
Citation: Bonacini, L.; Tronco, M.L.;

Higuti, V.A.H.; Velasquez, A.E.B.;

Gasparino, M.V.; Peres, H.E.N.; de

Oliveira, R.P.; Medeiros, V.S.; da Silva,

R.P.; Becker, M. Selection of a

Navigation Strategy According to

Agricultural Scenarios and Sensor

Data Integrity. Agronomy 2023, 13,

925. https://doi.org/10.3390/

agronomy13030925

Academic Editors: Daniel García

Fernández-Pacheco, José Miguel

Molina Martínez and Dolores

Parras-Burgos

Received: 15 February 2023

Revised: 10 March 2023

Accepted: 13 March 2023

Published: 21 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agronomy

Article

Selection of a Navigation Strategy According to Agricultural
Scenarios and Sensor Data Integrity
Leonardo Bonacini 1,*,† , Mário Luiz Tronco 1,† , Vitor Akihiro Hisano Higuti 1,
Andres Eduardo Baquero Velasquez 1, Mateus Valverde Gasparino 1 , Handel Emanuel Natividade Peres 1,
Rodrigo Praxedes de Oliveira 1, Vivian Suzano Medeiros 1, Rouverson Pereira da Silva 2 and Marcelo Becker 1

1 Sao Carlos School of Engineering, University of Sao Paulo, Sao Carlos 13566-590, Brazil;
mltronco@sc.usp.br (M.L.T.); akihiro@earthsense.co (V.A.H.H.); andresbaquerov@gmail.com (A.E.B.V.);
mvalve2@illinois.edu (M.V.G.); handelnatividade@usp.br (H.E.N.P.); rodrigoliveirarj@gmail.com (R.P.d.O.);
viviansuzano@usp.br (V.S.M.); becker@sc.usp.br (M.B.)

2 School of Agricultural and Veterinary Studies, Sao Paulo State University, Jaboticabal 14884-900, Brazil;
rouverson.silva@unesp.br

* Correspondence: leobonacini@usp.br
† These authors contributed equally to this work.

Abstract: In digital farming, the use of technology to increase agricultural production through auto-
mated tasks has recently integrated the development of AgBots for more reliable data collection using
autonomous navigation. These AgBots are equipped with various sensors such as GNSS, cameras,
and LiDAR, but these sensors can be prone to limitations such as low accuracy for under-canopy
navigation with GNSS, sensitivity to outdoor lighting and platform vibration with cameras, and
LiDAR occlusion issues. In order to address these limitations and ensure robust autonomous naviga-
tion, this paper presents a sensor selection methodology based on the identification of environmental
conditions using sensor data. Through the extraction of features from GNSS, images, and point
clouds, we are able to determine the feasibility of using each sensor and create a selection vector
indicating its viability. Our results demonstrate that the proposed methodology effectively selects
between the use of cameras or LiDAR within crops and GNSS outside of crops, at least 87% of the time.
The main problem found is that, in the transition from inside to outside and from outside to inside the
crop, GNSS features take 20 s to adapt. We compare a variety of classification algorithms in terms of
performance and computational cost and the results show that our method has higher performance
and lower computational cost. Overall, this methodology allows for the low-cost selection of the
most suitable sensor for a given agricultural environment.

Keywords: digital agriculture; AgBots; autonomous navigation; machine learning; ensemble

1. Introduction

With the increase in market competitiveness and food demand due to population
growth and more demanding consumers with respect to product quality, farmers have
been betting on the data-based decision-making processes to reduce operational failures [1].
In this way, data are required to be accurate and reliable, which is why numerous studies
have been carried out whose objective is to use AgBots in agriculture [2].

There are several applications in which AgBots can be beneficial for agriculture,
enabling the development of methods to optimize processes and generate fewer losses,
such as irrigation [3,4] (optimizing water use) and weed identification [5,6] (reduction in
plant losses due to diseases).

For the application of AgBots in the agricultural environment to be possible, navigation
strategies are needed to allow them to move safely around the plantation [7]. According
to [8,9], a robot can navigate in environments: (i) structured (when it is well defined) and
(ii) unstructured (when it is not well defined). In the agricultural context, the environment
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is mostly unstructured and contains several types of obstacles. Due to these circumstances,
it can be inferred that navigation for an AgBot, as well as for several mobile robots, is one
of the main challenges in this field [10].

These challenges make many navigation strategies limit their solutions based on
specific situations that AgBots may face. In general, navigation strategies for AgBots can be
simplified into two types with respect to field crops: (i) outside crop, when the AgBot is out
the crop and movement control methods are sufficient to ensure navigation; and (ii) inside
crop, when the AgBot is inside the crop and it becomes necessary to identify patterns of
crop behaviour to navigate [11–13].

In this context, the present work proposes the development of a methodology for
selecting navigation strategies, relating data from different sensors (GNSS, LiDAR and
camera) and the environment in which the robot navigates.

1.1. Related Works

According to [14,15], the main sensors used in AgBots are RGB cameras, GNSS, and
LiDAR. Therefore, this work will address methods that carry out or propose navigation
strategies using these sensors. It is important to note that such sensors may suffer from
problems such as low accuracy in the GNSS data when there is a signal obstruction, LiDAR
suffers from occlusions, and cameras have low tolerance to lighting changes.

In this context, Sigrist et al. [16] presented a study on the impact the plant canopy
has on the quality of the GNSS signal. The authors showed that foliage is one of the
biggest sources of error in signal reception, decreasing the efficiency of data acquisition
by up to 47%. Furthermore, other studies have been conducted to analyse the impact
that forests [17], plantations [18] and buildings [19] have on the GNSS signal. For this
reason, the application of navigation strategies using GNSS in the agricultural scenario
is carried out mainly outside of the cultivation or in low-lying crops. As an example, the
work proposed by [20] used RTK-GNSS to navigate in a potato crop, which did not obstruct
the sensor signal.

In agricultural environments, LiDAR sensors are widely used to identify crop phe-
notypes [21] and for under-canopy navigation [22]. In such scenarios, there are a few
problematic situations that can compromise sensor data. Higuti et al. [23] identified the
main types of interference based on the point cloud obtained by a LiDAR as (i) collisions,
(ii) end of cropping, and (iii) cropping gaps. In [24], the authors proposed a semantic
classification algorithm for LiDAR data based on the condition of the crop as a navigation
aid strategy when building a topological map. In [25], a method was proposed to identify
anomalies such as obstacles and collisions based on a LiDAR point cloud.

Cameras are also widely used for various applications in agriculture, including plan-
tation segmentation [26], classification of crop species [27], and the development of AgBots
navigation strategies [28]. However, the application of cameras in the agricultural environ-
ment suffers from occlusions and variations in luminosity [29,30]. Due to this, many studies
have proposed lighting control for cameras in applications in this environment [31,32].

Different navigation strategies can be applied to AgBots; however, these systems,
individually, do not guarantee complete autonomous navigation. In general, many studies
have focused on navigation strategies for specific situations, which do not allow fully
autonomous navigation in an agricultural environment.

In [33], there was a proposal for the fusion of information from different navigation
strategies, using stereo vision, omnidirectional vision and GNSS. To achieve this objective,
the author proposed the identification of navigable areas, obstacles, and faults. The pro-
posed methodology works in layers: (i) data fusion to estimate AgBot attitude using GNSS,
IMU and encoders; (ii) suggested control that indicates locations to which the platform
can navigate based on the response of the vision systems; and (iii) list failures that indicate
AgBot kinematic limitations.

In [34], the authors proposed a methodology in ROS for the autonomous navigation
of a mobile robot. The methodology is composed of layers: sensors, pre-processing, and
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localization and mapping. From this information, a task manager makes a selection of the
appropriate robot behaviour and sends the decision to the trajectory-planning system.

The work in [35] used GNSS, IMU, LiDAR, and a camera in a methodology for
autonomous navigation in agricultural environments in order to avoid dynamic obstacles.
When defining the waypoints, the system plans the AgBot trajectory and executes the
movement control. At the same time, the local dynamic planner locates agents (obstacles)
and estimates their movements using RNN. The exit condition is made by the high-level
controller, which switches the systems based on the proximity of dynamic and static agents
and waypoints.

1.2. Contributions

Few studies have focused on the development of methodologies that combine or
select navigation strategies for agricultural environments. In general, previous work in
this field may be limited to a proposal [34], or do not present experimental results [33]
or use techniques that require high computational processing [35]. In this context, the
main contribution of this research is the development of a methodology for selecting
navigation strategies based on data from different sensors (GNSS, LiDAR and camera) and
the environment in which the AgBot navigates. For this, we used different classification
models and analysed the response time of the methodology. The results show that the
methodology has an accuracy of at least 87% for selecting navigation strategies using
GNSS outside the crop and navigation strategies using LiDAR or camera inside the crop or
under-canopy, based on extensive data collected in a sugarcane crop.

2. Materials and Methods

An overview of the methodology proposed in this work is presented in Figure 1.

Figure 1. Methodology adopted in the present work.

In this section, we describe the characteristics of the AgBot and present the experi-
mental setup used for data collection in a sugarcane plantation, showing details of the
cultivation and its importance for Brazil. Next, the predictor and predicted variables that
are used in the classification techniques are discussed. Subsequently, how the fusion of
information from the classifiers is carried out is presented.

2.1. AgBot

The AgBot used for data acquisition was the TerraSentia 2020 (TS2020) developed by
EarthSense Inc. This robot has dimensions of 0.32 × 0.54 × 0.4 m3 (width, length, and
height), it has a differential direction, and the main components of this platform can be
seen in Table 1.

2.2. Experimental Setup

The experiments were carried out in a sugarcane (Saccharum officinarium L.) field at the
regrowth stage in a farm in Água Vermelha (Latitude: 21◦53′48′′ S, Longitude: 47◦53′35′′ W),
district of São Carlos, located in São Paulo, Brazil.



Agronomy 2023, 13, 925 4 of 22

Table 1. Components of AgBot TS2020.

AgBot * Components Characteristics

Battery 14.8 V 10,000 mAh

Motor Maytech Brushless
Outrunner Hub

Computer NUC-I7 Processor
Operational System Ubuntu 18.04

LiDAR UST-10LX
IMU Bosch BNO0555

GNSS Ublox Zed-F9P

Camera RGB cameras with
LED Illumination

* Courtesy of EarthSense Inc.

This crop was selected because Brazil is the largest sugarcane producer in the world.
According to data from [36], in 2020, Brazil produced approximately 45% of the world’s
sugarcane. Furthermore, Brazil processes several by-products of sugarcane, such as biofuels
and sugar, which have a strong impact on its economy [37].

2.3. Predicted and Predictors Variables

The predictor and predicted variables used for agricultural scenario classification were
defined based on the sensor data used.

2.3.1. GNSS

We proposed investigating the behaviour of the GNSS sensor data in the three scenarios
presented in Table 2. The first scenario was GNSSOutsideCrop which represents the ideal
situation for navigation using GNSS, where the distance between the crops is greater
or equal to 3.00 m. The second scenario was GNSSInsideCrop, which indicates that the
platform is inside the crop, but there is no superior obstruction in the GNSS signal, only
lateral obstruction, where the distance between the crops is greater or equal to 1.00 m.
Finally, the third scenario was UnderCanopy, which indicates that the robot is inside the
crop in a situation where there is lateral and superior obstruction for the GNSS signal,
where the distance between the crops is less than 1.00 m.

Table 2. Predicted environment using GNSS.

Representation Class Distance between Crops (m)

GNSSOutsideCrop ≥3.00
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Table 2. Cont.

Representation Class Distance between Crops (m)

GNSSInsideCrop ≥1.00

UnderCanopy <1.00

The predictor variables selected for the analysis using GNSS are presented in Table 3. As
presented in the literature, obstruction of the GNSS signal causes a decrease in the accuracy
presented by the GNSS measurements. Therefore, it was proposed to investigate the data
provided by the AgBot TerraSentia in relation to heading, horizontal, and speed accuracy.

Table 3. Predictor variables using GNSS.

Feature Variable Name Unit

Heading Accuracy HeadAcc ◦

Horizontal Accuracy HorAcc m
Speed Accuracy SpeedAcc m/s

2.3.2. LiDAR

The variable classes based on the LiDAR point cloud are also related to the scenario
in which the AgBot navigates and are presented in Table 4. The first class (LiDAROut-
sideCrop) represents the condition in which the robot is outside the crop. The second
class (GNSSInsideCrop) represents the situation in which the platform is inside the crop,
regardless of whether there are one or two crop lines. Furthermore, finally, the third class
(LiDAROcclusion) indicates that the sensor is obstructed by some object, therefore it is
unknown whether it is inside or outside the crop.

When analysing each of the classes in Table 4, different distributions of point cloud
were noticed. For the LiDARInsideCrop condition, on the X-axis, when there were two
crop lines, the distribution resembled a U-shape and when there was only one crop line, it
resembled a J-shape. For the LiDAROutsideCrop the presence of high randomness was
noted, both on the X- and Y-axis. Regarding the LiDAROcclusion class, a dense number of
points close to the sensor was observed and they do not characterize a specific distribution.
In addition, it was proposed to analyse whether the intensity of the return signal of the
infrared beam can help in the identification of these classes, similarly to [38] that used laser
intensity to identify defects in railway tunnel linings.
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Table 4. Predicted environment using LiDAR.

Representation Class Description

LiDAROutsideCrop There is no crop.

LiDARInsideCrop There is at least one row
crop.

LiDAROcclusion Many points
surrounding origin.

With this in mind, the X-, Y- and intensity-axes were characterized as random vari-
ables, as presented in [39]. To characterize the distribution of these variables, there are
some parameters that can be used; in this work, the variables that were investigated are
presented in Table 5.

Table 5. Predictor variables using LiDAR.

Feature Variable Name Equation

Mean µX,Y,I
1
k ∑k

i=1(xi)

Variance σX,Y,I
1
k ∑k

i=1(xi − x̄)2

Skewness γX,Y,I 1
k ∑k

i=1
( xi−x̄

σ

)3
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2.3.3. RGB Camera

As discussed before, the camera suffers mainly from lighting problems and occlusions.
Therefore, the classification algorithm for this sensor aimed to identify these limitations
that make the use of data from this sensor unfeasible. Five classes that indicate the quality
of the analysed image were classified, according to Table 6.

The first class (Ideal) represents the condition in which the image does not have a
problem. The second class (HighBrightness) indicates the situation in which there is a lot of
incident light on the camera transducer. On the other hand, the third class (LowBrightness)
symbolizes the opposite situation, in which there is not enough time to focus a lot of light on
the camera transducer, resulting in a dark image. This scenario happens because inner-row
distance changes can cause an increase or decrease in the amount of light that enters the
environment and it takes time for the camera to adapt to the new light level. The fourth
class (Blur) corresponds to the situation in which the camera does not have time to focus,
resulting in a blurred image. Navigation through uneven soil can result in vibrations in
the robot, which can affect the cameras leading to blurred images. Finally, the fifth class
(CameraOcclusion) indicates that the camera is obstructed by leaves or branches.

Note that the classes differ with respect to the amount of light and sharpness or the
presence of texture in the image; therefore, the selected characteristics must be sensitive
to this. Based on this scenario, the image is converted from the RGB colourspace to
the greyscale colourspace. In addition, to identify the lack of textures in the image, the
Laplacian operator was used, which is an edge descriptor that can be particularly useful in
identifying blurred images, where there are very few edges. The predictor variables for the
camera are summarized in Table 7.

Table 6. Predicted environment using Camera.

Representation Class Description

Ideal There is no problem in the
image.

HighBrightness Image is too bright.

LowBrightness Image is too dark.

Blur Image loses details.

CameraOcclusion Camera is occluded.
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Table 7. Predictor Variables using camera.

Feature Variable Name Equation

Mean µG − 1
k ∑k

i=1(xi)

Variance σG
1
k ∑k

i=1(xi − x̄)2

Skewness γG 1
k ∑k

i=1
( xi−x̄

σ

)3

Laplacian Descriptor σ2
lap

∂2 I(x,y)
∂x2 +

∂2 I(x,y)
∂y2

2.4. Classifiers Techniques

In this paper, we aimed to classify environmental and/or sensor conditions. Therefore,
the classifier techniques are discussed below, and, for all techniques, the k-fold cross-
validation method with five folds was used. All hyperparameters of the classification
models are presented in order of increasing complexity of the generated model. In addition,
the values were selected based on the AgBot hardware.

2.4.1. Multinomial Logistic Regression

The MLR is a GLM method, which indicates that a response variable is the linear
combination of the predictor variables. In the case of MLR, the natural logarithm of the
probability of a qualitative variable is equal to the linear combination of predictor variables.
Thus, the probability of a response variable class is given by Equation (1).

Pw,i =
eαw+ ~βw ·~Xi

C
∑

j=1
eαj+~β j ·~Xi

(1)

where Pw,i is the probability of class w for the sample i, αj is the linear coefficient of the
class j, ~β j is the vector containing the angular coefficients of the class j, ~Xi is the vector
containing the predictor variables for the sample i and C is the number of classes of the
response variable. To estimate the MLR coefficients, maximum likelihood logarithm (LL)
was used, calculated by Equation (2).

LL =
N

∑
i=1


C

∑
w=1

Yiw

ln

 eαw+ ~βw ·~Xi

C
∑

j=1
eαj+~β j ·~Xi



 (2)

where Yiw is a binary number, which indicates the presence or absence of the class w for
the observation i. After estimating the coefficients, it proposes the use of the stepwise
procedure to select the predictor variables that maintain or increase the predictive capacity,
avoiding multicollinearity. This procedure consists of creating models with different
predictor variables and observing when there is a reduction in the AIC. Equation (3) can be
used to calculate this indicator of improved predictive capacity.

AIC = 2[LL + (C− 1)v] (3)

where AIC is the Akaike information criterion and v is the number of model coefficients,
including the linear coefficient.

As the stepwise procedure may remove variables from the model, it is not possible to
perform a direct comparison between them. For this, the LRT hypothesis test was used,
given by Equation (4). The likelihood-ratio test (LRT) is a statistical test used to compare
the fit of a full model (Total) to that of a constrained model (Stepwise). The null hypothesis
states that the full model fits the data as well as the constrained model, while the alternative
hypothesis suggests that the full model explains a significant amount of variation in the
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data beyond what is explained by the constrained model. The advantage of using this
method is its low computational cost and its ability to compare models with different
numbers of hyperparameters (predictor variables).

LRT = −2
[
LLmodel1 + LLmodel2

]
(4)

The value of LRT is compared with a distribution χ2 with DOF equal to the difference
between the number of coefficients of the models under analysis. For this project, a
confidence interval of 95% was adopted.

2.4.2. Decision Tree

The DT is a mapping method that iteratively partitions the predictor variables to define
regions of the predicted variable. To perform the branching, an algorithm searches for an
optimal partitioning that reduces the impurity of the model. In this paper, we employed
the Gini index as the impurity criterion.

Because it is a highly flexible algorithm, it may easily generate models with overfitting;
however, hyperparameters can be optimized to avoid this condition. In this paper, we
used the complexity parameter (cp), which controls the size of the DT. The values of this
hyperparameter were 10−1, 10−2, 10−3, 10−4, and 10−5.

2.4.3. Random Forest

The RF is a bagging method that consists of generating multiple simple models that
act in parallel and vote among themselves to decide the condition of the response variable.
In the FA technique, the simple models are DT, which are trained by subsets of data from
the training samples. In this way, since it is a classification based on votes, the weaker a
classifier is, the greater is the generalization capacity of the model.

Bagging methods are flexible but less prone to overfitting due to the large number
of simple models. However, it is possible that there is overfitting; therefore, there are
hyperparameters that may be optimized to avoid this type of condition. In this paper,
we used:

• Minimum sample (min_n): Minimum amount of sample to perform a new partitioning.
The values of this hyperparameter were 1, 11, 21, 30, and 40;

• Trees number (trees): Number of weak classifiers. The values of this hyperparameter
were 2, 26, 51, 75, and 100.

2.4.4. Gradient Boosting

The GB is a boosting method that consists of generating multiple weak models that
act sequentially to generate regions of the response variable. In GB, from a subset of the
training sample, a primary model is determined, and the next weak model aims to learn
the behaviour of the residuals of the previous model.

Boosting methods are flexible and highly prone to overfitting due to the sequence of
simple models that are used in a chain to generate the model. To avoid this situation, there
are hyperparameters that can be optimized. In this paper, we used the following.

• Depth of tree (tree_depth): Maximum depth of nodes that the tree can create. The
values of this hyperparameter were 1, 4, 8, 11, and 15;

• Learning rate (learn_rate): Learning rate for each weak model. The values of this
hyperparameter were 10−1, 10−3, 10−3, 10−4, and 10−5.

2.5. Classifiers Fusion

In this section, we discuss how the classification vector, the viability matrix, and the
selection vector were defined.
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2.5.1. Classification Vector

As each technique has a different performance, this can generate bias when associating
the classes of each method. Therefore, it was proposed to use the classification performance
vector, as presented in Equation (5).

~WSensor = η
[
P1 P2 . . . PC

]
(5)

where, ~W is a classification performance vector for the sensor, η is a scalar with the per-
formance metric (used as the accuracy of the best model) and

[
P1 P2 . . . Pn

]
is the

response vector of each classification model, where C is the number of classes predicted by
the technique.

2.5.2. Sensors’ Feasibility Matrix

The sensors’ feasibility matrix (B) indicates which classes favour the use of each sensor
and is presented in Equation (6).

B =


b1,1 b1,2 . . . b1,n
b2,1 b2,2 . . . b2,n

...
...

. . .
...

bm,1 bm,2 . . . bm,n

 (6)

where the element bm,n is a binary value that indicates whether or not a class n enables the
use of sensor m. For the sum of probabilities to remain unitary, we proposed that the sum
in the column be unitary. For this work, the feasibility matrix has three lines, indicating the
feasibility of the GNSS, LiDAR, and camera sensors, respectively.

The GNSS’s feasibility matrix is presented in Equation (7), where the columns represent
the classes GNSSOutsideCrop, GNSSInsideCrop and UnderCanopy, respectively. The
GNSSOutsideCrop class indicates the ideal condition for navigation using GNSS. On the
other hand, the GNSSInsideCrop and UnderCanopy classes do not enable navigation using
GNSS; therefore, navigation using LiDAR or a camera was chosen.

BGNSS =

1 0 0
0 0.5 0.5
0 0.5 0.5

 (7)

The LiDAR’s feasibility matrix is presented in Equation (8), where the columns rep-
resent the classes LiDAROutsideCrop, LiDARInsideCrop and LiDAROcclusion. The Li-
DARInsideCrop represents the ideal condition for navigation using LiDAR. On the other
hand, the LiDAROcclusion and OutsideCrop classes do not enable navigation using LiDAR;
therefore, for the LiDAROcclusion class, we chose navigation using a camera and for the
LiDAROutsideCrop class, we chose the navigation system using GNSS.

BLiDAR =

0 0 1
1 0 0
0 1 0

 (8)

The camera feasibility matrix is presented in Equation (9), the columns represent the
classes Ideal, HighBrightness and LowBrightness, Blur and CameraOcclusion. The Ideal
class represents the ideal condition for navigation using the camera. On the other hand,
the classes HighBrightness, LowBrightness and Blur indicate limitations of the camera
sensor and, therefore, they make other sensors viable. As for the CameraOcclusion class,
navigation using LiDAR was chosen.

BCamera =

0 0.5 0.5 0.5 0.5
0 0.5 0.5 0.5 0.5
1 0 0 0 0

 (9)
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2.5.3. Strategy Selection Vector

To consider the best strategies according to the sensor data, it was proposed to use the
strategy selection vector to ensemble the classifiers according to Equation (10).

~S =
[
~WGNSS ~WLiDAR ~WCamera

]
·
[
BGNSS BLiDAR BCamera

]T (10)

where the weight for each sensor’s class (~Wsensor) is given by Equation (5), and feasibility
that each class brings to the use of a specific sensor (Bsensor) is given by Equation (6).

To indicate the percentage of choice for each navigation strategy, Equation (11) was
used, where ~S% indicates the percentage of confidence in each navigation strategy based
on the classifiers.

~S% =
~S

sumcolumn(~S)
(11)

Finally, we must identify the highest value of the strategy selection vector, according
to Equation (12), to choose the best navigation strategy based on the sensor used.

Dj = arg maxcolumn(
~S) (12)

where Dj is the position of the column j with the highest value in the selection vector ~S.

3. Results

In this section, the performance of machine learning techniques is evaluated due to
the change in hyperparameters and the selection of the best classifier by the sensor.

3.1. GNSS

For the MLR technique, there are two models: the Total Model (which has all predictor
variables) and the Stepwise Model (which has only the variables that present the value of
AIC). The characteristics of each of these models can be seen in Table 8.

Table 8. Comparison between MLR models, using GNSS data.

Characteristics Total Model Stepwise Model

βHeadingAccuracy X X
βHorizontalAccuracy X -

βSpeedAccuracy X -
Accuracy [%] 100.00 100.00

AIC 16.05 10.46
LL −0.02 −1.23

DOF 8 4
LRT 2.41

p-value 0.66

The Total Model generated an LL of −0.02 and an AIC of 16.05. Performing the Step-
wise Model, we obtained an LL of −1.23 and an AIC of 10.46. Therefore, there is a decrease
in both parameters, and it can be inferred that the models present contradictory informa-
tion since the simplest model (Model Stepwise) does not present the highest logarithm
of likelihood. When performing the LRT test to determine whether the models differ for
predictive purposes, a p-value of 0.66 was obtained, which is greater than 0.05; this implies
that the null hypothesis cannot be rejected; therefore, we do not have evidence that the
Total Model is better than the Stepwise Model at a significance level of 5%. As we may
not accept the alternative hypothesis, the Stepwise Model was chosen because it has fewer
predictor variables and, consequently, reduces the computational cost.
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Table 9 presents the linear coefficients (α) and the angular coefficients (β), in each of
the classes of the response variable, except for the reference class GNSSOutsideCrop, for
the best model (Stepwise) to predict the response variable.

Table 9. MLR coefficients, using GNSS data.

GNSSInsideCrop UnderCanopy

α −49.75 59.76
βHorizontalAccuracy 337.37 103.98
βHeadingAccuracy - -
βSpeedAccuracy - -

Figure 2a shows the complexity cost (cp) and the average accuracy for each model.
It can be seen that the method has 100.00% accuracy in all models. Therefore, it can be
inferred that a complex tree (with many branches) is not necessary to classify the crop
condition with the parameters obtained from GNSS. Thus, the model with cp equal to 10−1

was chosen.
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Figure 2. Comparison among models using GNSS data: (a) Decision Tree; (b) Random Forest; and
(c) Gradient Boosting.

The hyperparameter values, as well as the accuracy of the built models for the RF
method are shown in Figure 2b. We can observe that there is less than a 1% difference in
the accuracy when varying the number of samples needed to enable a new tree partition
(min_n). For the hyperparameter trees, there is less than 2% difference in accuracy between
using two classifiers (trees = 2) and using more classifiers (trees > 2). Thus, the simplest
model with the best accuracy has trees equal to 26 and min_n equal to 40.

Figure 2c depicts the hyperparameter values as well as the accuracy of the GB models.
Less than 1% difference in the predictive capacity of the models can be noted when the
hyperparameters tree_depth and learning_rate were varied. Based on this, the model with
the hyperparameters learning_rate equal to 10−5, and tree_depth equal to 4 were chosen.
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To choose the best classification technique for external predictor variables of the GNSS
sensor, we analysed the execution time and accuracy of the test data, as presented in
Figure 3. The technique that has the best performance in terms of processing time is the
MLR, with 7.62 µs. When the accuracy of the test data was observed, the performance
was equal to 100%. In this context, MLR was considered the best technique, as it had the
shortest processing time.
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Figure 3. Comparison among techniques using GNSS data.

3.2. LiDAR

For the MLR technique, there were two models: Total Model (which has all the
predictor variables) and Stepwise Model (which has only the variables that present the
value of AIC). The characteristics of each of these models can be seen in Table 10.

Table 10. Comparison between MLR models, using LiDAR data.

Characteristics Total Model Stepwise Model

βµX X X

βσX X X

βγX X X

βµY X X

βσY X -
βγY X X

βµI X X

βσI X -
βγI X X

Accuracy [%] 70.22 70.84
AIC 1546.41 1541.36
LL −753.21 −754.68

DOF 20 16
LRT 2.944

p-value 0.57

The Total Model generated an LL of −753.21 and an AIC of 1546.41. On the other
hand, when running the stepwise procedure, an LL of −754.68 and an AIC of 1541.36 were
obtained. Therefore, there is a decrease in both parameters, and it can be inferred that the
models present contradictory information since the simplest model (Stepwise Model) does
not present the highest logarithm of likelihood. When performing the LRT test to determine
whether the models differ for predictive purposes, a p value of 0.66 was obtained, which is
greater than 0.05; this implies that the null hypothesis cannot be rejected, thus we do not
have evidence that the Total Model is better than the Stepwise Model at a significance level
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of 5%. As we may not accept the alternative hypothesis, the Stepwise Model was chosen
because it has fewer predictor variables and, consequently, reduces the computational cost.

Table 11 presents the linear (α) and angular coefficients (β), in each of the classes of
the response variable other than the reference class LiDAROutsideCrop, for the best model
(Stepwise) to predict the response variable.

Table 11. MLR coefficients using LiDAR data.

LiDAROcclusion LiDARInsideCrop

α −1.32 0.73
βµX 1.65 0.47
βσX 1.78 −0.07
βγX −1.08 −0.09
βµY −2.31 −0.44
βσY - -
βγY 0.74 0.33
βµI 5.75 1.00
βσI - -
βγI −0.53 −0.82

Figure 4a shows the complexity cost (cp) and average accuracy for each model. Note
that the best accuracy is present when cp is equal to 10−2. After this value, a reduction in
the accuracy of the technique was observed, which is an indication of the occurrence of
overfitting. Thus, the hyperparameter cp equal to 10−2 was chosen.

10−5 10−4 10−3 10−2 10−1
60

65

70

75

80

cp

A
cc

ur
ac

y
[%

]

(a) DT

2 26 51 75 100
60

65

70

75

80

trees

A
cc

ur
ac

y
[%

]

(b) RF

min_n = 2
min_n = 11
min_n = 21
min_n = 30
min_n = 40

1 4 8 11 15
60

65

70

75

80

tree_depth

A
cc

ur
ac

y
[%

]

(c) GB

learning_rate = 10−5

learning_rate = 10−4

learning_rate = 10−3

learning_rate = 10−2

learning_rate = 10−1

Figure 4. Comparison among models using LiDAR data: (a) Decision Tree; (b) Random Forest; and
(c) Gradient Boosting.

The hyperparameter values and the accuracy for the RT models are shown in Figure 4b.
For the hyperparameter min_n, a less than 5% difference in the accuracy was observed
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when varying the number of samples needed to allow a new tree partitioning. However,
when analysing the hyperparameter trees, it appears that there is an increase in model
accuracy by almost 10% when changing this hyperparameter from 2 to 26. Thus, the
simplest model with the best accuracy has trees equal to 26 and min_n equal to 40.

Figure 4c depicts the hyperparameter values and the accuracy for the GB models. For
the hyperparameter tree_depth, up to depths 4 and 8, an increase in accuracy was observed
followed by a decrease. In the predictive capacity of the models, there was less than 2%
difference in the variation of the hyperparameter learning_rate. Thus, the simplest model
with the best accuracy has learning_rate equal to 10−1, and tree_depth equal to 4.

To choose the best classification technique for external predictor variables of the
LiDAR sensor, we analysed the execution time and accuracy of the test data, as presented in
Figure 5. The fastest technique in terms of processing time was MLR with 33.33 µs. In terms
of model accuracy, the best performance was the DT technique with 74.44%. However,
to increase the accuracy by 4% with the DT, it was necessary to double the processing
time compared to the MLR. In this context, the technique with the best performance in
processing (MLR) time was chosen.
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Figure 5. Comparison among techniques using LiDAR data.

3.3. Camera

For the MLR technique, there were two models: Total Model (which has all the
predictor variables) and Stepwise Model (which has only the variables that present the
value of AIC). The characteristics of each of these models are presented in Table 12. As
can be seen, it is not possible to remove a variable to maintain or increase the predictive
capacity of the Total Model; therefore, the Total Model is equal to the Stepwise Model.

Table 12. Comparison between MLR models using camera data.

Characteristics Total Model Stepwise Model

βµG X X
βσG X X
βγG X X
βσ2

lap
X X

Accuracy [%] 93.76 93.76
AIC 1619.65 1619.65
LL −789.83 −789.83

DOF 20 20
LRT 0

p-value 1.00

Table 13 presents the linear (α) and angular coefficients (β) in each of the classes of the
response variable, except for the reference class Blur, for the best model (Total) to predict
the response variable.
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Table 13. MLR coefficients using camera data.

Ideal HighBrightness CameraOcclusion LowBrightness

α 2.01 −4.53 1.56 −13.18
βµG −3.53 17.31 −2.98 −13.11
βσG −8.72 2.65 −2.09 −2.22
βγG −1.85 −1.25 11.00 10.78
βσ2

lap
17.95 10.01 6.44 16.83

For the DT technique, there were five models chosen. Figure 6a shows the complexity
cost (cp) and average accuracy for each model. It can be noted that model accuracy increases
until a cp value of 10−3, after this value, the accuracy of the model starts to decrease, which
is an indication that the model is overfitting to the training data. Thus, the model with a cp
equal to 10−3 was chosen.
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Figure 6. Comparison among models using camera data: (a) Decision Tree; (b) Random Forest; and
(c) Gradient Boosting.

The hyperparameter values as well as the accuracy of the built models for the RF
method are shown in Figure 6b. When analysing the hyperparameter min_n, a 2% difference
in accuracy can be seen for simple and complex trees. For the hyperparameter trees, there is
an increase in the predictive capacity when using 26 classifiers. However, when increasing
the number of trees, a constant accuracy was observed, indicating that the model is more
complex but without gaining predictive capacity. Thus, the model with trees equal to 26
and min_n equal to 1 was chosen as the best model.

Figure 6c shows the hyperparameter values and the accuracy of the built models
for the GB method. Note that changing the hyperparameter learning_rate increased the
accuracy of the model by about 8%. On the other hand, for the hyperparameter tree_depth,
a a higher predictive capacity was observed with a depth equal to 8. After this, the accuracy
remained constant. Thus, the best model is the one with learning_rate equal to 10−5, and
tree_depth equal to 8.
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To choose the best classification technique for external predictor variables of camera
data, we analysed the execution time and accuracy of the test data, as presented in Figure 7.
The fastest technique in terms of processing time was MLR, with 14 µs. Regarding the
accuracy of the model, the best performance was for the RF technique, with an accuracy
equal to 98.80%, and the worst processing time, 32 µs. In this context, the GB was judged to
be the best technique because it had the second-best accuracy (98.08%) and the third best
processing time (24 µs).
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Figure 7. Comparison among techniques using camera data.

3.4. Navigation Selections or Navigation Methodologies

Finally, to validate the methodology for selecting navigation strategies, three runs
were performed with the AgBot TS2020.

In Figure 8a, a route was adopted in which the TS2020 went from InsideCrop to Out-
sideCrop. In Figure 8d, a route was adopted in which the TS2020 went from OutsideCrop to
InsideCrop. In Figure 8g, a route was adopted in which the TS2020 went from OutsideCrop
to UnderCanopy.

When the platform was navigating within the crop, the robot used LiDAR and the
camera to select navigation strategies, as shown in Figure 8b. When analysing the region
where there was crops, as shown in Table 14, a navigation strategy using LiDAR or the
camera was always selected. However, when analysing the region where there was no
crops, a navigation strategy using GNSS was selected 88.08% of the time. After leaving the
crops, there was no immediate change in the selected strategy for a period of approximately
20 s (Figure 8b), which is the time it takes for the GNSS sensor to have more weight than
the other sensors.

In Figure 8f it is observed, that, similarly to Figure 8c, the navigation strategy using
GNSS took approximately 20 s to lose importance in relation to the other navigation
strategies. When navigating within the crops, it was observed that, for this condition, there
was a level of variation between the navigation strategies that used LiDAR and the camera.
The difference in choice between the navigation strategies was, in general, due to sensor
occlusions. In addition, it can be seen how much information from the GNSS sensor was
omitted due to information from the other sensors. As shown in Table 14, for InsideCrop
scenarios, a navigation strategy using LiDAR or the camera was selected in 87.30% of the
time. On the other hand, for OutsideCrop scenarios, the selected navigation strategy was
GNSS every time.

In Figure 8h, after the period of 20 s, we saw that navigation strategies using GNSS
lost importance in relation to the other navigation strategies. The AgBot proximity to the
crop, about 1 m, was already enough to indicate that the GNSS sensor should be omitted
due to the increase in the horizontal position error. On this route, only navigation strategies
that used LiDAR and the camera were selected. In this scenario, it was observed that even
within the crops, the strategy using GNSS obtained, on several occasions, an importance of
almost 20%. This caused the importance of other strategies to lose magnitude.
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Figure 8. Trajectory: (a) InsideCrop to OutsideCrop: Presence of crop; (b) InsideCrop to OutsideCrop:
Selection of sensors for navigation; (c) InsideCrop to OutsideCrop: Probability indicated by the
methodology of selecting each navigation strategy; (d) OutsideCrop to InsideCrop: Presence of crop;
(e) OutsideCrop to InsideCrop: Selection of sensors for navigation; (f) OutsideCrop to InsideCrop:
Probability indicated by the methodology of selecting each navigation strategy; (g) OutsideCrop
to UnderCanopy: Presence of crop, (h) OutsideCrop to UnderCanopy: Selection of sensors for
navigation and (i) OutsideCrop to UnderCanopy: Probability indicated by the methodology of
selecting each navigation strategy.
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Table 14. Sensors’ selection using feasibility matrix.

Crop?
InsideCrop to OutsideCrop OutsideCrop to InsideCrop OutsideCrop to UnderCanopy

GNSS LiDAR or Camera GNSS LiDAR or Camera GNSS LiDAR or Camera

Yes 0 70 24 165 0 192
No 170 23 10 0 0 9

4. Conclusions

This paper investigated how to develop a methodology that selects navigation strate-
gies in an AgBot based on the identification of limitations in sensor data. Experimental
results showed that the proposed methodology was able to select the optimal navigation
strategy for several different scenarios at least 87% of the time.

First, several sensor characteristics were analysed and the best classifier was selected
among MLR, DT, RF, and GB to identify how sensor variables can indicate their limitations.
Next, a logic of combining the responses of the classifiers was proposed to select the best
navigation strategy.

For the GNSS sensor, the classifier with the best performance was MLR, obtaining an
accuracy of 100% in all iterations using the repeated k-fold method. It was found that the
GNSS signal was affected by trees in a sugarcane field, both from the side and from above,
and because of this, all models have perfect accuracy. For GNSS navigation, it was also
observed that the algorithm presented better horizontal accuracy in situations of lateral
obstruction when compared to superior obstruction. As GNSS data are sensitive to the
position of the satellites, it is indicated that future work could investigate the behaviour
of horizontal accuracy using data collected throughout the year. The features obtained
from the LiDAR point cloud produced a good classifier using MLR, with an accuracy of
70.93%. Furthermore, for variables using the camera sensor, GB was the best model, with
an accuracy of 98.08%.

The fusion of data using the viability matrix generated consistent results, giving
importance to different navigation strategies depending on the limitations indicated by the
classifiers. The normalization of rows and columns allowed removing the bias of the sensor
that had the highest number of favourable classes.

Furthermore, the methodology follows the line of a decision-making process based on
data, so whenever it is applied to other cultures, new samples must be produced to adapt
the classifiers. For this reason, one of the first steps of the methodology is to verify the need
to generate a new model.

It was observed that the GNSS signal takes about 20 s to decrease or increase the
horizontal accuracy. This can generate a navigation problem; therefore, as future work, the
behaviour of the system should be investigated using the Saaty’s scale, as is performed in
the analytical hierarchical process to weigh the classes of each classifier with the sensor
being analysed.
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The following abbreviations are used in this manuscript:

AgBot Agricultural robot
AIC Akaike criterion information
DOF Degree of freedom
DT Decision Tree
GB Gradient Boosting
GLM Generalized linear models
GNSS Global navigation satellite system
HSL Hue, saturation and lightness
IMU Inertial measurement unit
LiDAR Light detection and ranging
LL Log-likelihood
LRT Likelihood-ratio test
MCC Matthews correlation coefficient
MLR Multinomial logistic regression
RF Random Forest
RGB Red, green and blue
RNN Recurrent neural networks
ROS Robotic operating system
RTK Real-time kinematic
SLAM Simultaneous localization and mapping
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