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Abstract: The differentiation between the main crop and weeds is an important step for selective
spraying systems to avoid agrochemical waste and reduce economic and environmental impacts. In
this sense, this study aims to classify and map the area occupied by weeds, determine the percentage
of area occupied, and indicate treatment control strategies to be adopted in the field. This study
was conducted by using a yellow Bourbon cultivar (IAC J10) with 1 year of implementation on a
commercial coffee plantation located at Minas Gerais, Brazil. The aerial images were obtained by
a remotely piloted aircraft (RPA) with an embedded multispectral sensor. Image processing was
performed using PIX4D, and data analysis was performed using R and QGIS. The random forest
(RF) and support vector machine (SVM) algorithms were used for the classification of the regions of
interest: coffee, weed, brachiaria, and exposed soil. The differentiation between the study classes was
possible due to the spectral differences between the targets, with better classification performance
using the RF algorithm. The savings gained by only treating areas with the presence of weeds
compared with treating the total study area are approximately 92.68%.

Keywords: digital agriculture; multispectral images; precision coffee farming; remote sensing

1. Introduction

Brazil is currently the largest producer, exporter, and consumer of coffee in the world
and the country is responsible for approximately 47% of the world’s coffee production, and
based on forecasts for the 2023 harvest, a good productivity margin, totaling 54.94 million
bags of 60 kg, is expected for exports [1]. Among the cultivated species, Coffea arabica
L. is the coffee most appreciated by consumers and therefore has great economic value.
Due to the importance of this commodity in the Brazilian trade balance, scientific studies
are encouraged to solve the problems encountered in the field. Thus, improvements are
suggested, aiming at the optimization and profitability of coffee plantations.

To enhance the yield and decrease the cost of coffee crops, the correction and adapta-
tion of problems encountered in the field are sought, and the efficient and timely control
of weeds is a critical task in agricultural production, since the inadequate management
of plant weeds reduces the yield of the main crop and increases the negative impacts on
the environment [2]. Agrochemicals represent a considerable part of the cost of a crop,
and the traditional methods of blanket spraying promote great waste because there is no
selectivity at the time of application [3]. In this sense, the mapping and detection of weeds
through precision agriculture technologies allows greater economic and environmental sus-
tainability. This technique can contribute to reducing environmental impacts by identifying
specific areas for spraying agrochemicals [4]. In addition, the use of computer techniques
and technologies combined with the agricultural problem allow the reduction in human
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work in the field, mainly when identifying weed spots in the crop lines and between the
plants in the crop line [5].

In coffee crops, weeds, when poorly controlled, are in direct competition with coffee
plants for water, light, and nutrients. Among the invasive species, the species morning glory
(Ipomea sp.) belongs to the Convolvulaceae family, which includes more than 350 species
distributed in 18 genera [6]. Morning glory are fast-growing climbing plants that inhabit
the most varied environments, with heights ranging from 1 to 3 m [7]. This species can
also cause damage to harvests since its branches are intertwined with the plants of interest,
affecting the performance of agricultural harvesting machines as well as manual harvesting,
which compromises the yield and efficiency of these processes [8]. It is therefore necessary to
identify the different types of weeds that are harmful to the crop and the control mechanism
for weeds [9].

Technological advancements have introduced a promising data acquisition approach
in the field using proximal aerial platforms such as remotely piloted aircraft (RPA). The
advantages of RPA in relation to satellite platforms have been described by several authors
who highlighted the possibilities of coupling different sensors using lightweight batteries
with a long life and optimizing the coverage of a large area with higher spatial resolution
in a short time. This is presented as an important requirement for the mapping of weeds
by the detection of small objects, consolidating itself as a new means of obtaining spatial,
spectral, and temporal quality parameters [10,11].

Remote sensing technologies combined with machine learning methods can contribute
to the identification of weeds in coffee plantations. In the literature, the main methods
applied for weed identification using RPA images are based on algorithms combined with
classification tools and spectral characterization. In this process, the pixels are segmented
and classified according to their reflectance values [12,13]. Machine learning algorithms
allow land cover mapping, which has become frequently used due to the applicability of
different sensors, yielding better results than other commonly used classifiers [14]. Among
these algorithms, random forest (RF) [15] and support vector machine (SVM) [16] have
great flexibility and are widely applied for spectral classifications. Therefore, they allow the
generation of land cover maps affected by spectral patterns, which enable the identification
and study of the spatial distribution of weed infestation, making it possible to develop
treatment maps with different application demands according to the distribution of the
plants in the crop, which has economic and ecological implications. It is also noteworthy
that machine and deep learning-based crop and weed identification systems have the
potential to save money and, at the same time, reduce environmental stress [17].

The mapping of weeds based on aerial images obtained by RPA is incipient, since there
are few studies with this theme, especially for coffee crops. Weed mapping studies have
been performed in cereals [18], corn fields [19], sunflower fields [20], and wheat and bar-
ley [21]. Furthermore, regarding the use of RPA to carry out aerial imaging for management
recommendations in agricultural areas, its use for the localized spraying of agrochemicals
stands out [22]. The advantages include a lower payload capacity, performing spraying
on time [23], reducing health-related problems by reducing the number of workers and
workload [24], and also promoting lower environmental impacts due to the application
occurring in a localized and specific way [25].

In this context, the objective of this study is to use RPA for the diagnosis of an area
and to map coffee plantations containing weeds (morning glory, Ipomea sp.) through
classification algorithms, demonstrating the applicability of the procedure as well as the
implementation of strategic control through selective spraying in coffee plantations.

2. Materials and Methods
2.1. Study Area

The study area is the Samambaia Farm, which is located in the municipality of Santo
Antônio do Amparo, Zona Campos das Vertentes, Minas Gerais (MG) state, between
the meridians 507,000 and 507,100 m W and parallels 7,691,400 and 7,691,500 m S in the
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UTM projection zone 23S and Sirgas 2000 geodesic reference (Figure 1). The municipality
is located in the Atlantic Forest Biome with Dystrophic Red–Yellow Latosol [26] and a
subtropical rainy climate with a temperate, dry winter, and warm summer (Cwb) according
to the Köppen classification [27].
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Figure 1. Location of the study area.

The experiment is characterized by an area of the coffee plantation (Coffea arabica L.)
planted in November 2018, one year prior to data collection. The planted cultivar is Yellow
Bourbon (IAC J10) as registered in the National Cultivar Registry (NCR) of the Ministry
of Agriculture, Livestock, and Supply [28]. The area has a spacing of 3.8 m between rows,
0.5 m in the planting row, an average altitude of 1022.00 m above sea level, and the presence
of brachiaria (Brachiaria decumbens) between the rows.

2.2. Collection of Aerial Data

Aerial imaging was collected based on two flights on 13 December 2019 by a remotely
piloted aircraft, Matrice 100 (DJI, Shen Zhen, China), equipped with a multispectral camera
(Parrot Sequoia, MicaSense, Seattle, WA, USA) and an irradiance sensor (S sunshine sensor)
with reflectance values described in the green (GRE 530–570 nm), red (RED 640–680 nm), bor-
derline red (REG 730–740 nm), near infrared (NIR 770–810 nm), and visible (RGB 380–720 nm)
spectral bands (Figure 2). The orthomosaics generated in the first flight were used for train-
ing and validation of the model and the orthomosaics generated in the second flight were
used to predict the distributions of the study classes and thus proceed with subsequent studies
and recommendations.
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The flight plan was generated using Precision Flight software (Precision Hawk,
Raleigh, NC, USA) with parameters defined as follows: above ground level (AGL) distance
of 50 m, flight speed of 8 m/s, with forward and side overlap of 80% and 80%, respectively,
and a flight direction transverse to the planting row. The flight had a standardized sched-
ule between 11:00 am and 1:00 pm, so there was no shading influence. The radiometric
calibration of the images was performed using a calibration plate from the manufacturer of
the sensor used to capture the images.

2.3. Image Processing

Aerial image processing was performed using Pix4D Mapper version 4.4.12 (Pix4D,
Lausanna, Switzerland), and the orthomosaic product generated for each spectral band is
related to the sensor used. The processing workflow consists of three different steps: initial
processing, mesh/point cloud generation, and orthorectification as described in Figure 3.
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The image processing software used is based on the detection of keypoints, which
refer to the computer vision technique to locate key parts of objects in an image, that
is, the keypoints refer to each characteristic point found in an image. Thus, in the first
stage, specific image features (keypoints) were identified, these keypoints were found and
combined, the internal and external parameters of the sensor were calibrated, and finally,
the geolocation information of the collected images was determined. The tie points are
automatically created during this stage. In the second stage, densified points were created;
that is, more tie points are created on top of the existing ones to create a densified point
cloud, and the 3D textured mesh was also created based on the densified point cloud. In
summary, keypoints refer to the characteristic points of the image, tie points are points
generated after connecting points with similar characteristics (keypoints), and densified
points are the creation of a greater number of points to represent the terrain.

The orthomosaic consists of joining several images to form a single image based on the
process of orthorectification, a method in which the perspective distortions of the images
are removed. This way, in the third stage, the orthomosaics of each spectral band of the
sensor (in this case, the RGB bands and individual GRE, RED, REG, and NIR bands) are
created, in which the value of each pixel indicates the reflectance of the imaged object.

2.4. Classification Method (Training and Validation)

The training and validation steps are shown in Figure 4 and consist of (a) preprocessing
and exploratory data analysis; (b) sampling of the classes of interest using orthomosaic
images; (c) classification procedure using support vector machine (SVM) and random forest
(RF) algorithms; (d) validation and verifying the performance of the SVM and RF classifiers;
and (e) applying the best classifier in the prediction of the total area and the identification
of the percentage of occupation of each class of study, with procedures performed in the
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QGis 3.22.8 (QGIS Development Team, Open-Source Geospatial Foundation) and R Studio
(R Development Core Team, R project, Austria, Vienna) software.
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In the classification process, four classes of interest were established: coffee, weed
(morning glory), brachiaria, and exposed soil. The training samples of the classes of
interest were selected based on the interpretation of the high-resolution orthomosaic image
produced by the images collected by the RPA. For each class, a training shapefile with
regions of interest (ROIs) was obtained, and a total of 650 samples were generated and
distributed as follows: coffee (n = 150); weed (n = 150); soil (n = 200); and brachiaria
(n = 150). Sample collection was performed using QGIS 3.22.8 with the Semi-Automatic
Classification Plugin (SCP). Due to the spatial quality of the generated orthomosaic image,
it cannot be assumed that a set of pixels that includes the sampled shapefile represents each
class of interest. Thus, the points corresponding to all pixels belonging to ROIs for each
study class were used as samples, increasing the number of samples (total of 8284 samples)
with a procedure performed in R Studio. In summary, the samples were initially collected
in shapefile format (650 samples), and then the rasters referring to each spectral band were
extracted pixel-by-pixel from the contours of the shapefile, thus increasing the number of
training samples (8284 samples) and improving the classification quality by increasing the
number of samples for evaluation. The spectral signatures of each class of interest were
generated by the ROIs using QGIS 3.22.8 to characterize the behavior of the reflectance of
the pixels in each spectral range of the study.

Subsequently, using R, these samples were randomly divided into training and valida-
tion samples in proportions of 70% and 30%, respectively, with 5799 training samples and
2485 validation samples. Classification using the training samples was based on separa-
tion information from the reflectance spectrum using the SVM [29] and RF [15] classifiers
in R. For SVM classification, the polynomial kernel function was applied, and for RF clas-
sification, the number of decision trees (Ntree) equal to 100 and the number of variables
to be tested (Mtry), corresponding to the square root of the number of input variables,
were defined [30]. For RF classification, the analysis of the Gini index was also applied,
allowing the importance of each input variable of the algorithm for the classification process
to be described. According to the application of the analysis via Mean Decrease in Gini,
variables that present nodes with greater classification purity will have higher values and,
therefore, have greater importance in the classification algorithm widely used in analyses of
this type [31,32].
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The data were validated based on the validation sample percentage with direct compar-
ison to the reference data (training samples). The performance evaluation and classification
quality of each algorithm were obtained through information derived from the confusion
matrix using the overall accuracy, producer accuracy, user accuracy, and external metrics
F1 score metrics [33], as well as the area under the ROC curve and kappa index [34].

The classifier algorithm with the best performance metrics was used to predict the
total area and to identify the percentage of occupied area for each study class. Based on the
information from the classifier, the prediction map of the classes of study was generated
(location and percentages of area occupied by each class of study) using the QGis 3.22.8 soft-
ware. This map makes it possible to identify the presence of weed occupation in the field
and thus proceed with management based on the localized application of agrochemicals
only in the compromised areas by weeds.

The analysis of the costs involved in the process of weed control was also performed,
considering for this the current price quote of the weed control product in question, in this
study the product HEAT (Saflufenacil), and considering the spray volume to be used only
in areas with weeds versus the spray volume to be used in the total area (conventional
application). Thus, the effect of savings was highlighted by showing the financial costs that
would be spent for the application of agrochemicals in the total area versus the financial
costs spent for the application of agrochemicals, considering only the application in areas
occupied by weeds.

3. Results
3.1. Overall Classifier Accuracy

The results of the overall accuracy, kappa index, F1 score, and area under the ROC
curve of the classifications using the RF and SVM algorithms are presented in Table 1
(results considering all classes of study). In general, satisfactory values of the analyzed
metrics, which indicate good classifier performance for the differentiation of the study
classes, were achieved using both algorithms. However, it should be emphasized that the
values obtained using the RF algorithm were higher than those using the SVM algorithm.

Table 1. Performance metrics for the RF and SVM classification algorithms.

Algorithm Global Accuracy Kappa Index F1 AUC

RF 99.24 98.86 98.91 99.91
SVM 98.71 98.08 96.52 99.83

The results for the classification algorithms were validated by means of confusion
matrices, as shown in Table 2 for the RF algorithm and Table 3 for the SVM algorithm
(results considering the study classes individually). As previously demonstrated by the
satisfactory values of the performance metrics, few errors between the classified thematic
classes were observed through the confusion matrices of both classification algorithms
(Tables 2 and 3). For both classifiers, the class with the greatest confusion, according to
analysis via confusion matrix, was the exposed soil; this class has higher values of sampled
pixels, which also result in an increase in errors. However, the errors were minimal and did
not compromise the statistical results of the classification performance.

User accuracy are the estimates of fractions of mapping pixels, for each class, correctly
classified, whereas producer accuracy are the sample fractions of pixels of each class
correctly assigned to their classes by the classifiers [35]. In this regard, analyzing the
discrimination between the thematic classes through the producer and user accuracies
(Figure 5), similar behaviors for the algorithms, with good discrimination of the study
classes, are evident. Based on Figure 5A, satisfactory results are observed for the average
producer accuracy, with higher hits for the brachiaria class and a slight superiority of the RF
algorithm when compared with the SVM algorithm. In turn, based on Figure 5B, satisfactory
results are also observed for the average user accuracy, with high hits for the brachiaria
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and weed classes, and again a slight superiority of the RF algorithm when compared with
the SVM algorithm. For the producer and user accuracies of both algorithms, the class with
the lowest hit rate was that of coffee plants. However, with values greater than 95%, which
indicate satisfactory values for this metric, the applicability of the algorithms for all classes
of study is demonstrated.

Table 2. Confusion matrix for the RF machine learning algorithm.

Classes
Reference

Brachiaria Coffee Weed Soil Total ET1 (%)

Prediction

Brachiaria 481 0 0 0 481 0
Coffee 0 400 2 11 413 3.15
Weed 0 0 372 0 372 0
Soil 0 5 1 1213 1219 0.50

Total 481 405 375 1224 2485 -

ET2 (%) 0 1.23 0.80 0.89 - -

Legend: Error type 1 (ET1); error type 2 (ET2).

Table 3. Confusion matrix for the SVM machine learning algorithm.

Classes
Reference

Brachiaria Coffee Weed Soil Total ET1 (%)

Prediction

Brachiaria 481 0 0 0 481 0
Coffee 0 392 2 15 409 4.15
Weed 0 1 371 0 372 0.26
Soil 0 12 2 1209 1223 1.15

Total 481 405 375 1224 2485 -

ET2 (%) 0 3.21 1.07 1.22 - -

Legend: Error type 1 (ET1); error type 2 (ET2).

Agronomy 2023, 13, x FOR PEER REVIEW 7 of 14 
 

 

Table 2. Confusion matrix for the RF machine learning algorithm. 

 Classes 
Reference  

Brachiaria Coffee Weed Soil Total ET1 (%) 

P
re

d
ic

ti
o

n
 Brachiaria 481 0 0 0 481 0 

Coffee 0 400 2 11 413 3.15 

Weed 0 0 372 0 372 0 

Soil 0 5 1 1213 1219 0.50 

Total 481 405 375 1224 2485 - 

 ET2 (%) 0 1.23 0.80 0.89 - - 
Legend: Error type 1 (ET1); error type 2 (ET2). 

Table 3. Confusion matrix for the SVM machine learning algorithm. 

 Classes 
Reference  

Brachiaria Coffee Weed Soil Total ET1 (%) 

P
re

d
ic

ti
o

n
 Brachiaria 481 0 0 0 481 0 

Coffee 0 392 2 15 409 4.15 

Weed 0 1 371 0 372 0.26 

Soil 0 12 2 1209 1223 1.15 

Total 481 405 375 1224 2485 - 

 ET2 (%) 0 3.21 1.07 1.22 - - 

Legend: Error type 1 (ET1); error type 2 (ET2). 

User accuracy are the estimates of fractions of mapping pixels, for each class, cor-

rectly classified, whereas producer accuracy are the sample fractions of pixels of each class 

correctly assigned to their classes by the classifiers [35]. In this regard, analyzing the dis-

crimination between the thematic classes through the producer and user accuracies (Fig-

ure 5), similar behaviors for the algorithms, with good discrimination of the study classes, 

are evident. Based on Figure 5A, satisfactory results are observed for the average producer 

accuracy, with higher hits for the brachiaria class and a slight superiority of the RF algo-

rithm when compared with the SVM algorithm. In turn, based on Figure 5B, satisfactory 

results are also observed for the average user accuracy, with high hits for the brachiaria 

and weed classes, and again a slight superiority of the RF algorithm when compared with 

the SVM algorithm. For the producer and user accuracies of both algorithms, the class 

with the lowest hit rate was that of coffee plants. However, with values greater than 95%, 

which indicate satisfactory values for this metric, the applicability of the algorithms for all 

classes of study is demonstrated. 

 

Figure 5. Average producer and user accuracy for each thematic class for (A) RF and (B) SVM. 

3.2. Mapping and Quantification of the Study Classes 

From the RF classifier, which yielded superior performance metrics, it was possible 

to describe the importance of each variable for the classification process through the Mean 

Decrease in Gini (Figure 6). Thus, it was noted that the variable of the NIR spectral band 

had the greatest importance for the classification, followed by the REG and RED spectral 

Figure 5. Average producer and user accuracy for each thematic class for (A) RF and (B) SVM.

3.2. Mapping and Quantification of the Study Classes

From the RF classifier, which yielded superior performance metrics, it was possible to
describe the importance of each variable for the classification process through the Mean
Decrease in Gini (Figure 6). Thus, it was noted that the variable of the NIR spectral band
had the greatest importance for the classification, followed by the REG and RED spectral
bands, and the least importance for the classification was the GRE spectral band, which is
also highlighted in the spectral signatures of the study classes, according to Figure 7.
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Figure 7. Spectral signature of each study class.

The map of the distribution of classes with the RF classifier (the prediction of classes by
the classifier algorithm) is shown in Figure 8. In this figure, the spatialization for the study
area and the percentage of occupation of the thematic classes in the study area are shown.
There is a large discrimination between the analyzed classes, highlighting the quality of
the classifier in determining the percentage of weed occupation (7.07%) in the crop and
differentiating it from the coffee plant (16.42%), brachiaria (11.96%), and soil (64.54%).
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Figure 8 also allows the diagnosis of the areas occupied by weeds with respect to their
location and percentage of occupation. It was possible to identify strategic points for the
local application of the agrochemical control of morning glory in the coffee plantation,
allowing the recommendation of the spray volume and the comparison of the volume of
spray that would be applied in the total area (180.3 L) versus the volume of spray applied
in only areas with the presence of weeds (13.2 L) and enabling the analysis of financial costs
involved in this process.

4. Discussion
4.1. General Precision of the Classifiers

As shown in Table 1, the overall accuracy, kappa index, F1 score, and area under the
ROC curve values allowed the reliable discrimination of the study classes. The accuracy
values indicate how often the classifier correctly estimates the proposed classes, with values
closer to 100% indicating the excellent fit of the model to the proposed classes [36]. Con-
sidering the levels of evaluation of the kappa index, values above 0.81 indicate excellent
performance [37]. Conversely, the area under the ROC curve (AUC) quantifies the discrimi-
natory power of a model with values above 90% considered excellent for this variable [38].
For the producer and user accuracy values (Figure 5), a very high hit rate was obtained
for all study classes using both algorithms, which can also be highlighted in the individ-
ual analysis by classes in the respective confusion matrices (Tables 2 and 3). It should
be noted that the classes with the highest confounding error were soil and coffee plants;
however, low error percentages of approximately 4% for both inclusion and omission errors
were obtained.

It is shown that the creation of a batch of decision trees as well as class division
hyperplanes for the RF and SVM algorithms, respectively, was possible with the use of
the multispectral bands of the sensor onboard the RPA used in this study. It is evident
that the classifiers showed great similarity in class discrimination in the study area, which
may be related to the low number of classes analyzed, the size of the study area, and
the large spread of the weeds in the field; however, there were still pixels classified with
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erroneous classes, which may be directly related to the pixel-by-pixel classification method.
Thus, for both tested algorithms, all performance metrics are within the limits of excellence
in terms of classification acceptance; however, a better performance was observed using
the RF. It is noteworthy that pixels classified as erroneous classes are checked whenever the
classification does not reach 100% quality; however, the high classification performance
evidenced by the satisfactory values of the analyzed performance metrics stands out, both
in general analysis and in analysis by class via a confusion matrix.

The RF algorithm has characteristics that make it beneficial for classification. This
algorithm is less affected by outliers and data with noise, is nonparametric, supports data
with various statistical distributions, has a high capacity for processing large-scale data
and data from various sources, and has greater accuracy in terms of classification when
compared with other classifiers such as SVM and maximum likelihood [39,40]. Another
benefit of this algorithm is the possibility of using the analysis of the variables of importance
through the Mean Decrease in Gini, which allows an overview of the behavior of the
variables during the classification process and the identification of those variables with
greater and lesser importance weights (Figure 6).

By comparing the classification algorithms used in this study, it was observed that
the SVM algorithm required a longer processing time than the RF algorithm. In addition,
the difference in the accuracy of the classification algorithms usually occurs due to a
subsampling of the separation hyperplanes of the SVM, which leads to an increase in
processing time when compared with the RF algorithm [14].

The difficulty in detecting plants occurs due to the presence of dense environments,
the plant configuration, high-definition canopy mapping, and conflicts between shade and
lighting [41]. In addition to crop and weed segmentation methods, procedures that consider
the spectral characteristics of plants are interesting to help classify different plants in the
field [42]. The sensor wavelength directly affects the interaction response of electromagnetic
energy with the targets present on the Earth’s surface [43]. It was observed in this study
that the NIR spectral range was more important in the classification obtained using the
RF model. This is justified by the fact that there is a greater difference in the spectral
response between the study classes in this spectral range. The spectral signature of the
soil is considerably less variable, and due to its composition, it has a high absorption
capacity and therefore low reflectance in the NIR spectral range, especially under water
deficit conditions. The vegetation, in turn, has a spectral signature with greater variation
along the electromagnetic spectrum. An emphasis is placed on the high reflectance in the
NIR spectral range due to the interaction of the incident energy with the structure of the
spongy mesophyll of the leaves present within this structure. Thus, the greater the internal
scattering is, the greater the reflectance in this spectral range.

Thus, class differentiation was facilitated by employing the NIR spectral range to
separate the soil and vegetation classes. However, when only vegetation is analyzed, the
coffee plant, weed, and brachiaria classes are included. Despite having close reflectance
characteristics (due to vegetative spectral behavior), the NIR range was also the maxi-
mum and minimum amplitude values that occurred between these classes, allowing the
differentiation of the vegetation into the subclasses used in this study (Figure 7).

Such variation in the vegetation cover reflectance in the NIR spectral range mainly
depends on the internal structure of the leaves due to their organization and structural
spacing but is also influenced by the number of leaves and the canopy architecture, which
are variable in the coffee plant, weed, and brachiaria classes. This effect occurs because
the energy transmitted through the upper layer of the leaves is partially reflected to the
lower layer, and part of this energy is transmitted by the upper layer of the leaves and
thus the reflected energy increases, which also explains the reasons for such variation
in the NIR range [44–46]. In our study of the spectral behavior of the NIR band, also
influenced by the behavior of the canopy, in addition to the internal structure of the plants,
the highest reflectances were observed for plants with the highest density of leaves and
weeds, followed by coffee plants, and finally by brachiaria. The reflectance variations
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are observed when analyzing the spectral signatures in which the most appropriate NIR
spectral range are selected, as it has more defined limits of adequacy for each thematic
class, as highlighted in Figure 8, with higher reflectance values in the NIR range for weeds,
followed by coffee plants, and finally by brachiaria. However, although the NIR band is
the most important band in the classification, its use alone was not enough to proceed with
the differentiation between the study classes. For this reason, the other spectral bands were
used to achieve better results in the proposed classification.

In accordance with the evidence presented in this study, several studies also demon-
strated the applicability of using classification algorithms to individualize weeds in a
field [13,47–49]. Multiple related works highlighted the use of the NIR spectral range when
discriminating classes of land use and occupation in agricultural crops [19,50,51].

4.2. Diagnosis and Recommendation

In general, satisfactory and accurate weed classification results were obtained due to
the use of high-spatial-resolution images. It is also noteworthy that the abundance of weeds
and, consequently, the training dataset were key factors in the accuracy of the classification.

The classifier adjustment errors are mainly due to the irregular shape of the weeds,
which prevented a good manual design and resulted in the overestimation of the actual
weed infestation, ranking slightly higher than the actual information between the reference
and the intended data. It should be noted, however, that from an agronomic point of view,
overestimation is not a problem because it reduces the chance of a lack of control in the
field by excluding untreated weeds [52].

In this study, the application of treatment agrochemicals to weeds occurred in a conser-
vative manner, adopting the presence of weeds as the limit indicative of treatment. Thus, it
provides minimal product savings but encourages controlled and environmentally correct
applications when compared with the application in which the total area is treated and
promotes cost reduction and greater economic returns of the coffee activity. Understanding
the distribution of weeds in the crop through the evaluation of infestation promotes the ad-
equate application of herbicides, allowing the adoption of more effective control measures
and reducing the risk of unnecessary applications of agrochemicals [53].

Considering the total study area of 6010.24 m2, the plot occupied by weeds is equiva-
lent to 7.07%, i.e., 439.06 m2 of the study area, as shown in Figure 8. To control morning
glory weeds, 300 L of spray solution per hectare (HEAT–saflufenacil) was applied via a
directed spray at a ratio of 100 g of HEAT to 100 L of water (see HEAT/BASF package
insert). Considering the application in the total area, the spray volume would be 180.3 L,
and considering the application only in areas occupied by weeds, the spray volume would
be reduced to 13.2 L. Thus, the economic saving of herbicide, calculated in terms of the
area not required for application, is 92.68% in relation to a conventional application of
uniform total area. In conclusion, considering the current price of this herbicide, which
would cost USD 42.00 for the producer to treat the total area, would be reduced to only
USD 3.00 to treat only the areas affected by weeds. These values were applied to this
study area; however, they show the importance and application of such methodology when
performing the adequate monitoring of coffee crops affected by weeds, which is relevant in
reducing producer costs and minimizing the use of agrochemicals as well as their impacts.
Therefore, precision agriculture not only reduces costs and waste, but also improves yield
and environmental quality [54].

However, it is essential to maintain a crop environment with weed control and man-
agement, and rapid detection is a crucial step to avoid yield loss and improve the prof-
itability of agricultural activities. The young coffee plants, after planting and until the
first year of fixation in the field, are very sensitive to the interference of weeds, and their
growth and reproductive life are strongly affected if weed control is not addressed in a
timely manner [55].

Traditional methods of identification and treatment with herbicide applications to
weeds require a large amount of time and have a high treatment cost, which in many cases
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prevents application efficiency [50]. The use of a sensor coupled to an RPA enables the
rapid collection of information. Effective results in the study area are obtained for the
diagnosis and controlled application of agrochemicals in the area. Identifying weed species
as a morning glory in coffee cultivation promotes improvements in the management and
economy of products for their control in addition to providing the producer with a current
mapping of the development and history of invasion of these plants.

5. Conclusions

The use of high-resolution images obtained by RPA for the classification of vegeta-
tion allowed the differentiation of coffee plants from weeds, and promising results were
obtained. The use of high-performance and cost-free classification algorithms yielded
satisfactory values for the performance metrics analyzed, with a slight superiority of the
RF algorithm. The application of agrochemicals only in the area covered by weeds allows
a savings of 92.68% when compared with the condition of application in the total area,
showing economic gains and environmental protection.
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