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Abstract: In the factory nursery, qualified seedlings can be used to replant unqualified seedlings or
missing seedlings in the seedling tray through automatic transplanters. Due to the random positions
of unqualified and missing seedlings, the end effector of the automatic replanting machine spends
substantial time shuttling between the supply tray and the target tray to complete the replanting task.
Therefore, we proposed a fast path planning method based on improved particle swarm optimization
and compared it with the fixed sequence method and genetic algorithm in experiments with different
replanting numbers in different tray types. The experiment shows that the improved particle swarm
optimization algorithm and genetic algorithm can shorten the length of the replantation path by
about 20% compared with the fixed sequence method, and the running time of the improved particle
swarm optimization algorithm is 57.63% less than the genetic algorithm on average. The replanting
path optimization method based on improved particle swarm optimization designed in this research
can significantly optimize the length and time of the replanting path of the seedling tray, improve the
efficiency of the replanting operation, and meet the real-time requirements.

Keywords: plug seedling replanting; fixed sequence method; genetic algorithm; particle swarm
optimization; path planning

1. Introduction

Traditional seedlings are mainly raised by the bed-and-soil method, which has the
disadvantages of large floor space, unguaranteed seedling and emergence rates, large
number of seeds used, and scattered seedlings. Factory nursery refers to the use of a
seedling tray, in the production of seedlings with modern machinery and advanced nursery
facilities, fertilization and irrigation technology, link control technology and information
management technology, and other advanced technical means throughout the entire process
of seedling production, in a modernized model of seedling production, management, and
operation, to achieve the large-scale production of seedlings [1]. Compared with traditional
seedling production methods, factory seedling production can effectively shorten the
seedling time, improve seedling efficiency, enhance seedling quality, and reduce production
costs through efficient and uniform management [2]. Since the 1980s, based on the digestion
and absorption of mature foreign seedling technology, China has gradually carried out
research on factory seedling production technology, which has been established in China
for more than 40 years [3]. The development plan for the vegetable industry of the Ministry
of Agriculture points out that in 2020, the sown area of vegetables in China will reach
15.66 million hectares, the annual output will exceed 580 million tons, and the annual per
capita possession will reach 400 kg [4]. The current national intensive seedling supply
is about 100 billion seedlings, much lower than the national demand for the seedling-
replanted vegetable seedlings of 680 billion seedlings [5]. Thus, it can be observed that the
current market for vegetable seedling nurseries in China is huge, the traditional nursery
method has been unable to meet the market demand, and the factory seedling tray nursery
has a broad development prospect [6–11].
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The low productivity, high labor intensity, and difficulty in realizing large area opera-
tion by manual work method have hindered the development of factory nursery technology
to some extent; therefore, it is inappropriate to use the manual method for replanting tasks
in factory nurseries. In recent years, with the development of computer technology, machine
learning algorithms have been more and more widely used in different fields [12,13], while
increasingly more scholars are applying them to automatic replanting machines [14–17].
In 1987, Kutz et al. of Auburn University, USA [18] designed a method to replant pot-
ted seedlings by attaching a seedling grabber to a Puma 560 robot, which could replant
36 seedlings in 3.3 min by combining L-shaped replanting path control from a 392-hole
seedling tray to an adjacent 36-hole seedling tray. In 2001, K.H. Ryu et al. [19] designed
and developed a replanting robot based on a Cartesian coordinate system for cucumber
and tomato seedlings. In 2009, Xiaopeng Wang et al. [20,21] designed a transplanter for re-
planting seedlings in various sizes of seedling trays at Nanjing Agricultural University and
used trajectory planning to determine the velocity, position, and acceleration parameters
of the end effector. In 2013, Xiu Wang et al. [22], from the Beijing Agricultural Intelligent
Equipment Technology Research Center, designed a new sorting transplanter with a failure
rate of less than 10% for the identification of high-quality pepper seedlings on five different
seedling trays and a measurement error of about 5 mm for seedling height, and a replant-
ing success rate of 90.0% at a speed of 700 cycles per hour on a 6 × 12-hole seedling tray.
In 2016, Hanping Mao and others [23] from Jiangsu University developed a light and simple
automatic replanting machine with replanting efficiency of 1025 and 1221 plants/hour for
72- and 128-hole seedling trays seedlings, respectively, with an average replanting success
rate of 90.70% and seedling bowl clamping fragmentation rate of less than 5%, achieving
better automatic seedling picking and replanting. In 2017, based on a three-degree-of-
freedom Delta parallel mechanism and pneumatic seedling picking claw, Jianping Hu and
others [24] designed a high-speed pot seedling replanting robot, and the qualification rate
of pot seedling replanting was 95.5% and the qualification rate of replenishment seedling
was 92% when the maximum acceleration was equal to 30 m/s2. In 2018, Luhua Han
et al. [25] developed a greenhouse seedling multi-tasking robot replanting workbench, and
when the working efficiency was set to 960 plants/hour/hand claw, the replanting success
rate was up to 90%.

Automatic transplanters can efficiently replace unqualified seedlings with qualified
seedlings, replenish missing seedling trays, and can also perform pre-processing for most
farm tasks. During the work of the transplanter, the efficiency of the work can be enhanced
without increasing the cost by planning the movement path of the gripper. To achieve this
goal, it is necessary to carry out reasonable planning for replanting operations. In 2013,
Junhua Tong et al. [26] proposed a model algorithm based on a genetic algorithm suitable
for solving the replanting path optimization problem; when replanting a total of 50 potted
seedlings, the optimization magnitude was greater than 8.5%, the path length was shortened
by at least 3.7 m, and the average computation time of this algorithm was 0.65 s. In 2015,
Zhuohua Jiang et al. [27] proposed a replanting path planning method based on an ant
colony algorithm (ACA), when using 200 hole-size seedling trays, the average length of
ACA was reduced by 6000.9 mm compared with GA, and the average running time of GA
and ACA in MATLAB was 0.32 s and 0.94 s, respectively. In 2016, Junhua Tong et al. [28]
proposed a method for optimizing the thinning replanting path of greenhouse potted
seedlings based on the greedy algorithm. In the thinning path planning of dense seedling
trays, the optimal scheme (GAS3) was optimized by 106% compared with the fixed-order
scheme, and the average computation time of the algorithm was 0.84 s. The greedy
algorithm scheme can optimize the thinning replanting path length and meet the real-time
requirements of replanting operations, thus improving the replanting efficiency. In 2017,
Leiying He et al. [29] proposed a greedy genetic algorithm by fusing the characteristics
of greedy algorithm and genetic algorithm, and the greedy genetic algorithm optimized
the planning path length by 33.8%~41.3% compared with the fixed order method, and the
optimized length lengthened with the increase of the number of cavities; the operation
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time of greedy genetic algorithm was 1.81 s and the operation time of genetic algorithm
was 5.59 s, respectively. In 2018, Shoujiang Xu et al. [30] designed a model algorithm
based on the hybrid frog-hopping algorithm for the automatic bowl-shifting problem
during replanting operations. The path of the end effector in the replanting operation
was optimized. In 2019, Ronghua Ji et al. [31] integrated the advantages of the ant colony
algorithm and the greedy algorithm to address the problem that the convergence speed
of the ant colony algorithm is slow and it is difficult to reach the global optimum due
to the increase in the number of holes in the seedling tray, and proposed a greedy and
colony-based automatic replanting path segmentation-seeking algorithm (GACS algorithm)
for potted seedlings. The experimental results show that the running time of the GACS
algorithm is reduced to within 20% of that of ACO, and the path optimization length
and convergence speed of the algorithm are better than those of ACO for 50-, 72-, and
128-hole-size seedling trays.

Current researchers mainly use the greedy algorithm [32], ant colony algorithm [33],
genetic algorithm [34], and other intelligent algorithms for path planning on the length of
the replanting path of the seedling tray; compared with the traditional fixed-order method,
replanting path length has been substantially optimized to shorten the replanting time and
improve the replanting efficiency. However, the intelligent algorithms require a certain
amount of computational time cost, and the replanting path of the next target tray needs to
be replanted after the current target tray replanting, so shortening the computational time
of the path planning algorithm can improve the overall efficiency of seeding replanting to a
certain extent.

The purpose of this study is to design a path planning method for an automatic
replanting machine that shortens the computation time of the path planning algorithm,
expecting to shorten the algorithm running time while ensuring the algorithm’s path
length optimization capability to meet the requirements of high accuracy and speed of the
automatic replanting machine.

2. Materials and Methods

To carry out the subsequent work in an orderly manner and verify the effectiveness of
the improved particle swarm algorithm, an overall planning of the whole work is carried
out in this paper, and the subsequent work will be carried out in an orderly manner
according to the planning; the flow diagram is shown in Figure 1.
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2.1. Materials and Equipment

Capsicum is an annual or limited perennial herb belonging to the genus Capsicum in
the family Solanaceae. The initial stage of growth and development of pepper seedlings
is the germination period, and the seeds emerge in about 5–8 days after germination and
sowing in general, and the first true leaves grow in about 15 days until the flower buds are
revealed called the seedling stage. In this study, the seedlings of pepper were cultivated in
a greenhouse, the name of the variety is Chinese big pepper, cultivated and provided by
Beijing Zhongnong Futong Horticulture Co., Ltd., Beijing, China, in March 2019, the image
collection site is shown in Figure 2, and the original images collected are shown in Figure 3.
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Figure 3. Acquired raw images.

In this research, the seedling tray replanting test platform was made according to the
actual 1:1, as shown in Figure 4. The left side is the target tray, and the right side is the
seedling supply tray. The replanting manipulator is driven by the XYZ three-axis linear
module to replant. Before replanting, the grade information of the seedlings in the seedling
tray has been obtained from the target tray and supply tray after image recognition, and the
substrate of unqualified seedlings or missing seedlings in the target tray has been removed.
During replanting, the end effector grabs the qualified seedlings from the supply tray and
moves them to the corresponding position in the target tray for replanting.
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The sequence of actions of the end effector for the complete replanting of a target tray
is as follows: The initial position of the end effector is at the upper right corner of the supply
tray. According to the replanting planning path, the end effector first moves above the first
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qualified seedling to be captured in the supply tray, and then the end effector moves down
to capture the seedlings and up to a fixed height, and then moves above the first replanting
position in the target tray, and then the end effector releases the seedlings and moves up to
a fixed height. Then, the end effector moves to the second qualified seedling position in the
supply tray, and repeats the previous action until all the holes to be replanted in the target
tray are replanted, then the end effector returns to the initial position, and the replanting
operation is finished.

Using the 50-hole plate replanting as an example, a planar model for replanting
paths was established based on the distribution of seedling supply and target trays in the
replanting test platform, as shown in Figure 5. The seedling legend represents qualified
seedlings, the hollow circle legend represents unqualified seedlings, and the black square
represents the missing seedlings. Both the supply and target trays are 50-hole seedling trays
(5 × 10) with dimensions of 540 mm in length and 280 mm in width, and the initial position
of the end effector movement is at the bottom left O of the supply tray. The numbering
rules of the seedling trays are as follows: in this study, the seedling trays with 50 holes
were numbered from 1 to 50, from left to right, from top to bottom, and the target trays
with 50 holes were numbered from 51 to 100, from left to right, from top to bottom, in that
order. The rules for setting cell numbers in 72-hole and 105-hole seedling trays are the same
as those for 50-hole seedling trays.
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2.2. Path Planning Algorithm

The algorithm implementation environment: Intel(R) Core(TM) i7-8750H CPU
@2.20 GHz 2.21 GHz, 16 GB memory (Intel, Santa Clara, CA, USA), Nvidia GTX1060 graph-
ics card (Nvidia, Santa Clara, CA, USA); software environment: Matlab2018b (The Math-
Works, Natick, MA, USA), Windows 10 64 bit operating systems (Microsoft, Redmond,
WA, USA). In this paper, based on the detection results of the machine vision system and
seeding replanting path planning model, three algorithms are used, namely the fixed-order
method, genetic algorithm, and improved particle swarm optimization, to optimize the
design of the seeding replanting path.
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2.2.1. Fixed-Order Path Planning Method

The fixed sequence method (FS) is where the replanting robot transfers seedlings from
the supply tray to the target tray in a fixed sequence each time. Since both the supply
tray and the target tray can be combined from left to right, from right to left, from top to
bottom, and from bottom to top, the fixed sequence method for replanting also has many
combination schemes. In the literature [28], it is known that the path length is shortest
in the fixed-order method by retrieving seedlings in the order of right to left and top to
bottom in the hole cells in the supply tray and placing seedlings in the order of left to right
and top to bottom in the target tray at intervals, so the above scheme was used in this
study. The complete replanting path of the fixed-order method is shown by the arrow in
Figure 5, and the plan is as follows: the replanting robot starts from the origin O position
and reaches the first position of the top-to-bottom and right-to-left seedling pickup in the
supply tray, i.e., the hole cell in the 9th row and 6th column of the supply tray for seedling
pickup. Then, the 1st position of the target tray is moved from left to right, and from top to
bottom, i.e., the 3rd cell in the 1st row of the target tray for seedling release. In the process
of obtaining seedlings, the position of unqualified seedlings is skipped, and so on, until the
target tray has finished replanting all five holes to be replanted, then it returns to the origin
O. The sequence number of obtaining five qualified seedlings in the supply tray and the
sequence number of putting five seedlings in the target tray are shown in Figure 6.
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2.2.2. Genetic Algorithm-Based Path Planning Method

Genetic Algorithm (GA) is a class of randomized search methods that evolved from
the evolutionary laws of the biological world. In other words, at each generation, the next
generation population is selected according to the fitness of the individuals in the problem
domain, and the population representing the new set of solutions is generated through
combinatorial crossover and subjective and objective variation with the help of genetic
operators, gradually achieving “survival of the fittest and elimination of the fittest” and
evolving to produce better solutions until the optimization criterion is satisfied [35]. The
standard genetic algorithm flow diagram is shown in Figure 7.
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Genetic algorithm-based replanting robot path planning. This study uses an integer
alignment coding method to separately code odd and even terms. Suppose a 50-hole
seedling tray is replanted to a 50-hole seedling tray. The number of replants to be replanted
in the target tray is 5, and the replanting location is known. A set of valid codes is as
follows: X = [3 53 11 58 18 61 20 72 32 77], and the probabilities of selection, crossover, and
variation in the genetic operator are set to 0.9, 0.6–0.9 and 0.02–0.05, respectively, with a
population size of 100 and several iterations of 100. By replanting path sequence after the
operations of selection, crossover, and mutation, multiple new population sequences can
be generated, and the shortest replanting total path length will be obtained after a certain
number of iterations.

2.2.3. Path Planning Method Based on Improved Particle Swarm Optimization

Particle swarm optimization (PSO) is a population-intelligent optimization algorithm.
The principle of the PSO algorithm [36] is as follows: first, a group of particles is initialized
in the feasible solution space, and each particle can be represented as a potential optimal
solution of the extreme value optimization problem with three characteristic indicators:
velocity, position, and fitness value. The goodness of the particle fitness value represents the
degree of superiority or inferiority of the particle, which is calculated by the fitness function.
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The particle moves in the solution space by tracking the individual and population extremes
to update the position of the individual and adjust the flight speed of the particle. The
individual extreme value and population extreme value refer to the optimal position of
fitness value searched by an individual particle and the optimal position of fitness searched
by all particles in the population, respectively. The fitness value is recalculated after each
particle updates its position, and the positions of the individual and population extremes
are updated by comparing the fitness value of the newly generated particles with the fitness
value of the individual and population extremes, and finally, the optimal position of the
particles is searched. The flow diagram of the standard particle swarm optimization is
shown in Figure 8a.
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In this paper, we propose a replanting path planning method based on the improved
particle swarm optimization according to the replanting path planning model of seedling
tray seedlings, and the flow diagram of the algorithm is shown in Figure 8b. The main
improvement is to propose a combined particle coding method and to propose the seedling
picking location update operator and seedling release location update operator according
to the replanting path planning criterion, and the specific implementation process and
improvement of the algorithm are as follows:
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(1) Combined particle coding

According to the greenhouse replanting method, the replanting robot needs to select a
qualified seedling from the supply tray, move it to the replanting location in the seedling
tray to be replanted, and then move it to the next supply location after completing the
replanting, and so on, until the unqualified or missing holes in the seedling tray to be
replanted are completed. Since replanting is a discrete problem, this study uses integer
coding for the particles and determines the length of the particle coding according to the
number of missing or unqualified seedlings. Assuming that the number of seedlings to
be replanted in the target tray is 5, and the numbers of the seedlings are known to be 55,
65, 76, 77, and 89, a set of codes B = [55 65 89 76 77] is obtained by arranging them in
random order. Therefore, the position numbers of the qualified seedlings were selected
randomly from the seedling supply tray of 5 and put in random order to obtain a set of
codes: A = [3 22 9 34 45], then the total length of the particles is 10 and the code of this
article is X = [3 55 22 65 9 89 34 76 45 77].

(2) Particle fitness calculation

The particle fitness function is the total replanting path length of the robot, and the
total length is the particle code plus the start and end position. Let the start position be O
(X0, Y0), then the total length of the replanting path is calculated as shown in Equation (1).

L =

√
(x0 − x1)

2 + (y0 − y1)
2 +

n−1

∑
i=1

√
(xi − xi+1)

2 + (yi − yi+1)
2 +

√
(xn − x0)

2 + (yn − y0)
2 (1)

(3) Velocity update calculation

Suppose a particle population is X = (X1, X2, . . . , Xn) consisting of n particles in
a D-dimensional space of feasible solutions. The ith particle can be represented as a
D-dimensional vector Xi = (Xi1, Xi2, . . . , Xid)T, which represents the position of the i th
particle in the D-dimensional feasible solution space, i.e., represents a potential solution
of the extreme value problem. The fitness value corresponding to each particle position
Xi is calculated according to the objective function. The velocity of the ith particle is
Vi = (Vi1, Vi2, . . . , Vid)T, its extremum is denoted as Pi = (Pi1, Pi2, . . . , Pid)T, and the pop-
ulation extremum of the population is denoted as Pg = (Pi1, Pi2, . . . , Pid)T. The velocity
update and position update equations are as follows:

Vk+1
id = ωVk

id + c1r1(Pk
id − Xk

id) + c2r2(Pk
gd − Xk

id) (2)

Xk+1
id = Xk

id + Vk+1
id (3)

where d represents the particle dimension; i represents the particle number; k is the current
iteration number; V is the particle velocity; c1 and c2 are the acceleration factors; r1 and r2
are random numbers distributed in the interval [0, 1].

(4) Seedling position update operator (odd segment)

The odd-numbered items in the coding sequence are the seedling positions in the
seedling supply tray, and the position update is adjusted according to the particle velocity
change. The position update rule for the odd segment is as follows:

(1) Equation (3) is used for the position of update of the odd segment code in which
the particle velocity value is rounded after the particle velocity update to ensure that the
position value in the particle code is an integer.

For example, assuming that the particle velocity is obtained after the calculation by
the velocity update Formula (2), the odd segment of the velocity is extracted as Va, and the
value of the odd segment of the velocity is integrated by using the rounding method as
shown in V1.

Va = [2.1994 12.3921 3.2433 0.2997 7.0217]
V1 = [2 12 3 0 7]
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The above article’s odd segment position code is A. The new position code A1 is
obtained after calculation by Equation (3).

A = [3 22 9 34 45]
A1 = [5 34 12 34 52]
(2) Repeat position processing in odd segment encoding. Cycle scan all positions of

the particle, starting with the second bit of the particle encoding; if there is a duplicate
position in the particle encoding, the value of the latter bit is added 1. For example, if there
is a duplicate at position 34 in A1, add 1 to the second 34 position and change it to 35.

A1 = [5 34 12 34 52]
A2 = [5 34 12 35 52]
(3) When the odd-numbered segment code contains the unqualified or missing

seedling position in the seedling supply tray, it is replaced by the remaining qualified
seedling position in the seedling supply tray. For example, if position 12 in the supply
tray is not qualified or missing and cannot be used as the supply position, a position is
generated randomly from the remaining qualified positions of the positions in the outgoing
code and replaced with that position.

A2 = [5 34 12 35 52]
A3 = [5 34 7 35 52]
(4) Replacement of out-of-range positions. The value range of the particle code is

checked, the values that are out of the boundary are deleted, and the corresponding
positions are replaced randomly using the unselected position sequence number. For
example, A is an odd segment sequence after the position update, where the value of the
fifth position [28] is out of the range of positions of the 50-hole-size seedling supply tray,
so a random position is generated from the remaining qualified seedling positions of the
seedling tray for replacement, and the result is shown in A1.

A3 = [5 34 7 35 52]
A4 = [5 34 7 35 29]
(5) Seedling placement position update operator (even numbered segment)
The even number in the coding sequence is the position to be replanted in the target

tray, and its position update is position-adjusted according to the velocity change. The
position update rule is described as follows: the above particle even segment position is B,
the velocity even segment is Vb, and the position is updated to B1. Record the size of each
value in the original position and the bit where it is located, and swap each of them from B
to B2 according to the size order of the new position, e.g.,

B = [55 65 89 76 77], where the order of the magnitude of each value is [5 4 1 3 2].
Vb = [2.4353 −9.6542 5.3342 18.7654 −1.3298]
B1 = [57.4353 55.3458 83.6658 94.7654 75.6702],

where the order of the magnitude of each value is [4 5 2 1 3]. Then the values in B are
arranged in the order in B1, with the largest value in B placed in the 4th position, the second
largest value in the 3rd position, and so on.

B2 = [65 55 77 89 76]
(6) Particle code combination
Combine the updated position code A4 of the odd segment and the updated position

code B2 of the seven segments into a new particle code X1, e.g.,
A4 = [5 34 7 35 29]
B2 = [65 55 77 89 76]
X1 = [5 65 34 55 7 77 35 89 29 76]
(7) Repeat steps 2 to step 6 until the number of iterations is completed and the calcula-

tion is finished.

2.3. Optimization of Algorithm Parameters

To achieve the optimal performance of the two algorithms, the parameters of the
particle swarm optimization and the genetic algorithm are optimized in this paper.
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2.3.1. Particle Swarm Optimization Is Parameter Setting

The particle swarm optimization parameters mainly contain inertia weight W, acceler-
ation factor C1, acceleration factor C2, random number R1, and random number R2, where
R1 and R2 are random numbers from 0 to 1. Therefore, the parameters to be determined
are W, C1, and C2. Inertia weight W: the higher the value, the stronger the global search
ability, and the lower the weight, the stronger the local search ability. Commonly used
inertia weight-obtaining methods are the fixed inertia-obtaining method and the inertia
weight linear decreasing method, and so on. In this paper, we use the linear decreasing
weight method. The linear decreasing inertia weight algorithm uses larger inertia weights
at the beginning of the calculation to ensure the global search ability of the algorithm and
uses smaller inertia weights at the end of the calculation to ensure the local search ability of
the algorithm. The specific formula is as follows:

w = (w1 − w2)×
MaxIter − CurIter

MaxIter
+ w2 (4)

Acceleration factor C1. C2: the acceleration factor is a set of important parameters to
adjust the particle’s own experience and group experience to influence the particle motion
trajectory. If the value of C1 is small and the value of C2 is large, the particles mainly rely
on the group experience to influence the motion of the particles, and the convergence speed
is accelerated, but some complex problems may lead to local convergence. If the value of
C1 is small and the value of C2 is small, the particles mainly rely on their own experience
to influence the motion of the particles, and the interaction ability among the particles in
the population is weakened, which causes too much wandering in the local range and the
optimal solution cannot be found. In general, the acceleration factor uses values between 0
and 4. In this paper, we set 8 different levels, distributed between 0.1 and 2, and the criteria
for using values are shown in Table 1.

Table 1. Particle swarm optimization parameter.

Parameter Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 Level 8

C1 0.1 0.3 0.6 0.9 1.2 1.5 1.8 2

C2 0.1 0.3 0.6 0.9 1.2 1.5 1.8 2

In this paper, 5 seedlings were replanted with a 50-hole seedling tray as the test
sample, and the replanting path lengths of two parameters, C1 and C2, were calculated
under different combinations of levels based on the inertia weight linear decreasing method,
and each combination was calculated 10 times to take the average of the path lengths, and
the three-dimensional plot (C1, C2, path lengths in three dimensions) was drawn using
origin software, as shown in Figure 9.

As can be seen in Figure 9, optimal performance is achieved when the population size
of 100, C1 of 0.3, and C2 of 0.3 is chosen when the particle swarm optimization is used.

2.3.2. Genetic Algorithm Parameter Setting

In this study, the selection probability Ps is set to 0.9 and the number of iterations is
set to 100. Crossover probability Pc: the crossover probability determines the frequency
of the crossover operation, and the higher the frequency, the faster the convergence to the
most probable optimal solution region, therefore, a larger crossover probability is usually
chosen, generally using the value of 0.6~0.9, but not set to 1, because a crossover probability
that is too high will lead to premature convergence. Variation probability Pm: variation
probability generally uses a small value of 0.02~0.05, if set to 1, it degenerates into random
search, so the algorithm is extremely unstable and easy to falls into the local optimal point
and leads to premature maturity. The genetic algorithm parameters are selected as shown
in Table 2.
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Table 2. Genetic algorithm parameters.

Parameter Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7

Pc 0.6 0.7 0.8 0.9

Pm 0.02 0.025 0.03 0.035 0.04 0.045 0.05

In this paper, 5 seedlings were replanted with a 50-hole seedling tray as the test
sample, and the replanting path lengths of Pc and Pm were calculated for two parameters
at different combinations of levels, and the average of the path lengths was obtained as
10 times for each combination, and the three-dimensional plots (Pc, Pm, and path lengths in
three dimensions) were drawn using origin software, as shown in Figure 10.
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It can be seen from Figure 10 that optimal performance can be achieved when the
population size of 100, Pc of 0.9, and Pm of 0.045 are chosen when the genetic algorithm
is used.

3. Results and Discussion

From the literature [11], it is known that the percentage of missing and substandard
seedlings in seedling trays is around 5% to 20%. In this study, simulation experiments
were conducted based on 50-, 72-, and 105-hole seedling tray replanting models with the
fixed-order method, genetic algorithm, and improved particle swarm optimization.

3.1. Replanting Path Planning Test for 50-Hole Seedling Trays
3.1.1. Replanting Path Planning Test for 50-Hole Seedling Trays with 5–20%
Replanting Quantity

The fixed-order method, genetic algorithm, and improved particle swarm optimization
were used to test the path planning for 50-hole target seedling trays with replanting
numbers of 5–20%. The replanting path lengths of the three different algorithms were
calculated for the cases of 3, 4, 5, 6, 7, 8, 9, and 10 randomly missing seedlings in the target
trays, as shown in Table 3.

Table 3. Data for replanting path planning of 50-hole-size seedling trays with 5% to 20% replanting.

Number of
Replanting FS (mm) GA (mm) PSO

(mm) e (mm) r1 (%) r2 (%)

3 2991.60 2665.46 2472.62 192.84 10.90 17.35

4 3778.80 3217.96 2979.74 238.22 14.84 21.15

5 4444.94 3675.56 3362.29 313.27 17.31 24.36

6 5221.43 4201.96 4132.41 69.55 19.52 20.86

7 5914.42 4673.76 4692.54 −18.78 20.98 20.66

8 6772.81 5279.33 5378.80 −99.47 22.05 20.58

9 7251.32 5521.23 5787.34 −266.11 23.86 20.19

10 8080.09 5989.18 6219.95 −230.77 25.88 23.02

Average / / / / 19.41 21.02
Note: fixed sequence method (FS); genetic algorithm (GA); particle swarm optimization (PSO); the number
of populations in the GA and PSO algorithms is 100 and the number of iterations is 100. e = GA − PSO,
r1 = (FS − GA)/FS × 100%, r2 = (FS − PSO)/FS × 100%.

From Table 3 of the test data and Figure 11 of the comparison of replanting path
lengths of the three algorithms for different replanting numbers in 50-hole seedling trays, it
can be seen that in the replanting range from 5% to 20% (3 to 10 seedlings), GA and PSO
optimized the replanting path lengths substantially compared to FS at 19.41%, and 21.02%,
respectively. PSO outperformed GA in the replanting range from 3 to 6 seedlings and GA
outperformed PSO in the replanting range from 7 to 10 seedlings, but the difference in the
optimized path length between the two was not significant.

3.1.2. Replanting Path Planning Test for 50-Hole Seedling Trays with 10% Replanting

The fixed-order method, genetic algorithm, and improved particle swarm optimization
were used to test the path planning of a 50-hole target tray with 10% replanting. Target trays
were randomly generated for 10 different scenarios (5 seedlings to be replanted, different
locations for each replanting), each with different locations and numbers of qualified
seedlings in the supply tray. In each case, the fixed-order method was operated once, the
genetic algorithm and the improved particle swarm optimization were operated 10 times,
and the average value of the planned path length was recorded. The running time of the
genetic algorithm and the improved particle swarm optimization was calculated for the
same population size and number of iterations.
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Figure 11. Comparison of path lengths planned by three algorithms for 50-hole seedling trays with
different replanting numbers.

From the data in Table 4, it can be seen that the PSO algorithm and GA algorithm
compared to FS in the path optimization were reduced by 10.59% and 11.50%; the PSO
algorithm and GA algorithm optimization effect is similar, the GA algorithm compared to
the PSO algorithm path shortened by 28.47 mm on average. From the running time, the
PSO algorithm compared to the GA algorithm reduced by 58.05%.

Table 4. Replanting path planning data for replanting 10% of 50-hole-size seedling trays.

Serial No FS (mm) GA (mm) PSO (mm) e (mm) r1 (%) r2 (%) Time
(GA)

Time
(PSO) r3 (%)

1 2248.78 1971.69 1981.01 −9.32 12.32 11.91 2.2666 0.9732 57.06

2 3524.64 3127.93 3159.80 −31.87 11.26 10.35 2.3633 0.9747 58.76

3 3138.54 2848.13 2887.64 −39.51 9.25 7.99 2.2891 0.9542 58.32

4 2786.05 2619.12 2666.41 −47.29 5.99 4.29 2.3567 0.9714 58.78

5 3151.32 2801.87 2857.01 −55.14 11.09 9.34 2.2274 0.9587 56.96

6 3378.62 2997.29 2993.13 4.16 11.29 11.41 2.2796 0.9924 56.47

7 3382.79 2869.45 2896.22 −26.77 15.18 14.38 2.2969 0.9717 57.70

8 3337.79 3122.95 3164.44 −41.49 6.44 5.19 2.3604 0.9790 58.52

9 3395.63 2748.84 2761.31 −12.47 19.05 18.68 2.3619 0.9619 59.27

10 3367.58 2925.95 2950.97 −25.02 13.11 12.37 2.3800 0.9849 58.62

Average 3171.17 2803.32 2831.79 −28.47 11.50 10.59 2.3182 0.9722 58.05

Note: the number of populations in the GA and PSO algorithms is 100 and the number of iterations is 100.
e = GA − PSO, r1 = (FS − GA)/FS × 100%, r2 = (FS − PSO)/FS × 100%, r3 = (TGA − TPSO)/TGA × 100%.
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3.2. Replanting Path Planning Test with 72-Hole Seedling Trays
3.2.1. Replanting Path Planning Test for 72-Hole Seedling Trays with 5–20%
Replanting Quantity

The fixed-order method, genetic algorithm, and improved particle swarm optimization
were used to test the path planning for 72-hole target seedling trays with replanting
numbers from 5 to 20%. The replanting path lengths of the three different algorithms were
calculated for the cases of 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, and 14 randomly missing seedlings in
the target trays, as shown in Table 5.

Table 5. Replanting path planning data for replanting from 5% to 20% of 72-hole-size seedling trays.

Number of
Replanting FS (mm) GA (mm) PSO (mm) e (mm) r1 (%) r2 (%)

4 2994.56 3001.71 2801.03 200.68 −0.24 6.46

5 3806.63 3474.84 3361.52 113.32 8.72 11.69

6 4544.81 4183.64 3938.27 245.37 7.95 13.35

7 5473.38 4520.61 4596.34 −75.73 17.40 16.02

8 5986.81 5104.67 5023.12 81.55 14.73 16.10

9 6558.08 5407.68 5605.23 −197.55 17.54 14.53

10 7019.04 5574.34 5807.53 −233.19 20.58 17.26

11 7400.95 6235.31 6609.03 −373.72 15.75 10.70

12 8194.72 6645.94 6963.80 −317.86 18.90 15.02

13 8645.39 7377.96 7649.34 −271.38 14.66 11.52

14 9437.74 7669.57 7976.82 −307.25 18.74 15.48

Average / / / / 14.07 13.47
Note: the number of populations in the GA and PSO algorithms is 100 and the number of iterations is 100.
e = GA − PSO, r1 = (FS − GA)/FS × 100%, r2 = (FS − PSO)/FS × 100%, r3 = (TGA − TPSO)/TGA × 100%.

From Table 5 of the test data and Figure 12 of the comparison of the replanting path
lengths for the three algorithms for different replanting numbers in the 72-hole seedling
trays, it can be seen that in the replanting range from 5% to 20% (4 to 14 seedlings), GA
and PSO optimized the replanting path lengths substantially compared to FS, 14.07% and
13.47%, respectively. In the replanting range of 4–6 and 8 seedlings, PSO outperformed GA,
and in the replanting range of 7 and 9–14 seedlings, GA outperformed the PSO, but the
difference in the optimized path length between the two was not significant.

3.2.2. Replanting Path Planning Test for a 72-Hole Seedling Tray with 10% Replanting

The fixed-order method, genetic algorithm, and improved particle swarm optimization
were used to test the path planning of 72-hole target trays with 10% replanting. Target
trays were randomly generated for 10 different scenarios (seven seedlings to be replanted,
different locations for each replanting), each with different locations and numbers of eligible
seedlings in the supply tray. In each case, the fixed-order method was operated once, the
genetic algorithm and the improved particle swarm optimization were operated 10 times,
and the average value of the planned path length was recorded. The running time of the
genetic algorithm and the improved particle swarm optimization was calculated for the
same population size and number of iterations.

From the data in Table 6, it can be seen that the PSO algorithm and GA algorithm
reduce by 28.81% and 28.08%, respectively. Compared to FS in the path optimization, PSO
algorithm and GA algorithm have similar optimization effect; the PSO algorithm reduces
the path by 44.31 mm on average compared to the GA algorithm. From the running time,
the PSO algorithm reduces by 59.79% on average compared to the GA algorithm.
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Table 6. Replanting path planning data for 10% replanting of 72-hole-size seedling trays.

Serial No FS (mm) GA (mm) PSO (mm) e (mm) r1 (%) r2 (%) Time
(GA)

Time
(PSO) r3 (%)

1 5471.16 3603.59 3500.36 103.23 34.13 36.02 2.5199 1.0086 59.97

2 5819.32 4469.41 4375.92 93.49 23.19 24.80 2.5299 1.0132 59.95

3 4553.5 3514.09 3640.5 −126.41 22.82 20.05 2.5255 1.0565 58.16

4 4962.23 3315.24 3360.4 −45.16 33.19 32.28 2.5199 1.0078 60.01

5 5871.38 4655.48 4554.62 100.86 20.70 22.42 2.6034 0.9972 61.69

6 5555.82 3914.09 3725.73 188.36 29.54 32.94 2.5133 1.0157 59.58

7 4753.39 3390.91 3398.12 −7.21 28.66 28.51 2.5260 1.0091 60.05

8 5497.17 3971.93 4148.8 −176.87 27.74 24.52 2.5355 1.1002 56.60

9 5699.25 3884.64 3750.24 134.4 31.83 34.19 2.6302 0.9933 62.23

10 5251.65 3728.98 3550.61 178.37 28.99 32.39 2.4866 1.0018 59.71

Average 5343.48 3844.83 3800.53 44.31 28.08 28.81 2.5390 1.0203 59.79

Note: the number of populations in GA and PSO algorithms is 100 and the number of iterations is 100.
e = GA − PSO, r1 = (FS − GA)/FS × 100%, r2 = (FS − PSO)/FS × 100%, r3 = (TGA − TPSO)/TGA × 100%.

3.3. Replanting Path Planning Test for 105-Hole Seedling Trays
3.3.1. Path Planning Test for Replanting 105-Hole Seedling Trays 5–20% Replanting

The fixed-order method, genetic algorithm, and improved particle swarm optimiza-
tion were used to test the path planning of 105-hole target trays with 5–20% replanting.
Replanting path lengths of the three algorithms were calculated for the cases of 5, 7, 9, 11,
13, 15, 17, 19, and 21 randomly missing seedlings in the target trays, as shown in Table 7.
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Table 7. Replanting path planning data for replanting from 5% to 20% of 105-hole-size seedling trays.

Number of
Replanting FS (mm) GA (mm) PSO (mm) e (mm) r1 (%) r2 (%)

5 4626.83 3045.83 2801.28 244.55 34.17 39.46

7 5700.16 4031.08 3846.21 184.87 29.28 32.52

9 6521.69 4963.72 4872.71 91.01 23.89 25.28

11 7530.11 5991.30 5845.45 145.85 20.44 22.37

13 8506.13 7024.97 7317.80 −292.83 17.41 13.97

15 9159.77 7730.32 7917.21 −186.89 15.61 13.57

17 10,398.79 9078.10 9130.27 −52.17 12.70 12.20

19 11,736.63 10,463.17 11,326.85 −863.68 10.85 3.49

21 13,404.15 11,259.28 11,817.37 −558.09 16.00 11.84

Average / / / / 14.07 13.47
Note: the number of populations in the GA and PSO algorithms is 100 and the number of iterations is 100.
e = GA − PSO, r1 = (FS − GA)/FS × 100%, r2 = (FS − PSO)/FS × 100%.

From Table 7 of the test data and Figure 13 of the comparison of replanting path
lengths for the three algorithms for different replanting numbers in 105-hole seedling trays,
it can be seen that in the replanting range from 5% to 20% (5 to 21 seedlings), GA and PSO
optimized the replanting path lengths substantially compared to FS, at 20.04% and 19.41%,
respectively. PSO outperformed GA in the replanting amounts of 5, 7, 9, and 11 seedlings,
and GA outperformed PSO in the replanting amounts of 13, 15, 17, 19, and 21 seedlings,
but the difference in the optimized path length between the two was not significant.
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different replanting numbers.

3.3.2. Replanting Path Planning Test for 105-Hole Seedling Trays with 10%
Replanting Number

The fixed-order method, genetic algorithm, and improved particle swarm optimiza-
tion were used to test the path planning for 105-hole target trays with a 10% replanting
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number. Target trays were randomly generated for 10 different scenarios (11 seedlings
to be replanted, each with a different distribution of locations to be replanted), each with
different locations and numbers of qualified seedlings in the supply tray. In each case, the
fixed-order method was operated once, the genetic algorithm and the improved particle
swarm optimization were operated 10 times, and the average value of the planned path
length was recorded. The running time of the genetic algorithm and the improved particle
swarm optimization was calculated for the same population size and number of iterations.

From the data in Table 8, it can be seen that the PSO algorithm and the GA algorithm
reduce by 29.36% and 31.09% respectively compared to FS in the path optimization; the PSO
algorithm and the GA algorithm have similar optimization effects, and the GA algorithm
reduces the path by 142.46 mm on average compared to the PSO algorithm. In terms of
running time, the PSO algorithm reduces by 55.06% compared to the GA algorithm.

Table 8. Replanting path planning data for replanting 10% of 105-hole-size seedling trays.

Serial No FS (mm) GA (mm) PSO (mm) e (mm) r1 (%) r2 (%) Time
(GA)

Time
(PSO) r3 (%)

1 8160.27 5550.51 5704.15 −153.64 31.98 30.10 3.5157 1.4819 57.85

2 8786.58 5844.80 6420.66 −575.86 33.48 26.93 3.2936 1.4771 55.15

3 8112.86 5533.13 5784.15 −251.02 31.80 28.70 3.5098 1.5160 56.81

4 8522.22 5792.78 5739.12 53.66 32.03 32.66 3.3608 1.5012 55.33

5 8281.36 5905.31 5712.46 192.85 28.69 31.02 3.3197 1.5317 53.86

6 7968.31 5199.72 5287.27 −87.55 34.75 33.65 3.3598 1.4911 55.62

7 7732.35 5587.81 5562.36 25.45 27.73 28.06 3.2863 1.5124 53.98

8 7754.31 5246.52 5398.02 −151.5 32.34 30.39 3.3029 1.5276 53.75

9 7761.83 5243.84 5600.69 −356.85 32.44 27.84 3.3093 1.5400 53.46

10 8058.54 5987.40 6107.55 −120.15 25.70 24.21 3.3113 1.4964 54.81

Average 8113.86 5589.18 5731.64 −142.46 31.09 29.36 3.35692 1.50754 55.06

Note: the number of populations in the GA and PSO algorithms is 100 and the number of iterations is 150.
e = GA − PSO, r1 = (FS − GA)/FS × 100%, r2 = (FS − PSO)/FS × 100%, r3 = (TGA − TPSO)/TGA × 100%.

3.4. Discussion

In this paper, a fast path planning method based on improved particle swarm opti-
mization is proposed, and a comparison test with a fixed sequence method and genetic
algorithm is conducted on three sizes of seedling trays with 50, 72, and 105 holes for a
replanting quantity in the range from 5% to 20% to obtain the degree of optimization of
the three path planning methods on replanting path length. Then, 10% replanting was
performed on three sizes of seedling trays to obtain the difference in algorithm running
time between the three path planning methods.

(1) When replanting tests were conducted for target trays with replanting numbers
from 5 to 20%, the results from the data in Table 3, Table 5, and Table 7 showed the following:

For the 50-hole seedling trays, PSO and GA reduced the replanting path length by
21.02% and 19.41% compared to FS respectively. For 72-hole seedling trays, PSO and GA
reduced the replanting path length by 13.47% and 14.07% compared to FS, respectively. For
105-hole seedling trays, PSO and GA reduced the replanting path length by 19.41% and
20.04% compared to FS, respectively. PSO reduced the replanting path length by an average
of 17.97% compared to FS, and GA reduced the replanting path length by an average of
17.84% compared to FS.

(2) When replanting tests were conducted on target trays with 10% replant quantity,
the results from the data in Table 4, Table 6, and Table 8 showed the following:

In terms of the degree of replanting path optimization, for the 50-hole seedling trays,
PSO and GA reduced the replanting path length by 10.59% and 11.50% compared to FS,
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respectively. For the 72-hole seedling trays, PSO and GA reduced the replanting path
length by 28.81% and 28.08% compared to FS, respectively. For the 105-hole seedling trays,
PSO and GA reduced the replanting path length by 29.36% and 31.09% compared to FS,
respectively. Both PSO and GA significantly reduced the path length compared to FS in
the replanting path planning, and the degree of optimization was similar between them,
with a difference of about 1%. However, in terms of running time, it is noteworthy that
PSO reduced by 58.05%, 59.79%, and 55.06%, compared with GA for three different sizes of
seedling trays with 50, 72, and 105 holes, with an average reduction of 57.63%, and PSO
greatly improved the algorithm running time.

Overall, PSO and GA have similar optimization abilities in replanting path length,
with an average optimization of about 20% compared to FS in replanting path length.
However, PSO has a great improvement in algorithm running time, and PSO running time
is shortened by 57.63% on average compared with GA, which can effectively improve the
efficiency of automatic replanting machines.

Compared with the ability of the genetic algorithm [26], greedy algorithm [28], and
ant colony algorithm [37] to optimize the path length by 7.65–10.6%, the improved particle
swarm optimization algorithm in this research has better performance in the path optimiza-
tion ability and has made great progress in shortening the algorithm calculation time.

4. Conclusions

In our study, we proposed a fast path planning method based on improved particle
swarm optimization, and the combined particle coding was used to design a two-stage
position update operator for picking and placing seedlings, which realized the optimization
of the replanting path. The parameters of the improved particle swarm optimization de-
signed in this paper were optimized through simulation tests, and the optimal performance
was achieved when the population size f = 100, C1 = 0.3, and C2 = 0.3. To verify the
optimization performance of the proposed path planning method, a comparative test of
the fixed sequence method, genetic algorithm, and improved particle swarm optimization
algorithm was carried out for the 50-, 72-, and 105-hole seedling tray replanting models.
The experimental results show that the improved particle swarm optimization method can
greatly shorten the running time of the algorithm, optimize the replanting path, improve
the efficiency of replanting, and meet the real-time requirements.

Although the performance of the improved particle swarm optimization algorithm in
this research has greatly improved the computation time and path length, it only optimized
the moving path of the XY horizontal plane, while the time of the Z-axis up and down
movement and end effector action was fixed, so there was still room for the optimization of
algorithm calculation time in the future. Moreover, it is not comprehensive to improve the
efficiency of automatic replanting machines only from the aspect of path planning, but also
to take into account the recognition system of seedlings and the grasping mechanism of the
end effector. In the future, we will comprehensively consider the cooperation between the
three aspects to further improve the efficiency of replanting.
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