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Abstract: It is of great significance to accurately identify soybean planting areas for ensuring agri-
cultural and industrial production. High-resolution satellite remotely sensed imagery has greatly
facilitated the effective extraction of soybean planting areas but novel methods are required to further
improve the identification accuracy. Two typical planting areas of Linhu Town and Baili Town in
Northern Anhui Province, China, were selected to explore the accurate extraction method. The 10 m
multispectral and 2 m panchromatic Gaofen-1 (GF-1) image data were first fused to produce training,
test, and validation data sets after the min–max standardization and data augmentation. The deep
learning U-Net model was then adopted to perform the accurate extraction of soybean planting
areas. Two vital influencing factors on the accuracies of the U-Net model, including cropping size
and training epoch, were compared and discussed. Specifically, three cropping sizes of 128 × 128,
256 × 256, and 512 × 512 px, and 20, 40, 60, 80, and 100 training epochs were compared to optimally
determine the values of the two parameters. To verify the extraction effect of the U-Net model,
comparison experiments were also conducted based on the SegNet and DeepLabv3+. The results
show that U-Net achieves the highest Accuracy of 92.31% with a Mean Intersection over Union (mIoU)
of 81.35%, which is higher than SegNet with an improvement of nearly 4% in Accuracy and 10% on
mIoU. In addition, the mIoU has been also improved by 8.89% compared with DeepLabv3+. This
study provides an effective and easily operated approach to accurately derive soybean planting areas
from satellite images.

Keywords: remote sensing; data augmentation; parameter optimization; planting area extraction;
deep learning

1. Introduction

Soybean (Glycine max (L.) Merr.) is one of the most important oil-bearing crops around
the world. It is also one of China’s major food crops, which can be used to provide valuable
oil and protein constituents for both humans and livestock. The largest production areas are
in China’s three northeastern provinces [1]. To make a decision on the cultivation and trade
of soybean, it is highly important to figure out the planting areas and spatial distribution.
Traditional methods mainly rely on manual measurement and statistical sampling to
achieve statistical data, which are time-consuming, susceptible to subjective judgment,
labor-intensive, etc. The advancement of earth-observing techniques has greatly improved
the monitoring and extraction of crop planting and growth information, especially at a
large spatial scale. Remote sensing (RS) technology can provide spatial, spectral, and
temporal information of soybean, with macroscopic and dynamic characteristics. When RS
technology is applied to the monitoring of soybean, the specific properties and features can
be derived from various sensors.
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With the development of satellite RS technology, RS images have gradually become a
main data source for extracting crop planting information. RS technology has been widely
used with soybean crops including estimating the planting areas [2], yield estimation [3],
growth monitoring [4], detection and classification of diseases and insect pests [5], etc.
It is obvious that a precise understanding of soybean planting areas and their geograph-
ical distribution is the prerequisite for various applications. In most previous studies,
single-source RS images have been adopted to extract soybean planting areas, mainly in-
cluding the MODerate Resolution Imaging Spectroradiometer (MODIS) series of satellites
of Gaofen, Landsat, and Sentinel. Chang et al. [6] applied a 500-meter time-sequential
composite MODIS to estimate corn and soybean areas for the dominant production areas
of the USA by taking advantage of low spatial and high temporal resolution MODIS data.
Huang et al. [7] identified the corn and soybean cropping areas using the random forest
(RF) classifier and multi-temporal 16-meter-resolution GF-1 Wide Field of View (WFV)
imagery. Zhong et al. [8] developed an innovative phenology-based classification method
to map corn and soybean via over 100 Landsat TM and ETM+ images. Multiple sets of
input variables and RF classifiers were jointly used to achieve accuracies higher than 88%.
Zhu et al. [9] integrated multi-temporal Sentinel-1/2 microwave and optical multispectral
data to map the spatial distribution of soybean through a stepwise hierarchical extraction
strategy. The RF proved to be superior to a Back-Propagation Neural Network (BPNN) and
Support Vector Machine (SVM). It can be found that multitemporal features of satellite im-
agery are mainly used to identify soybean information. The overall accuracies are generally
lower than 90%.

In recent years, the rapid development of Unmanned Aerial Vehicles (UAV) has
provided higher-resolution remote sensing imagery for soybean monitoring. Rand̄elović
et al. [10] adopted the vegetation indices (VIs) derived from three-channel UAV images
of Red, Green, and Blue (RGB) bands to predict soybean plant density. In addition to
commonly used machine learning algorithms, some Convolutional Neural Networks
(CNN)-based methods have been also used in accurately extracting soybean planting
areas. CNN consist of three layers, a convolutional layer, a max pooling layer, and a
fully connected layer, which can greatly improve the classification accuracy of single or
multiple objects by learning deep features. Habibi et al. [11] used the You Only Look Once
version 3 (YOLOv3) object detection algorithm to accurately measure actual soybean plant
density, showing higher accuracy than the partial least squares and RF methods. Yang
et al. [12] collected RGB and multispectral images using a quad-rotor UAV and employed
the U-Net model to improve the soybean recognition accuracy. The results show that the
accuracy of the U-Net was the best when compared with DeepLabv3+, RF, and SVM. In
comparison, with centimeter-level spatial resolution UAV imagery, the spatial resolution
has been improved from a hundred-meter to sub-meter resolution for spaceborne satellites.
The improvement in spatial resolution has facilitated the use of deep learning algorithms
to improve the extraction accuracies of crop planting areas [13].

There are several influencing factors on the extraction of soybean planting areas, such
as RS images, classifiers, planting structure, and the area of the study space, etc. Soybean
and corn are the two crops that are generally misclassified during their growing seasons.
Both crops show similar spectral and textural features at the initial growth stages but the
indicative features can be explored in their middle and late growth seasons [14]. It is highly
necessary to find the discriminative features between soybean and corn using remote-
sensing technology. The selection of imaging time for RS images is essential for accurately
identifying soybean planting areas. In addition to the RS images, classifiers are also factors
affecting accuracy. For example, the Simple Non-Iterative Clustering segmentation method
and the Continuous Naive Bayes classifier were used to map the soybeans and corn in
Paraná state, Brazil, with a minimum global accuracy of 90% [15]. Xu et al. [16] developed a
deep learning approach, named DeepCropMapping (DCM), to dynamically map corn and
soybean. The DCM model significantly outperformed the Transformer, RF, and Multilayer
Perceptron (MLP) methods. To improve the monitoring and classification performance,
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multitemporal and multispectral RS data are generally input into the classifiers [17]. It is
inevitable that high computing power is required to generate a large number of training
samples for obtaining reliable and accurate performance. To increase work efficiency
in practice, it is significant to map the soybean in a relatively short time. In this study,
a 2-meter-resolution fused GF-1 image with the appropriate imaging time was used to
identify soybean plating areas via the CNN-based U-Net model. The model is composed
of a contracting path and an expansive path, in which the U-shaped architecture and skip
connections are the outstanding features [18]. It is simple, efficient, easy to understand,
and customizable.

Our highlights for this study are: (1) Fusing the 8-meter multispectral and 2-meter
panchromatic GF-1 satellite images to assist in the production of high-quality training
samples. (2) Using the intelligible and certified U-Net model to identify soybean planting
areas. (3) Comparing and discussing the two crucial parameters, image cropping size
and training epoch, which greatly affect the accuracy of the U-Net model to find out the
optimal values. The main objective of this study was to optimally determine a U-Net
model for accurately extracting soybean planting areas, with the best cropping sizes and
training epochs based on high-resolution GF-1 fused imagery. An additional objective was
to validate the accuracy of the model by comparing the SegNet and DeepLabv3+. The two
networks are mainstream CNN architectures for image segmentation, which have been
usually adopted as comparison models.

2. Materials and Methods
2.1. Study Area

The study area was located in Guoyang County, spanning from 33◦27′ to 33◦47′ N
and 115◦53′ to 116◦33′ E, Bozhou City, Northern Anhui Province, China (Figure 1). The
soybean planting area reached 71,086.67 ha in 2022. Linhu Town and Biaoli Town were
selected as the study areas, which are important soybean planting areas in Guoyang County.
The two towns have flat terrain and four distinct seasons, with an annual rainfall of about
800 mm. A warm–temperate semi-humid monsoon climate and sufficient sunlight are
beneficial to the growth of crops such as soybean, wheat, maize, etc.
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Anhui Province, China.
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2.2. Growth Stages of Soybean

Growth stages of soybeans are divided into vegetative growth stages and reproductive
growth stages. There are distinctive spectral and spatial characteristics for soybeans at
different stages. In addition, other crops (e.g., corn, sorghum, cotton) may also show similar
characteristics to soybeans, which causes trouble in accurately identifying soybean planting
areas. It is highly important to figure out the phenological stages for selecting appropriate
remote-sensing images [4]. When applying remote-sensing technology to the classification
of soybeans, it is vital for finding out the optimal imagery. In this study area, soybeans
are generally sown in mid-to-late June and harvested in late September or early October
(Table 1).

Table 1. Primary soybean growth stages in the study area.

Month June July August September October

Mid- Late Early Mid- Late Early Mid- Late Early Mid- Late Early Mid-
Phenological

stage
Sowing Third node Blooming

Seedling
emergence Side branch Podding Maturity

2.3. Data Sources and Preprocessing

The GF-1 optical satellite was launched on 26 April 2013, which is the first satellite of
the China High-resolution Earth Observation System (CHEOS). The satellite has broken
through key technologies of high spatial resolution, combination of multispectral and wide
coverage, etc., which was widely used in various fields (e.g., modern agriculture, disaster
prevention and reduction, resource and environment monitoring) [19–21]. According to
Table 1 and the optimal temporal selection for identifying soybeans [15], GF-1 satellite
images (Table 2) with 2-meter multispectral and 8-meter panchromatic spectral bands
were acquired on 18 August 2019 at blooming and podding stages of soybean. The in situ
experiments were also simultaneously carried out to collect the ground truth data. More
specifically, the samples were randomly selected in a large soybean field and positioned
using a sub-meter GeoXH2008 handheld GPS receiver (Trimble, Westminster, CO, USA).
The positioned samples were then overlayed on the GF-1 imagery to select training datasets.
The radiometric correction and orthorectification were first carried out, and then the
NNDiffuse Pan Sharpening algorithm, proposed by the Rochester Institute of Technology
(RIT), was used to generate a 2-meter resolution fused image in ENVI (The Environment
for Visualizing Images, Exelis Visual Information Solutions, Inc., Broomfield, CO, USA)
5.3 software.

Table 2. Technical parameters of payloads for GF-1 satellite.

Band
Number Band Name Spectral

Range (µm)
Spatial

Resolution (m)
Revisit
Cycle

Swath
(km)

P Panchromatic 0.45–0.90 2

4 days
60

(Two
cameras)

B1 Blue 0.45–0.52

8
B2 Green 0.52–0.59
B3 Red 0.63–0.69
B4 NIR 0.77–0.89

2.4. Dataset Production

(1) Image cropping

For a satellite remote sensing image, the size and data volume are much larger than a
picture photographed by a handheld camera. When a complete image is directly input into a
classifier, especially for a CNN-based method, the computing capacity is generally incapable
of supporting the complex and interactive algorithms for a computer. In addition, the target
objects of soybeans are randomly distributed in a remote-sensing image. Consequently, the
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image must be cropped into small tiles to accelerate the training and classification. As a
kind of data preprocessing, cropping can produce new data by cropping the central pixels
of an image. Considering the town-based images in this study, three cropping sizes of
128 × 128, 256 × 256, and 512 × 512 px images were obtained and compared (Figure 2).
It can be found that the 256 × 256 px images were the most suitable size as the training,
validation, and test data sets.
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Figure 2. Comparison of three image cropping sizes of 128 × 128, 256 × 256, and 512 × 512 px.

(2) Training and test datasets

Two folders were created to deposit training and test datasets, which were named train
and test. The original GF-1 images and datasets used in the experiment were also deposited
in both folders. For the training folder, the cropped images, two folders of original images
named “src” and labeled samples named “label” were placed in the folder. For the test
folder, the folder named “prediction” was also created. When producing the datasets, the
cropped images were in one-to-one correspondence with corresponding labels. Each image
dataset was named using the natural numbers with the format *.png. Similarly, the labeled
samples were also named in accordance with the same rules (Figure 3).
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(3) Data normalization

Normalization is an important procedure for optimizing neural networks, which can
effectively reduce the influence among different datasets and improve the interactive speed
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of training models [22]. In this study, the min–max normalization was adopted to perform
the data normalization, which can perform the linear transformations of original data [23].
The pixel values of an image in the range (0, 255) were normalized to (0, 1). The specific
formula is shown in Equation (1).

xnew =
x− xmin

xmax − xmin
(1)

where xnew is the normalized value; x is the old value, xmax is the maximum value of
original pixel; and xmin is the minimum value of original pixel.

(4) Data augmentation

Insufficient training datasets will cause several severe problems such as unbalanced
samples, over-fitting, or poor generalization ability in neural networks [24]. It is highly
necessary to carry out the data augmentation because we manually produce the training
samples. In addition, they are random and irregular for the spatial distribution of soybean
planting areas. To fully train the U-Net model, various samples are required to be derived
from data augmentation. Specifically, the scale transformation, horizontal and vertical flip,
rotation, etc., were used to obtain more training datasets.

2.5. U-Net Model

The U-Net model was first proposed by Ronneberger et al. based on the fully convo-
lutional networks (FCN) [25]. More specifically, convolutional layers and pooling layers
are used to extract features and transposed convolutional layers are adopted to revert
image sizes. The model was originally applied to the sematic segmentation of medical
images. Afterward, it was widely used in crop detection and classification [26–28], due to
the advantages of the encoder-decoder structure and skipping networks. Previous studies
have shown that U-Net model has strong feature extraction abilities and good segmentation
effects even if the sample size is small. As shown in Figure 4, the structure is composed
of contracting path (encoder) and expansive path (decoder). In the down-sampling pro-
cess, every two convolutional layers form a convolution block and there are in total five
convolution blocks. In each up-sampling process, the convolution feature maps to the two
convolution layers are reduced, whose number is from the encoding path. In the process
of feature extraction, the size of a remote sensing image will be reduced when passing
through a pooling layer every time. For the U-Net network structure, feature extraction
and up-sampling are contacted to form a U-shaped structure.
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2.6. Evaluation Metrics

The confusion matrix-based Accuracy, Recall, Precision, F1-score (F1), Intersection over
Union (IoU) and Mean Intersection over Union (MIoU) were selected as the evaluation
metrics to assess accuracy (Table 3) [29,30]. Accuracy is generally used to evaluate the overall
accuracy of the model. Recall is used to evaluate the classification effect of test set. F1 is
used to comprehensively evaluate the classification performance. IoU is used to calculate
the coincidence degree between target and prediction areas. MIoU is the evaluation index
to assess the prediction results of a network. The closer its value approaches 1, the better
the segmentation effect of the network is.

Table 3. Evaluation metrics for assessing accuracy.

Metric Formula Variable Explanation

Accuracy Accuracy = TP+TN
TP+TN+FP+FN

TP (true positives) are the number of pixels correctly classified as soybean planting
areas; TN (true negatives) represent the number of background pixels that are
predicted as background pixels; FP (false positives) represent the number of pixels
that are background pixels but misclassified as soybean planting areas; and FN
(false negatives) are the number of pixels that are soybean planting areas but
misclassified as background pixels.

Recall Recall = TP
TP+FN

Precision Precision = TP
TP+FP

F1-score F1 = 2 ∗ Precision∗Recall
Precision+Recall

IoU IoU = Pii

∑k
j=0 pij+∑k

j=0 pji−Pii

k is the number of categories; Pii is the number of correctly identified pixels of
category i; pij is the number of pixels that are category i but predicted as the category
j; and pji is the number of pixels that are category j but predicted as the category i.MIoU MIoU = 1

k

k
∑

i=0

Pii

∑k
j=0 pij+∑k

j=0 pji−Pii

3. Results and Discussion
3.1. Model Training

The curves of loss and accuracy based on the U-Net model are shown in Figure 5. As
seen in Figure 5a, the loss value gradually decreases with continuous training. When the
training epochs are 20 and 40, there is a little fluctuation but it maintains about 0.0004 when
the number of training epochs reaches 50. As shown in Figure 5b, the training accuracy
steadily increases with the progression of training. When the epoch reaches 40, the Accuracy
exceeds 99% and reaches 99.51% as the epoch increases to 60. The Accuracy finally reaches
99.69%, indicating that the model has high classification accuracy and achieves a good
training performance. Sixty epochs can be a good choice, after comprehensively considering
the training accuracy and speed. In addition, during the training process, it is also important
to adjust the model parameters. The learning rate and batch size are the two crucial
parameters [31]. The learning rate greatly influences the minimum final convergence of the
model. In this study, we used Adam to adjust it from the default value and its value was
finally set to 0.0001. Batch size affects the model’s performance, large values lead to a poor
generalization ability but small values affect the model’s convergence. It was finally set to
four through a debugging process. The epoch of 100 was used to train the model.

We also mapped the training results for epochs 1, 10, 20, 30, 40, 50, 60, 70, 80, 90,
and 100. It is found that the prediction result is extremely poor for one epoch. Some
samples have no corners and many areas are not predicted and some pixels are not soybean
areas, showing that the model is not well-trained at the beginning. With the increase in
epochs, the prediction result gradually shows a better performance. When it reaches 60,
the classification has already shown a good result, in which the training result reaches a
high coincidence with the labeled samples.
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3.2. Influence of Cropping Size on Prediction Accuracy

In order to explore the optimal cropping size, three sizes of 128 × 128, 256 × 256, and
512 × 512 px were adopted to comparatively analyze its influence on accuracy. A total of
143 test images for the 128 × 128 px, 42 for the 256 × 256 px, and 12 for the 512 × 512 px
were cropped. Figures 6–8 compare the original images, labeled samples, and predicted
images for the three cropping sizes, respectively. In order to assure comparability, the
network parameters of the U-Net model were the same in the comparison experiments,
namely, the batch size was set to four and the epochs were set to 100. As shown in Table 4,
all the evaluation metrics are the highest for the cropping size of 256 × 256 px. There are
great differences in accuracy among the three cropping sizes, indicating that cropping sizes
have a nonnegligible influence on the U-Net model [32].
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Table 4. Comparisons of accuracy under different cropping sizes.

Cropping Size Accuracy (%) Recall (%) Precision (%) F1 (%) IoU (%) MIoU (%)

128 × 128 88.75 75.85 80.73 78.21 64.22 75.06

256 × 256 92.31 85.43 82.52 83.95 72.34 81.35

512 × 512 77.46 53.13 71.82 61.08 43.96 58.29

Figure 6 shows some test results under the 128 × 128 px cropping size. The overall
prediction effect is fairly good, however, the edges and corners in some images are not
accurately predicted. For the predicted image of 1.png, a large area is classified as soybean
planting areas but they are not really soybeans according to the labeled image. It can be
found that more pixels are misclassified as soybean planting areas. For the predicted image



Agronomy 2023, 13, 863 10 of 14

of 2.png, some small areas are identified as soybean planting areas, with an Accuracy of
88.75% and MIoU of 75.06%. As a whole, the integrity and completeness are worse for the
four images.

In comparison with Figure 6, the Accuracy reaches 92.31% under the 256 × 256 px
cropping size (Figure 7). The MIoU reaches 81.35% and the training accuracy of the model
reaches 99.69%. It is obvious that there are only subtle differences between predicted
images and labeled samples. The primary reason is that there are textural differences in
some corners, which causes the model not to achieve the ideal effect. More than 80% of
MIoU indicates that the overall performance achieves the desired results.

When the cropping size reaches 512 × 512 px, there are large misclassification areas
(Figure 8), especially for the 12.png. More pixels are incorrectly predicted, resulting in an
Accuracy of less than 80%. The MIoU is only 58.29%, showing that the training effect is
not satisfactory.

3.3. Influence of Training Epochs on Prediction Accuracies

When training the datasets, the predicted map of each epoch was saved. It can be
found that with the increase in training epochs, the training effect becomes better. An
optimal model can be achieved when the accuracy reached its peak. As shown in Figure 9,
the test results are optimal when the training epoch is 60, and the predicted soybean
planting areas are closest to the labeled samples. When the training epoch is less than 60,
the test results show more or less misclassified pixels to a varying degree, especially for
the 24.png test image. A few background areas are misinterpreted as soybean planting
areas. This phenomenon shows that insufficient training will lead to underfitting. When
the training epoch reaches 80 and 100, the misclassification phenomena are slightly reduced
compared with the epoch of 60, however, more predicted pixels are produced. Combined
with Figure 5, when the training epoch reaches 60, the accuracy and loss reach the most
stable state. Excessive training does not increase the training effect and the epoch of 60 was
selected to train and test the model.
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Figure 9. Visual comparison of extracted soybeans at different training epochs.

Figure 10 shows that the Accuracy, Recall, F1, IoU, and MIoU show a first increase and
then a decrease in trend with the increase in training epochs. When the epochs reach 60, the
prediction accuracies are the highest with an MIoU of 81.36%, showing that the prediction
achieves good performance.
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Figure 10. Comparison of prediction accuracies at different training epochs.

3.4. Comparison of Prediction Accuracies among Different Models

SegNet [33] and DeepLabv3+ [34] deep learning network models were selected as the
comparative experiments to verify the U-Net model. The training epoch was set to 100, the
batch size was set to 4, and the cropping size was 256 × 256 px for the three models. Four
typical images of soybean planting areas were selected to compare the three models, and
their original images and corresponding labels are shown in Figure 11.
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Figure 11. (a) Original sample images and (b) labeled samples.

As shown in Figure 12, the overall spatial distributions of soybean planting areas are
similar for the U-Net, SegNet, and DeepLabv3+ models but there are actually significant
differences between them. It is obvious that the most similar test results to the labeled
samples are from the U-Net model. There are also some additional pixels that are mis-
classified soybean planting areas for U-Net and SegNet models but the extraction effect of
U-Net is better. More soybean planting areas are not fully identified for the SegNet model.
The relatively regular shaped soybean fields cannot be embodied. When analyzing the
predicted results from DeepLabv3+ model, it can be found that the boundaries of most
extracted areas are smoothed and do not show the angular shapes of soybean planting
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areas. In general, the Accuracy of the U-Net model reaches 92% and is improved by 4%
than the SegNet model. The MIoU reaches 81.35%, 71.31%, and 72.46%, respectively, for
the U-Net, SegNet, and DeepLabv3+, which is, respectively, improved by 10% and 9% for
U-Net compared with SegNet and DeepLabv3+.
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4. Conclusions

It is necessary to detect images with good resolution in an advanced phase of the
vegetative cycle. The 2-meter-resolution fused GF-1 imagery and blooming and podding
stages are selected to accurately identify soybean planting areas. In addition, considering
the parameter optimization of the U-Net model, different cropping sizes, training epochs,
and comparative models are adopted to explore the influence of the U-Net model on the
identification accuracy. The best U-Net model is obtained by comparing three cropping
sizes of 128 × 128, 256 × 256, and 512 × 512 px and 20, 40, 60, 80, and 100 training epochs.
The comparative analysis shows that the extraction effect is optimal when the cropping
size is 256 × 256 px, with an Accuracy of 92.31% and MIoU of 81.35%. Afterward, the
training epoch was set to 100 and every 20 epochs were extracted as comparisons. When
the number of training epochs reaches 60, the prediction result is optimal. After comparing
the SegNet and DeepLabv3+ models, the extraction effect of the U-Net model proved to
be the best. The cropping images were used to compare the extraction results rather than
a complete administrative division. When the separate identified images were merged
into an administrative division, there were some problems to be solved, such as seams
and boundaries among different soybean fields. This study can provide a methodological
reference for extracting planting areas of soybean or other crops. In a future study, sub-
meter remote sensing imagery can be used to further validate our model. In addition,
improved U-Net models by adding an attention mechanism, residual module, multi-scale
features, etc., can be adopted to further improve the identification accuracy of soybean
planting areas.
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