained in this study were subject to variability due to equipment
limitations, environmental factors, and manual selection of the region of interest. As a
result, spectral data with large differential wavelengths and significant noise at both ends
(375~400 nm and 1000~1050 nm) were eliminated manually to ensure the reliability of
the data. Ultimately, 451 sets of spectral data with 114 wavelengths within the range of
400~1000 nm were obtained as the sample data for subsequent processing and analysis.

2.2.2. Infection Degree Determination

During the collection of hyperspectral images of the wheat canopy visible areas, an
RGB camera was used to capture clear RGB images simultaneously. The obtained RGB
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images were utilized to determine the degree of FHB infection in wheat based on the ratio
of infected wheat spikelets to the total number of spikelets within the wheat canopy’s
visible areas [39]. Figure 4 illustrates the determination of the FHB infection degree through
the aforementioned process.

According to the Chinese national standard of reference [39], the calculation formula
of the infection degree of wheat FHB in the canopy’s visible areas is as follows:

DHBI =
NHBI
NALL

× 100%, (1)

where DHBI represents the infection degree (%) of wheat FHB in the canopy visible areas;
NHBI represents the number of infected wheat spikelets in the canopy visible areas; and
NALL represents the total number of infected wheat spikelets in the canopy visible areas.
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2.3. Data Processing and Modeling Evaluation Method
2.3.1. Preprocessing Spectral Data

The spectral data collected from in situ visible areas of wheat infected with FHB
contained a significant amount of noise and other external interferences due to equipment
noise and environmental factors. Thus, preprocessing the spectral data was necessary to
remove irrelevant information [40].

In this study, to investigate the effects of different preprocessing methods on spectral
data, twelve conventional spectral preprocessing methods were employed [41–43]. These
methods included first derivative (FD), second derivative (SD), detrend correction (DC),
continuous wavelet transform (CWT), multiplicative scatter correction (MSC), standard
normal variate (SNV), moving average smoothing (MAS), Savitzky–Golay convolution
smoothing (SGCS), mean centering (MC), standard scaling (SS), max–min scaling (MMS),
and vector normalization (VN). The 451 sets of spectral data obtained comprised 114 wave-
lengths with a range of 400~1000 nm.

2.3.2. Characteristic Wavelengths Extraction

Hyperspectral data contain a wealth of information; however, they also suffer from
problems of information redundancy and multicollinearity, which can reduce modeling
efficiency and accuracy while increasing computational complexity [44,45]. To address
these issues, various characteristic wavelength extraction methods were employed in
this study, including the successive projections algorithm (SPA), competitive adaptive
reweighted sampling (CARS), genetic algorithm (GA), and uninformative variables elimi-
nation (UVE) [46,47]. These methods were used to reduce the dimensionality of original
and preprocessed spectral data, thereby simplifying the data and improving the efficiency
of modeling calculations.
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The successive projections algorithm (SPA) is a forward characteristic variable selection
method [48,49]. This algorithm projects the wavelength onto other wavelengths, and then
compares the projection vector size. The wavelength with the most significant projection
vector is selected as the wavelength to be used. Finally, based on the correction model,
the final characteristic wavelength is selected. Using SPA, the wavelength combination
with the least redundant information and the least collinearity can filter out redundant
and invalid information, reduce the collinearity between variables, and improve modeling
efficiency [50].

Competitive adaptive reweighted sampling (CARS) is a method for selecting char-
acteristic variables that combines Monte Carlo sampling and PLS model regression co-
efficients [51,52]. It employs the exponentially decreasing function (EDF) and adaptive
reweighted sampling (ARS) to select individuals with larger absolute weights of regres-
sion coefficients in the PLSR model as a subset of wavelength variables each time. By
conducting multiple calculations, multiple wavelength variable subsets are obtained. The
characteristic wavelength is selected from the subset with the smallest root-mean-square
error of cross-validation (RMSECV) of the PLSR model.

The genetic algorithm (GA) is a metaheuristic search method that mimics the principles
of natural evolution and genetics [53–55]. Its core concept of “survival of the fittest”
emulates the biological phenomenon of natural selection. The GA algorithm is implemented
by iteratively optimizing the population’s individual structure through selection, crossover,
and mutation processes based on genetic mechanisms. In this process, unfavorable variables
are eliminated, and favorable ones are preserved. An appropriate fitness function evaluates
the individual’s advantages and disadvantages. Finally, the characteristic wavelength is
extracted through the GA algorithm.

Uninformative variables elimination (UVE) is a wavelength-selection method that uti-
lizes the regression coefficient of the partial least-squares regression (PLSR) model [56–58].
The UVE method involves adding random noise variables to the sample variables and elim-
inating the uninformative wavelength variables through leave-one-out cross-validation.
This approach retains the variables that are useful for model prediction, thereby reducing
the number of variables and the model’s complexity.

2.3.3. Regression Model Establishment and Evaluation

Spectral data preprocessing and feature wavelength extraction are essential steps in spec-
tral analysis, as they significantly impact the subsequent analysis and modeling results. Data
preprocessing eliminates interference, corrects data, and enhances data accuracy and reliability,
while feature-wavelength extraction selects representative wavelengths, reduces data dimen-
sionality, enhances interpretability, and reduces noise interference. Spectral data modeling is
critical in evaluating the effectiveness of spectral data preprocessing and feature-wavelength
extraction. The optimal modeling combination can be obtained by assessing the modeling
and prediction sets’ R2 and RMSE. This study employed the PLSR method to model and
analyze the original spectral data, preprocessed spectral data, original spectral characteristic
wavelengths extracted data, and preprocessed spectral characteristic wavelengths extracted
data, constructing sixty-five model combinations. Through comparative analysis, the optimal
model for quantitative analysis of the FHB infection degree in the in situ wheat canopy visible
areas was determined based on PLSR modeling.

The partial least-squares regression (PLSR) algorithm is a prominent multivariate
statistical data analysis technique commonly employed in spectral data analysis [59–61].
The modeling procedure blends the advantages of principal component analysis, canonical
correlation analysis, and linear regression analysis. It facilitates simultaneous regression
modeling, data structure simplification, and correlation analysis between two sets of
variables. PLSR efficiently extracts more comprehensive and profound data information,
which leads to the derivation of a more appropriate regression model.

In this study, the prediction performance and the optimal prediction model of prepro-
cessing methods, the characteristic wavelength extraction method, and the PLSR method
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on the infection degree of FHB in the in situ wheat canopy visible areas were investigated.
The original spectral data, preprocessed spectral data, original spectral characteristic wave-
lengths extracted data, and preprocessed spectral characteristic wavelengths extracted data
were randomly divided into modeling (315 samples) and testing (136 samples) sets in a
7:3 ratio. A PLSR model was used to establish a spectral quantitative prediction model for
the infection degree of FHB in the in situ wheat canopy visible areas. The best prediction
model was determined based on the minimum root-mean-square error (RMSE) and the
maximum coefficient of determination (R2) of the modeling and testing sets. The formulas
for calculating RMSE and R2 are as follows:

R2 = 1 −

N
∑

i=1
(yi − ŷi)

2√
N
∑

i=1
(yi − yi)

2

, (2)

RMSE =

√√√√ 1
N − 1

N

∑
i=1

(yi − ŷi)
2, (3)

where N represents the sample size; yi represents the actual value of the i sample; ŷi
represents the predicted value of sample i; ŷi represents the average of the actual values of
all samples; R2 represents the coefficient of determination (the greater R2 is, the higher the
correlation is); and RMSE is the root-mean-square error (the smaller the RMSE, the better
the prediction effect of the model).

3. Result and Discussion
3.1. Original Spectral Data

A total of 451 sets of original spectra (Figure 5) and average spectra (Figure 6) were
acquired from healthy and infected wheat ears (with varying levels of infection: mild,
moderate, and severe) in visible areas of the canopy, covering a wavelength range of
400~1000 nm. The spectral curves of healthy and infected wheat ears exhibit different
characteristics due to variations in the contents of chlorophyll, carotene, and water [62].
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Figure 6. Average spectral curves of healthy and infected wheat ears.

Within the range of 450~700 nm, the spectral reflectance of healthy wheat ears exhibited
a reduction when compared to infected wheat ears. Moreover, the reflectance displayed
green peaks and red valleys. As the infection degree increased, the green peaks and red
valleys gradually diminished. The spectral reflectance exhibited a rapid increase within
the range of 700~750 nm, which was attributed to the high reflection platform’s transition
band. The platform was formed by the strong absorption of the chlorophyll red band
and multiple scattering of the near-infrared band, and it is commonly referred to as the
“red edge” [63]. The position of the red edge varies depending on the biomass, pigment
content, and growth of the healthy wheat ears. In particular, when these ears have a high
biomass, a high pigment content, and vigorous growth, the red edge moves to the longwave
direction, which is also known as a “redshift.” Conversely, the red edge of the infected
wheat ears shifted towards the shortwave direction, commonly referred to as a “blueshift.”
Within the wavelength range of 750~870 nm, the spectral reflectance of healthy wheat ears
was observed to be higher compared to infected wheat ears, and the spectral reflectance
exhibited a decreasing trend with an increase in the degree of infection.

Clear differences could be observed between the spectral curves of healthy and infected
wheat ears, characterized by evident peak–valley and high–low variations [62]. Notably, the
spectral curve of severely infected wheat ears exhibited considerable changes with different
degrees of infection. Conversely, the spectral curve trends of mildly and moderately infected
wheat ears were comparable, potentially affecting the modeling’s prediction accuracy.

3.2. Preprocessed Spectral Data

The preprocessing results are shown in Figure 7. Baseline correction techniques are
essential in spectral analysis to eliminate unwanted variations in the spectra caused by
systematic or instrumental factors. Among the widely used baseline correction methods are
derivative processing, detrending correction, and continuous wavelet transform. The first
derivative (FD) (Figure 7a) is a method that eliminates baseline shifts in the spectrum, while
the second derivative (SD) (Figure 7b) eliminates baseline drift. Derivative processing
eliminates the interference of other backgrounds and improves the spectral resolution
and sensitivity, but introduces noise, which reduces the signal-to-noise ratio. The detrend
correction (DC) (Figure 7c) is another method that eliminates baseline drift and improves
the spectral resolution. On the other hand, continuous wavelet transform (CWT) (Figure 7d)
amplifies the local spectral information and achieves smooth noise filtering, background
removal, data compression, and multi-scale overlapping-signal-refinement analysis.

Scattering correction is a crucial preprocessing step in spectroscopy to improve the
accuracy of measurements by reducing the effects of scattering. Multiplicative scatter
correction (MSC) (Figure 7e) and standard normal variate (SNV) (Figure 7f) are commonly
used techniques for this purpose. MSC scales the spectrum by dividing it by a reference
spectrum, while SNV normalizes the data by subtracting the mean and dividing by the
standard deviation. Both techniques weaken the influence of scattering on the original
spectrum, enhancing the spectral features of interest.
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smoothing, MAS; (h) Savitzky–Golay convolution smoothing, SGCS; (i) mean centering, MC; (j) 
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Figure 7. Preprocessed spectral curves of healthy and diseased wheat ears. (a) First derivative, FD;
(b) second derivative, SD; (c) detrend correction, DC; (d) continuous wavelet transform, CWT; (e) mul-
tiplicative scatter correction, MSC; (f) standard normal variate, SNV; (g) moving average smoothing,
MAS; (h) Savitzky–Golay convolution smoothing, SGCS; (i) mean centering, MC; (j) standard scaling,
SS; (k) max–min scaling, MMS; (l) vector normalization, VN.

Smoothing techniques, such as moving average smoothing (MAS) (Figure 7g) and
Savitzky–Golay convolution smoothing (SGCS) (Figure 7h), are commonly used in spectral
data analysis. MAS involves calculating the average value of a specified number of adjacent
data points to smooth out fluctuations in the signal. SGCS uses a convolution kernel to fit a
polynomial curve to the spectral data and smooths the curve using weighted averaging.
Both techniques improve the signal-to-noise ratio and reduce the influence of random noise
in the original spectrum. These techniques are important preprocessing steps for spectral
data analysis, which can enhance the accuracy and reliability of spectral measurements.
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Scaling is a critical preprocessing step in data analysis to eliminate the adverse effects
of scale differences and improve model robustness and predictive ability. Four commonly
used scaling methods are mean centering (MC) (Figure 7i), standard scaling (SS) (Figure 7j),
max–min scaling (MMS) (Figure 7k), and vector normalization (VN) (Figure 7l). These
techniques adjust the scale of the data to ensure that each feature contributes equally to the
analysis, improving the accuracy and interpretability of the results. The choice of scaling
method depends on the specific characteristics of the data and the analysis goals.

3.3. Characteristic Wavelength Extraction Data

The extraction of informative features from high-dimensional spectral data is a crucial
step in data analysis. Characteristic extraction algorithms, such as SPA, CARS, GA, and
UVE, can effectively reduce the dimensionality of the data while preserving essential infor-
mation. This paper employs these methods to extract characteristic wavelengths from the
original and preprocessed spectral data. It is important to note that different data prepro-
cessing and feature extraction methods may yield distinct characteristic wavelengths that
require further modeling and evaluation. Therefore, the selection of an appropriate method
should be based on the specific characteristics of the data and the research objectives.

3.3.1. SPA Characteristic Wavelength Extraction

The results of characteristic wavelength extraction using the SPA method are presented
in Table 1. The number of extracted characteristic wavelengths was primarily distributed
between 24 and 29. It was observed that the SPA method extracted the same 29 characteristic
wavelengths from both the original spectral data and the data preprocessed with MSC,
SNV, MC, and VN, indicating that these four preprocessing methods did not significantly
affect the characteristic wavelengths extracted by the SPA method. Furthermore, the DC,
CWT, and MMS preprocessing methods extracted 29, 24, and 26 characteristic wavelengths,
respectively. Many of these wavelengths were shared with those extracted from the original
spectral data, suggesting that these preprocessing methods had little impact on the SPA
method’s characteristic wavelength extraction. In contrast, the SS preprocessing method
resulted in the extraction of only 14 characteristic wavelengths, which may provide some
advantages over other preprocessing methods. Finally, it was observed that the FD, SD,
MAS, and SGCS preprocessing methods only extracted two characteristic wavelengths,
which may lead to the loss of valuable information.

Table 1. Characteristic wavelengths extracted using SPA under different data processing methods.

Data Processing
Method

Number of
Wavelengths Corresponding Characteristic Wavelength/(nm)

SPA 29
410.95, 431.24, 436.33, 472.04, 549.33, 632.89, 675.10, 680.40, 701.63, 717.61, 722.94, 728.28,
738.97, 744.32, 776.52, 787.29, 798.08, 814.30, 819.71, 825.13, 835.98, 841.42, 846.85, 857.74,

863.19, 885.04, 895.99, 901.48, 945.50

FD + SPA 2 669.81, 934.47

SD + SPA 2 675.10, 951.02

DC + SPA 29
431.24, 436.33, 472.04, 549.33, 632.89, 675.10, 680.40, 701.63, 717.61, 722.94, 728.28, 738.97,
744.32, 776.52, 787.29, 798.08, 803.48, 814.30, 819.71, 825.13, 835.98, 841.42, 846.85, 857.74,

863.19, 885.04, 895.99, 901.48, 945.50

CWT + SPA 24 410.95, 426.16, 431.24, 461.82, 559.71, 648.68, 659.24, 669.81, 701.63, 722.94, 728.28, 760.40,
814.30, 819.71, 857.74, 863.19, 868.65, 885.04, 895.99, 901.48, 912.45, 945.50, 967.62, 984.26

MSC + SPA 29
410.95, 431.24, 436.33, 472.04, 549.33, 632.89, 675.10, 680.40, 701.63, 717.61, 722.94, 728.28,
738.97, 744.32, 776.52, 787.29, 798.08, 814.30, 819.71, 825.13, 835.98, 841.42, 846.85, 857.74,

863.19, 885.04, 895.99, 901.48, 945.50
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Table 1. Cont.

Data Processing
Method

Number of
Wavelengths Corresponding Characteristic Wavelength/(nm)

SNV + SPA 29
410.95, 431.24, 436.33, 472.04, 549.33, 632.89, 675.10, 680.40, 701.63, 717.61, 722.94, 728.28,
738.97, 744.32, 776.52, 787.29, 798.08, 814.30, 819.71, 825.13, 835.98, 841.42, 846.85, 857.74,

863.19, 885.04, 895.99, 901.48, 945.50

MAS + SPA 2 664.52, 760.40

SGCS + SPA 2 669.81, 760.40

MC + SPA 29
410.95, 431.24, 436.33, 472.04, 549.33, 632.89, 675.10, 680.40, 701.63, 717.61, 722.94, 728.28,
738.97, 744.32, 776.52, 787.29, 798.08, 814.30, 819.71, 825.13, 835.98, 841.42, 846.85, 857.74,

863.19, 885.04, 895.99, 901.48, 945.50

SS + SPA 14 436.33, 502.84, 538.96, 685.70, 755.03, 776.52, 787.29, 819.71, 825.13, 863.19, 890.52, 945.50,
967.62, 989.81

MMS + SPA 26
416.01, 421.09, 477.16, 549.33, 675.10, 712.28, 722.94, 733.62, 744.32, 760.40, 776.52, 781.90,
787.29, 814.30, 819.71, 825.13, 841.42, 846.85, 857.74, 863.19, 885.04, 895.99, 928.96, 945.50,

967.62, 989.81

VN + SPA 29
410.95, 431.24, 436.33, 472.04, 549.33, 632.89, 675.10, 680.40, 701.63, 717.61, 722.94, 728.28,
738.97, 744.32, 776.52, 787.29, 798.08, 814.30, 819.71, 825.13, 835.98, 841.42, 846.85, 857.74,

863.19, 885.04, 895.99, 901.48, 945.50

3.3.2. CARS Characteristic Wavelength Extraction

Table 2 shows that the CARS algorithm extracted a range of 32–42 characteristic
wavelengths. Notably, CARS extracted several identical characteristic wavelengths from the
original and preprocessed spectral data. Nevertheless, there were some disparities between
the two data sets. The SGCS preprocessed data yielded the minimum of 11 characteristic
wavelengths, while MSC preprocessed data yielded the highest number of 42 characteristic
wavelengths. The efficacy of CARS in extracting characteristic wavelengths under different
data preprocessing methods requires further modeling and analysis.

Table 2. Characteristic wavelengths extracted using CARS under different data processing methods.

Data Processing
Method

Number of
Wavelengths Corresponding Characteristic Wavelength/(nm)

CARS 34
416.01, 421.09, 431.24, 436.33, 441.41, 446.51, 466.93, 472.04, 482.29, 497.69, 523.45, 544.14,
559.71, 575.32, 580.53, 585.74, 596.19, 601.42, 606.65, 638.15, 675.10, 680.40, 701.63, 717.61,

722.94, 738.97, 776.52, 781.90, 787.29, 819.71, 825.13, 857.74, 939.98, 945.50

FD + CARS 19 410.95, 421.09, 472.04, 502.84, 513.14, 523.45, 564.91, 596.19, 601.42, 632.89, 659.24, 669.81,
696.32, 701.63, 738.97, 803.48, 819.71, 825.13, 841.42

SD + CARS 12 669.81, 738.97, 472.04, 596.19, 601.42, 653.96, 659.24, 669.81, 792.68, 803.48, 819.71, 841.42

DC + CARS 32
410.95, 421.09, 436.33, 441.41, 446.51, 466.93, 472.04, 482.29, 492.55, 497.69, 502.84, 523.45,
549.33, 559.71, 585.74, 601.42, 606.65, 643.41, 675.10, 680.40, 701.63, 717.61, 722.94, 728.28,

781.90, 787.29, 819.71, 841.42, 857.74, 874.11, 939.98, 945.50

CWT + CARS 28
410.95, 421.09, 446.51, 466.93, 472.04, 482.29, 492.55, 497.69, 523.45, 533.79, 564.91, 585.74,
601.42, 606.65, 669.81, 675.10, 701.63, 712.28, 722.94, 749.67, 755.03, 760.40, 787.29, 819.71,

825.13, 857.74, 939.98, 945.50

MSC + CARS 42

405.89, 421.09, 466.93, 472.04, 482.29, 492.55, 497.69, 523.45, 544.14, 559.71, 580.53, 596.19,
601.42, 606.65, 622.38, 627.63, 632.89, 643.41, 664.52, 669.81, 675.10, 680.40, 685.70, 691.01,
696.32, 701.63, 717.61, 722.94, 738.97, 765.77, 771.14, 776.52, 781.90, 787.29, 814.30, 819.71,

846.85, 857.74, 863.19, 874.11, 934.47, 945.50
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Table 2. Cont.

Data Processing
Method

Number of
Wavelengths Corresponding Characteristic Wavelength/(nm)

SNV + CARS 38

416.01, 421.09, 436.33, 446.51, 466.93, 472.04, 482.29, 492.55, 497.69, 523.45, 533.79, 549.33,
559.71, 564.91, 580.53, 585.74, 590.96, 601.42, 606.65, 627.63, 638.15, 643.41, 664.52, 669.81,
675.10, 680.40, 701.63, 717.61, 722.94, 738.97, 771.14, 776.52, 781.90, 787.29, 819.71, 857.74,

939.98, 945.50

MAS + CARS 15 482.29, 507.98, 559.71, 596.19, 632.89, 691.01, 696.32, 701.63, 776.52, 808.89, 819.71, 852.30,
868.65, 874.11, 895.99

SGCS + CARS 11 441.41, 451.61, 461.82, 492.55, 497.69, 554.52, 596.19, 622.38, 798.08, 803.48, 906.96

MC + CARS 26
410.95, 421.09, 436.33, 446.51, 472.04, 482.29, 497.69, 523.45, 549.33, 580.53, 601.42, 606.65,
638.15, 675.10, 680.40, 701.63, 717.61, 722.94, 765.77, 776.52, 781.90, 787.29, 819.71, 825.13,

830.55, 857.74

SS + CARS 34
410.95, 421.09, 436.33, 446.51, 461.82, 466.93, 472.04, 482.29, 497.69, 518.29, 549.33, 559.71,
575.32, 601.42, 606.65, 611.89, 627.63, 638.15, 643.41, 664.52, 675.10, 701.63, 717.61, 722.94,

728.28, 781.90, 787.29, 808.89, 819.71, 857.74, 895.99, 939.98, 945.50, 951.02

MMS + CARS 35
410.95, 421.09, 436.33, 461.82, 466.93, 472.04, 482.29, 497.69, 518.29, 523.45, 554.52, 559.71,
601.42, 606.65, 617.13, 669.81, 675.10, 701.63, 706.95, 717.61, 722.94, 728.28, 760.40, 765.77,

776.52, 781.90, 808.89, 819.71, 825.13, 857.74, 885.04, 895.99, 939.98, 945.50, 956.55

VN + CARS 36
405.89, 421.09, 436.33, 441.41, 446.51, 466.93, 472.04, 482.29, 497.69, 523.45, 544.14, 549.33,
559.71, 580.53, 585.74, 601.42, 606.65, 627.63, 638.15, 648.68, 664.52, 669.81, 675.10, 680.40,
701.63, 717.61, 722.94, 776.52, 781.90, 787.29, 808.89, 819.71, 825.13, 857.74, 939.98, 945.50

3.3.3. GA Characteristic Wavelength Extraction

Table 3 presents the distribution of characteristic wavelengths extracted using the
GA algorithm, which was mainly concentrated between 36 and 42 wavelengths. The
characteristic wavelengths extracted using GA from the original and pre-processed spectral
data were comparable to those extracted using CARS. Although some identical wavelengths
were extracted using GA under different data preprocessing methods, there were still some
differences in the overall comparison. The SGCS preprocessed data exhibited a minimum
of 12 characteristic wavelengths, while MSC and VN preprocessed data yielded the highest
number of 42 characteristic wavelengths. Further modeling and analysis are necessary to
assess the superiority of GA in extracting characteristic wavelengths under different data
processing methods.

Table 3. Characteristic wavelengths extracted using GA under different data processing methods.

Data Processing
Method

Number of
Wavelengths Corresponding Characteristic Wavelength/(nm)

GA 36
400.83, 421.09, 431.24, 436.33, 472.04, 523.45, 559.71, 580.53, 601.42, 617.13, 622.38, 627.63,
643.41, 648.68, 653.96, 675.10, 701.63, 728.28, 755.03, 760.40, 771.14, 776.52, 787.29, 814.30,
819.71, 825.13, 857.74, 890.52, 939.98, 945.50, 951.02, 956.55, 973.16, 978.71, 984.26, 995.37

FD + GA 22 410.95, 421.09, 436.33, 441.41, 446.51, 461.82, 513.14, 523.45, 559.71, 564.91, 570.11, 653.96,
659.24, 669.81, 760.40, 765.77, 819.71, 945.50, 956.55, 967.62, 984.26, 995.37

SD + GA 31
405.89, 421.09, 477.16, 492.55, 513.14, 523.45, 533.79, 544.14, 549.33, 559.71, 564.91, 585.74,
590.96, 596.19, 611.89, 653.96, 659.24, 738.97, 744.32, 771.14, 798.08, 819.71, 846.85, 852.30,

879.57, 917.95, 951.02, 956.55, 978.71, 984.26, 995.37

DC + GA 40

400.83, 421.09, 431.24, 472.04, 523.45, 544.14, 559.71, 580.53, 601.42, 606.65, 611.89, 617.13,
622.38, 627.63, 653.96, 664.52, 669.81, 675.10, 701.63, 712.28, 717.61, 722.94, 733.62, 755.03,
760.40, 776.52, 787.29, 814.30, 819.71, 825.13, 857.74, 890.52, 928.96, 939.98, 945.50, 956.55,

973.16, 978.71, 984.26, 995.37
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Table 3. Cont.

Data Processing
Method

Number of
Wavelengths Corresponding Characteristic Wavelength/(nm)

CWT + GA 38

410.95, 421.09, 426.16, 431.24, 441.41, 472.04, 482.29, 601.42, 617.13, 622.38, 653.96, 659.24,
664.52, 669.81, 675.10, 685.70, 701.63, 717.61, 722.94, 728.28, 744.32, 749.67, 760.40, 776.52,
787.29, 814.30, 819.71, 825.13, 857.74, 890.52, 901.48, 939.98, 945.50, 956.55, 973.16, 978.71,

984.26, 995.37

MSC + GA 42

405.89, 421.09, 431.24, 472.04, 523.45, 559.71, 580.53, 601.42, 606.65, 617.13, 622.38, 632.89,
653.96, 659.24, 664.52, 669.81, 675.10, 680.40, 685.70, 701.63, 712.28, 717.61, 722.94, 738.97,
755.03, 760.40, 771.14, 776.52, 787.29, 808.89, 814.30, 819.71, 825.13, 857.74, 890.52, 939.98,

945.50, 956.55, 973.16, 978.71, 984.26, 995.37

SNV + GA 39

405.89, 421.09, 431.24, 436.33, 472.04, 482.29, 523.45, 559.71, 580.53, 601.42, 617.13, 622.38,
653.96, 669.81, 675.10, 680.40, 701.63, 712.28, 717.61, 722.94, 738.97, 744.32, 755.03, 760.40,
776.52, 787.29, 798.08, 814.30, 819.71, 825.13, 846.85, 857.74, 939.98, 945.50, 956.55, 973.16,

978.71, 984.26, 995.37

MAS + GA 13 400.83, 431.24, 482.29, 533.79, 564.91, 575.32, 643.41, 733.62, 765.77, 776.52, 945.50, 951.02,
1000.94

SGCS + GA 12 400.83, 426.16, 451.61, 482.29, 680.40, 803.48, 825.13, 874.11, 885.04, 895.99, 906.96, 951.02

MC + GA 40

400.83, 421.09, 431.24, 472.04, 523.45, 538.96, 559.71, 564.91, 580.53, 601.42, 617.13, 622.38,
653.96, 664.52, 669.81, 675.10, 680.40, 691.01, 701.63, 717.61, 722.94, 738.97, 755.03, 760.40,
771.14, 776.52, 787.29, 808.89, 814.30, 819.71, 825.13, 857.74, 890.52, 939.98, 945.50, 956.55,

973.16, 978.71, 984.26, 995.37

SS + GA 37

436.33, 466.93, 472.04, 482.29, 523.45, 544.14, 549.33, 559.71, 575.32, 638.15, 643.41, 675.10,
685.70, 701.63, 717.61, 722.94, 728.28, 738.97, 744.32, 765.77, 771.14, 776.52, 803.48, 808.89,
819.71, 835.98, 846.85, 852.30, 863.19, 874.11, 923.45, 945.50, 956.55, 962.08, 978.71, 984.26,

989.81

MMS + GA 36
405.89, 421.09, 472.04, 482.29, 513.14, 518.29, 559.71, 580.53, 590.96, 601.42, 606.65, 617.13,
632.89, 638.15, 643.41, 675.10, 717.61, 722.94, 728.28, 755.03, 760.40, 771.14, 776.52, 798.08,
808.89, 814.30, 819.71, 825.13, 857.74, 890.52, 939.98, 945.50, 956.55, 973.16, 978.71, 984.26

VN + GA 42

400.83, 421.09, 431.24, 472.04, 523.45, 538.96, 549.33, 559.71, 564.91, 580.53, 601.42, 617.13,
622.38, 627.63, 653.96, 669.81, 675.10, 680.40, 691.01, 701.63, 717.61, 722.94, 728.28, 738.97,
755.03, 760.40, 771.14, 776.52, 787.29, 814.30, 819.71, 825.13, 852.30, 857.74, 890.52, 939.98,

945.50, 956.55, 973.16, 978.71, 984.26, 995.37

3.3.4. UVE Characteristic Wavelength Extraction

Table 4 shows that the UVE algorithm extracted a large number of characteristic wave-
lengths, which mainly ranged from 55 to 74 wavelengths. Interestingly, the original spectral
data and SNV preprocessed spectral data yielded the same 69 characteristic wavelengths.
In contrast, FD, SD, DC, CWT, MSC, MC, SS, MMS, and VN preprocessing spectral data
extracted 56, 37, 56, 44, 55, 69, 65, 74, and 69 characteristic wavelengths, respectively. Fur-
thermore, most of these preprocessing methods had a negligible effect on the characteristic
wavelengths extracted using UVE. Specifically, they extracted more identical wavelengths
with the characteristic wavelengths extracted from the original spectral data. However,
only 17 and 7 characteristic wavelengths were extracted from MAS and SGCS preprocessed
spectral data, respectively. These findings imply that these two preprocessing methods
may lead to the loss of significant information.
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Table 4. Characteristic wavelengths extracted using UVE under different data processing methods.

Data Processing
Method

Number of
Wavelengths Corresponding Characteristic Wavelength/(nm)

UVE 69

405.89, 410.95, 416.01, 421.09, 426.16, 431.24, 441.41, 451.61, 456.71, 461.82, 466.93, 472.04,
477.16, 482.29, 487.42, 492.55, 497.69, 502.84, 507.98, 513.14, 528.62, 533.79, 538.96, 544.14,
549.33, 554.52, 559.71, 564.91, 570.11, 575.32, 580.53, 585.74, 590.96, 596.19, 601.42, 606.65,
611.89, 643.41, 648.68, 653.96, 659.24, 664.52, 669.81, 675.10, 680.40, 722.94, 733.62, 738.97,
744.32, 749.67, 760.40, 765.77, 771.14, 776.52, 781.90, 798.08, 808.89, 814.30, 819.71, 825.13,

841.42, 846.85, 857.74, 863.19, 934.47, 945.50, 956.55, 984.26, 995.37

FD + UVE 56

421.09, 426.16, 441.41, 451.61, 456.71, 461.82, 466.93, 472.04, 477.16, 482.29, 487.42, 492.55,
497.69, 502.84, 507.98, 513.14, 528.62, 533.79, 538.96, 544.14, 549.33, 554.52, 559.71, 564.91,
570.11, 575.32, 580.53, 585.74, 590.96, 601.42, 611.89, 617.13, 632.89, 643.41, 648.68, 653.96,
669.81, 733.62, 738.97, 744.32, 749.67, 760.40, 771.14, 798.08, 803.48, 808.89, 819.71, 825.13,

846.85, 863.19, 885.04, 945.50, 951.02, 956.55, 984.26, 995.37

SD + UVE 37

410.95, 421.09, 461.82, 472.04, 477.16, 482.29, 487.42, 492.55, 497.69, 502.84, 507.98, 513.14,
533.79, 538.96, 544.14, 549.33, 554.52, 559.71, 564.91, 570.11, 575.32, 601.42, 611.89, 738.97,
744.32, 749.67, 760.40, 771.14, 803.48, 808.89, 819.71, 825.13, 846.85, 951.02, 956.55, 978.71,

995.37

DC + UVE 56

410.95, 416.01, 421.09, 426.16, 431.24, 451.61, 456.71, 461.82, 466.93, 472.04, 477.16, 482.29,
487.42, 492.55, 497.69, 502.84, 507.98, 513.14, 533.79, 538.96, 544.14, 549.33, 554.52, 559.71,
564.91, 570.11, 575.32, 580.53, 585.74, 590.96, 601.42, 611.89, 648.68, 653.96, 659.24, 664.52,
669.81, 675.10, 680.40, 733.62, 738.97, 744.32, 749.67, 760.40, 765.77, 771.14, 776.52, 814.30,

819.71, 825.13, 846.85, 857.74, 863.19, 934.47, 945.50, 956.55

CWT + UVE 44

410.95, 416.01, 421.09, 426.16, 451.61, 456.71, 461.82, 466.93, 472.04, 477.16, 482.29, 487.42,
492.55, 497.69, 502.84, 507.98, 513.14, 533.79, 538.96, 544.14, 549.33, 554.52, 559.71, 564.91,
570.11, 575.32, 580.53, 585.74, 590.96, 601.42, 653.96, 659.24, 664.52, 669.81, 675.10, 738.97,

749.67, 760.40, 776.52, 819.71, 825.13, 857.74, 945.50, 956.55

MSC + UVE 55

410.95, 416.01, 421.09, 426.16, 431.24, 451.61, 456.71, 461.82, 466.93, 472.04, 477.16, 482.29,
487.42, 492.55, 497.69, 502.84, 507.98, 513.14, 533.79, 538.96, 544.14, 549.33, 554.52, 559.71,
564.91, 570.11, 575.32, 580.53, 585.74, 590.96, 601.42, 611.89, 653.96, 659.24, 664.52, 669.81,
675.10, 680.40, 733.62, 738.97, 744.32, 749.67, 760.40, 765.77, 771.14, 776.52, 814.30, 819.71,

825.13, 846.85, 857.74, 863.19, 934.47, 945.50, 956.55

SNV + UVE 69

405.89, 410.95, 416.01, 421.09, 426.16, 431.24, 441.41, 451.61, 456.71, 461.82, 466.93, 472.04,
477.16, 482.29, 487.42, 492.55, 497.69, 502.84, 507.98, 513.14, 528.62, 533.79, 538.96, 544.14,
549.33, 554.52, 559.71, 564.91, 570.11, 575.32, 580.53, 585.74, 590.96, 596.19, 601.42, 606.65,
611.89, 643.41, 648.68, 653.96, 659.24, 664.52, 669.81, 675.10, 680.40, 722.94, 733.62, 738.97,
744.32, 749.67, 760.40, 765.77, 771.14, 776.52, 781.90, 798.08, 808.89, 814.30, 819.71, 825.13,

841.42, 846.85, 857.74, 863.19, 934.47, 945.50, 956.55, 984.26, 995.37

MAS + UVE 17 482.29, 487.42, 492.55, 549.33, 554.52, 559.71, 564.91, 570.11, 575.32, 580.53, 585.74, 601.42,
606.65, 765.77, 776.52, 945.50, 984.26

SGCS + UVE 7 400.83, 461.82, 477.16, 482.29, 487.42, 507.98, 895.99

MC + UVE 69

405.89, 410.95, 416.01, 421.09, 426.16, 431.24, 441.41, 451.61, 456.71, 461.82, 466.93, 472.04,
477.16, 482.29, 487.42, 492.55, 497.69, 502.84, 507.98, 513.14, 528.62, 533.79, 538.96, 544.14,
549.33, 554.52, 559.71, 564.91, 570.11, 575.32, 580.53, 585.74, 590.96, 596.19, 601.42, 606.65,
611.89, 643.41, 648.68, 653.96, 659.24, 664.52, 669.81, 675.10, 680.40, 722.94, 733.62, 738.97,
744.32, 749.67, 760.40, 765.77, 771.14, 776.52, 781.90, 798.08, 808.89, 814.30, 819.71, 825.13,

841.42, 846.85, 857.74, 863.19, 934.47, 945.50, 956.55, 984.26, 995.37

SS + UVE 65

400.83, 405.89, 410.95, 416.01, 421.09, 426.16, 431.24, 436.33, 441.41, 446.51, 451.61, 456.71,
461.82, 466.93, 472.04, 482.29, 487.42, 492.55, 497.69, 502.84, 507.98, 533.79, 538.96, 544.14,
549.33, 554.52, 559.71, 564.91, 570.11, 606.65, 611.89, 617.13, 622.38, 627.63, 632.89, 638.15,
643.41, 648.68, 653.96, 659.24, 664.52, 669.81, 675.10, 680.40, 685.70, 722.94, 733.62, 738.97,
749.67, 755.03, 760.40, 771.14, 776.52, 787.29, 808.89, 819.71, 825.13, 846.85, 857.74, 863.19,

895.99, 934.47, 945.50, 956.55, 984.26
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Table 4. Cont.

Data Processing
Method

Number of
Wavelengths Corresponding Characteristic Wavelength/(nm)

MMS + UVE 74

400.83, 410.95, 416.01, 421.09, 426.16, 441.41, 446.51, 451.61, 456.71, 461.82, 466.93, 472.04,
477.16, 482.29, 487.42, 492.55, 497.69, 502.84, 507.98, 513.14, 518.29, 528.62, 533.79, 538.96,
544.14, 549.33, 554.52, 559.71, 564.91, 570.11, 575.32, 580.53, 585.74, 617.13, 622.38, 627.63,
632.89, 638.15, 643.41, 648.68, 653.96, 659.24, 664.52, 669.81, 675.10, 680.40, 685.70, 701.63,
706.95, 712.28, 717.61, 728.28, 733.62, 738.97, 744.32, 749.67, 765.77, 771.14, 776.52, 798.08,
814.30, 819.71, 825.13, 830.55, 846.85, 857.74, 863.19, 890.52, 923.45, 934.47, 945.50, 956.55,

984.26, 995.37

VN + UVE 69

405.89, 410.95, 416.01, 421.09, 426.16, 431.24, 441.41, 451.61, 456.71, 461.82, 466.93, 472.04,
477.16, 482.29, 487.42, 492.55, 497.69, 502.84, 507.98, 513.14, 528.62, 533.79, 538.96, 544.14,
549.33, 554.52, 559.71, 564.91, 570.11, 575.32, 580.53, 585.74, 590.96, 596.19, 601.42, 606.65,
611.89, 643.41, 648.68, 653.96, 659.24, 664.52, 669.81, 675.10, 680.40, 722.94, 733.62, 738.97,
744.32, 749.67, 760.40, 765.77, 771.14, 776.52, 781.90, 798.08, 808.89, 814.30, 819.71, 825.13,

841.42, 846.85, 857.74, 863.19, 934.47, 945.50, 956.55, 984.26, 995.37

3.4. Results and Analysis of Regression Modeling
3.4.1. PLSR Modeling of Original Spectral Data

In this study, PLSR modeling was conducted on the original spectral data without
any treatment, and the obtained results are presented in Table 5. The modeling set R2 of
the PLSR model was 0.9441, and the corresponding RMSE was 0.2442. The testing set R2

was 0.9215, and the corresponding RMSE was 0.2676, which indicates that the model had
good predictive ability. However, the original spectral data contained a large number of
wavelengths, specifically 114, which could increase the computational complexity and
reduce the data processing efficiency if modeled directly.

Table 5. PLSR modeling results of original spectral data.

Model
Number of

Wavelengths

Modeling Set Testing Set

Coefficient of
Determination

(R2)

Root-Mean-Square
Error

(RMSE)

Coefficient of
Determination

(R2)

Root-Mean-Square
Error

(RMSE)

PLSR 114 0.9441 0.2442 0.9215 0.2676

3.4.2. PLSR Modeling of Preprocessed Spectral Data

The results of the PLSR modeling of preprocessed spectral data are presented in Table 6.
The impact of MSC, SNV, MC, and VN preprocessing methods on the PLSR modeling was
found to be insignificant compared to that of the original spectral data. This indicated that
these four pre-processing methods did not affect the PLSR modeling in this study. On the
other hand, the R2 and RMSE values of the PLSR modeling set and testing set of SS and
MMS preprocessed spectral data were slightly better than those of the original spectral
data, suggesting that these two preprocessing methods enhanced the PLSR modeling effect
to a certain extent. However, the PLSR modeling set and testing set of DC and CWT
preprocessed spectral data showed slightly worse R2 and RMSE values than those of the
original spectral data, indicating that these two preprocessing methods reduced the PLSR
modeling effect in this study. Furthermore, the PLSR modeling set and testing set of FD, SD,
MAS, and SGCS preprocessed spectral data demonstrated inferior R2 and RMSE values,
indicating that these four preprocessing methods were unsuitable for direct PLSR modeling
in this study. It should be noted that, although direct PLSR modeling of preprocessed
spectral data can improve the prediction accuracy to a certain extent, the preprocessed
spectral data contained 114 wavelengths and required complex data calculation, which
affects processing efficiency.
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Table 6. PLSR modeling results of preprocessed spectral data.

Model
Number of

Wavelengths

Modeling Set Testing Set

Coefficient of
Determination

(R2)

Root-Mean-Square
Error

(RMSE)

Coefficient of
Determination

(R2)

Root-Mean-Square
Error

(RMSE)

FD + PLSR 114 0.4868 0.4250 0.4036 0.4452
SD + PLSR 114 0.1001 0.4965 0.1203 0.4731
DC + PLSR 114 0.9428 0.2456 0.9203 0.2686

CWT + PLSR 114 0.9418 0.2467 0.9117 0.2755
MSC + PLSR 114 0.9441 0.2442 0.9215 0.2676
SNV + PLSR 114 0.9441 0.2442 0.9215 0.2676
MAS + PLSR 114 0.0275 0.4988 0.0376 0.5006
SGCS + PLSR 114 0.0661 0.4938 0.0457 0.4995
MC + PLSR 114 0.9441 0.2442 0.9215 0.2676
SS + PLSR 114 0.9440 0.2443 0.9304 0.2596

MMS + PLSR 114 0.9450 0.2433 0.9292 0.2607
VN + PLSR 114 0.9441 0.2442 0.9215 0.2676

3.4.3. PLSR Modeling of Original Spectral Characteristic Wavelengths Extracted Data

The results of PLSR modeling of the original spectral characteristic wavelength extrac-
tion data are presented in Table 7. The SPA method was employed to extract 29 characteristic
wavelengths, which effectively reduced the dimensionality of the original spectral data.
However, the R2 and RMSE values obtained for both the SPA + PLSR modeling set and
the testing set were inferior to those of the PLSR model. This outcome suggests that the
SPA method might have caused the loss of some critical spectral information during data
dimensionality reduction. On the other hand, the CARS and GA methods identified 34
and 36 characteristic wavelengths, respectively. The R2 and RMSE values obtained for the
CARS + PLSR and GA + PLSR modeling sets and testing sets were superior to those of the
PLSR model, indicating that these methods were able to remove some noise information
and optimize the critical spectral information while performing data dimensionality reduc-
tion. The UVE method, however, extracted 69 characteristic wavelengths. While the R2 and
RMSE values of the modeling set of the UVE + PLSR model were slightly inferior to those
of the PLSR model, the R2 and RMSE values of the testing set of the UVE + PLSR model
were slightly better than the PLSR model. Nonetheless, there was a significant difference in
the modeling effect when compared to the CARS + PLSR and GA + PLSR models.

Table 7. PLSR modeling results of original spectral characteristic wavelengths extracted data.

Model
Number of

Wavelengths

Modeling Set Testing Set

Coefficient of
Determination

(R2)

Root-Mean-Square
Error

(RMSE)

Coefficient of
Determination

(R2)

Root-Mean-Square
Error

(RMSE)

SPA + PLSR 29 0.9312 0.2573 0.9092 0.2774
CARS + PLSR 34 0.9551 0.2312 0.9304 0.2596

GA + PLSR 36 0.9449 0.2434 0.9323 0.2578
UVE + PLSR 69 0.9395 0.2491 0.9236 0.2657

3.4.4. PLSR Modeling of Preprocessed Spectral Characteristic Wavelengths Extracted Data

Table 8 displays the results of PLSR modeling for preprocessed spectral characteristic
wavelength extraction data. The spectral data were preprocessed using four methods,
namely, FD, SD, MAS, and SGCS, to extract characteristic wavelengths using SPA, CARS,
GA, and UVE, respectively. The R2 and RMSE values obtained for the PLSR modeling set
and testing set indicated that these four preprocessing methods were unsuitable for PLSR
modeling of preprocessed spectral characteristic wavelength extraction data in this study.
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For the other eight types of preprocessed spectral data, SPA, CARS, GA, and UVE were
employed to extract characteristic wavelengths. The PLSR modeling set and testing set for
extracting characteristic wavelength data yielded relatively better R2 and RMSE values,
which could be further compared and analyzed.

Table 8. PLSR modeling results of preprocessed spectral characteristic wavelengths extracted data.

Model
Number of

Wavelengths

Modeling Set Testing Set

Coefficient of
Determination

(R2)

Root-Mean-Square
Error

(RMSE)

Coefficient of
Determination

(R2)

Root-Mean-Square
Error

(RMSE)

FD + SPA + PLSR 2 0.3855 0.4446 0.4139 0.4432
FD + CARS + PLSR 19 0.5201 0.4179 0.4501 0.4362

FD + GA + PLSR 22 0.4929 0.4237 0.4445 0.4373
FD + UVE + PLSR 56 0.4836 0.4256 0.4431 0.4376
SD + SPA + PLSR 2 0.1011 0.4964 0.1391 0.4705

SD + CARS + PLSR 12 0.1872 0.4840 0.1383 0.4707
SD + GA + PLSR 31 0.1580 0.4883 0.0964 0.4763

SD + UVE + PLSR 37 0.1463 0.4900 0.0685 0.4799
DC + SPA + PLSR 29 0.9313 0.2572 0.9093 0.2773

DC + CARS + PLSR 32 0.9521 0.2350 0.9312 0.2588
DC + GA + PLSR 40 0.9445 0.2438 0.9305 0.2595

DC + UVE + PLSR 56 0.9363 0.2524 0.9245 0.2649
CWT + SPA + PLSR 24 0.9290 0.2593 0.9102 0.2767

CWT + CARS + PLSR 28 0.9468 0.2413 0.9258 0.2638
CWT + GA + PLSR 38 0.9421 0.2464 0.9312 0.2589

CWT + UVE + PLSR 44 0.9284 0.2598 0.9141 0.2736
MSC + SPA + PLSR 29 0.9312 0.2573 0.9092 0.2774

MSC + CARS + PLSR 42 0.9537 0.2329 0.9284 0.2614
MSC + GA + PLSR 42 0.9455 0.2427 0.9326 0.2575

MSC + UVE + PLSR 55 0.9378 0.2509 0.9265 0.2632
SNV + SPA + PLSR 29 0.9312 0.2573 0.9092 0.2774

SNV + CARS + PLSR 38 0.9546 0.2318 0.9342 0.2559
SNV + GA + PLSR 39 0.9446 0.2437 0.9369 0.2533

SNV + UVE + PLSR 69 0.9395 0.2491 0.9236 0.2657
MAS + SPA + PLSR 2 0.0339 0.4980 0.0577 0.4980

MAS + CARS + PLSR 15 0.0263 0.4990 0.0376 0.5006
MAS + GA + PLSR 13 0.0144 0.5005 0.0096 0.5042

MAS + UVE + PLSR 17 0.0487 0.4961 0.0348 0.5009
SGCS + SPA + PLSR 2 0.0568 0.4950 0.0623 0.4973

SGCS + CARS + PLSR 11 0.0966 0.4897 0.0223 0.5026
SGCS + GA + PLSR 12 0.0699 0.4933 0.0443 0.4997

SGCS + UVE + PLSR 7 0.0735 0.4928 0.0458 0.4995
MC + SPA + PLSR 29 0.9312 0.2573 0.9092 0.2774

MC + CARS + PLSR 26 0.9483 0.2395 0.9160 0.2721
MC + GA + PLSR 40 0.9473 0.2407 0.9325 0.2576

MC + UVE + PLSR 69 0.9395 0.2491 0.9236 0.2657
SS + SPA + PLSR 14 0.9223 0.2652 0.9251 0.2644

SS + CARS + PLSR 34 0.9571 0.2286 0.9342 0.2560
SS + GA + PLSR 37 0.9515 0.2357 0.9354 0.2548

SS + UVE + PLSR 65 0.9560 0.2300 0.9170 0.2713
MMS + SPA + PLSR 26 0.9345 0.2541 0.9147 0.2731

MMS + CARS + PLSR 35 0.9493 0.2384 0.9376 0.2526
MMS + GA + PLSR 36 0.9439 0.2445 0.9324 0.2577

MMS + UVE + PLSR 74 0.9323 0.2562 0.9247 0.2647
VN + SPA + PLSR 29 0.9312 0.2573 0.9092 0.2774

VN + CARS + PLSR 36 0.9569 0.2289 0.9264 0.2632
VN + GA + PLSR 42 0.9452 0.2430 0.9342 0.2560

VN + UVE + PLSR 69 0.9395 0.2491 0.9236 0.2657
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For the same preprocessing method, CARS and GA characteristic wavelength extraction
data for ePLSR modeling yielded better results than SPA and UVE. Among the different
preprocessing techniques, DC + CARS + PLSR showed the most favorable outcome for the DC
method, with an R2 value of 0.9312 and an RMSE of 0.2588. Similarly, for the CWT method,
CWT + GA + PLSR proved to be the most effective, with an R2 value of 0.9312 and an RMSE
of 0.2589. For the MSC method, MSC + GA + PLSR yielded the highest R2 value of 0.9326
and the lowest RMSE of 0.2575. Likewise, for the SNV method, SNV + GA + PLSR gave
the best results, with an R2 value of 0.9369 and an RMSE of 0.2533. For the MC method,
MC + GA + PLSR resulted in an R2 value of 0.9325 and an RMSE of 0.2576. SS + GA + PLSR
led to the best results for the SS method, with an R2 value of 0.9354 and an RMSE of 0.2548.
Additionally, MMS + CARS + PLSR demonstrated the most favorable results for the MMS
method, with an R2 value of 0.9376 and an RMSE of 0.2526. Finally, for the VN method,
VN + GA + PLSR exhibited the highest R2 value of 0.9342 and an RMSE of 0.2560.

For the same feature wavelength extraction method, it has been observed that PLSR
modeling of spectral data preprocessed using scale scaling and scattering correction
methods can yield better results compared to baseline correction and smoothing pre-
processing methods. Among the different characteristic wavelength extraction methods,
SS + SPA + PLSR exhibited the highest efficacy for SPA, with an R2 value of 0.9251 and an
RMSE value of 0.2644. For CARS, MMS + CARS + PLSR yielded the best performance,
with an R2 value of 0.9376 and an RMSE value of 0.2526. GA exhibited the best results
with SNV + GA + PLSR, with an R2 value of 0.9369 and an RMSE value of 0.2533. For UVE,
MSC + UVE + PLSR delivered the best results, with an R2 value of 0.9265 and an RMSE
value of 0.2632.

Based on the evaluation criteria of the R2 and RMSE of the testing set, a compre-
hensive comparison of the different preprocessing methods was conducted, and it was
found that the MMS + CARS + PLSR, SNV + GA + PLSR, and SS + GA + PLSR models
demonstrated superior performance. These models achieved an R2 value of more than
0.9350 and controlled the RMSE below 0.2550. A comparison of the predicted and true
values for the testing set of these three models is illustrated in Figure 8, which indicated
that the prediction effect of these models was satisfactory, with no significant deviation
between the predicted and true values. However, in terms of computational complexity
and efficiency, the GA method was more intricate than the CARS method. Therefore,
MMS + CARS + PLSR was selected as the optimal model for spectral quantitative analysis
of the infection degree of FHB in the wheat canopy’s visible area. The model extracted
thirty-five characteristic wavelengths, and the R2 and RMSE of the modeling set were
0.9493 and 0.2384, respectively. The R2 and RMSE of the testing set were 0.9312 and 0.2588,
respectively. The proposed model enabled a spectral quantitative analysis of the infection
degree of FHB in the in situ wheat canopy’s visible area, providing useful insights for
national food security and green agricultural development.
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Figure 8. Comparison of the prediction effects of three better models. (a) Prediction effect of MMS +
CARS + PLSR model; (b) prediction effect of SNV + GA + PLSR model; (c) prediction effect of SS +
GA + PLSR model.
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3.5. Some Discussions

This study utilized hyperspectral imaging technology to develop a method for spec-
trally quantifying the degree of Fusarium head blight (FHB) infection in an in situ wheat
canopy’s visible areas. The variation in wheat ear growth posture posed a significant
challenge in obtaining complete and consistent spectral images in the in situ canopy visible
areas. Nonetheless, the study found that acquiring 50% hyperspectral information of wheat
ears in the in situ canopy’s visible areas could reflect and predict the degree and trend of
wheat FHB infection to a certain extent. To this end, the study established sixty-five dif-
ferent spectral quantitative prediction models using combinations of twelve pretreatment
methods, four characteristic wavelength extraction methods, and PLSR modeling methods,
of which the MMS + CARS + PLSR model was the most effective. The study’s findings
provide valuable insights into utilizing hyperspectral imaging technology for detecting
and evaluating FHB infection in the visible areas of a wheat canopy and highlight the
challenges of obtaining spectral images of wheat ears in the visible areas of the canopy with
good integrity and consistency. The findings of this study could be helpful for farmers and
agricultural policymakers to take necessary measures to prevent FHB infection and ensure
stable grain production, ultimately contributing to the green development of agriculture.

However, there are some limitations in this study to be considered. A limited amount
of research has been conducted on using in situ spectral imaging to detect Fusarium head
blight (FHB) in wheat [18,31–33]. Instead, most of the research in this area has focused on ex
situ detection methods [20–30]. In order to ensure the originality and authenticity of wheat
growth posture and spectral data, in situ spectral data of wheat grown in the experimental
soil tank were collected. Compared with the ex situ data acquisition, the experimental
conditions of in situ data acquisition are difficult to control, and data acquisition is complex.
Therefore, only 451 sets of spectral data were obtained in this study, and the number of
samples was small. The reliability of the model needs to be further verified and improved.
In further research, we will continue to explore the method of in situ spectral imaging
to detect wheat FHB and strengthen the sample size collection to improve the model’s
reliability. At the same time, this study explored the spectral quantitative prediction model
of the infection degree of FHB in the visible areas of an in situ wheat canopy based on PLSR
regression. The modeling effects based on the neural network, support vector machine,
multiple linear regression, and other methods must be further explored and analyzed in
subsequent studies.

In addition, the experimental soil box can reasonably simulate the in situ growth state
of wheat, but there are specific gaps and limitations compared with the field environment.
Collecting the corresponding spectral data in the field environment is a complex and
challenging task. As a field experiment is affected by various environmental factors, the
complexity of the experimental data is increased. Therefore, when collecting spectral
data in a field environment, we must be more careful in selecting the appropriate spectral
instrument and collection time. Moreover, different collection methods should be selected
for vegetation characteristics, and the influence of environmental factors on data should
be considered. Finally, we need to use excellent data processing and analysis methods
to process the collected data. At present, the spectral quantitative prediction of wheat
FHB still faces many challenges and difficulties. More researchers are needed to actively
participate in this field and jointly promote the progress of this work.

4. Conclusions

In this study, a method for spectral quantitative analysis of the in situ FHB infection
degree in the visible areas of the wheat canopy was developed using hyperspectral imaging
technology and a detection and evaluation method for FHB. Through data acquisition
experiments and model comparison analysis, the following conclusions were drawn:

(1) The growth posture of wheat ears varies greatly due to the influence of their weight,
and most have an inclination angle of (−15◦~15◦), resulting in only 50% of the spectral images
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of wheat ears in the canopy’s visible areas being obtained. Obtaining spectral images of wheat
ears in the canopy’s visible areas with good integrity and consistency is challenging.

(2) The irreversible disease of wheat FHB will cause severe losses once infected, and
obtaining 50% hyperspectral information of wheat ears in the canopy visible areas can
reflect and predict the degree and trend of wheat FHB infection to a certain extent. This
method can be used to determine the spectral acquisition method of FHB and the evaluation
method of infection degree in the wheat canopy’s visible areas.

(3) This study established sixty-five different combinations of spectral quantitative
prediction models based on twelve pretreatment methods, four characteristic wavelength
extraction methods, and PLSR modeling methods. The MMS + CARS + PLSR model was
determined as the optimal spectral quantitative analysis model for the infection degree
of FHB in the wheat canopy visible areas. The model extracted thirty-five characteristic
wavelengths; the modeling set of the R2 was 0.9490, the RMSE was 0.2384, the testing set of
the R2 was 0.9312, and the RMSE was 0.2588. These findings may provide a constructive ref-
erence for the spectral detection of the infection degree of FHB in the visible areas of in situ
wheat canopies. Furthermore, such insights could guide the country to formulate measures
to ensure stable grain production and promote the green development of agriculture.
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