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Abstract: Pre-harvest sprouting (PHS) of rice (Oryza sativa L.) causes severe economic problems due
to reduced grain quality and yield. Fine mapping was carried out to identify genes associated with
PHS; the detected quantitative trait locus (QTL) was narrowed down to 50 Kbp using F3:4 populations,
four polymorphic insertion and deletion (InDel) markers, and two cleaved amplified polymorphic
sequence (CAPS) markers. In one region, five candidate genes were detected, and the SNP and InDel
in each gene (Os01g0111400 and Os01g0111600) were confirmed to show the differences and resulting
amino acid changes between parent plants. Based on haplotype, expression, and co-segregation
analysis, the InDel in Os01g0111600 was confirmed to be associated with the PHS trait. The results
of this study could be applied to improve the PHS tolerance of Japonica rice varieties, and they also
improved our understanding of the genetic basis underlying PHS tolerance.

Keywords: pre-harvest sprouting; whole-genome resequencing; fine-mapping; marker;
Oryza sativa L.

1. Introduction

Rice (Oryza sativa L.) is the most important staple cereal crop for more than half of the
world’s population [1]. However, the security of the rice supply is threatened by climate
change, including events such as typhoons, high temperatures, and other extreme weather
conditions [2].

PHS is one of the most important adverse processes in rice because of the severe
economic consequences of the markedly reduced grain quality and yield [3]. This occurs
when seeds germinate during the maturing stage, before the harvest. Under normal seed
dormancy (SD), maturation of the seed is arrested for various periods of time to allow it
to germinate under favorable conditions. A lack of SD causes PHS in cereal crops [4]. In
wild plant species, SD prevents germination of the panicle or grain under inopportune
conditions. When matured rice panicles are not harvested in time or the harvested rice
grains are not dried immediately after harvesting, rice cultivars with high PHS may exhibit
germination when exposed to frequent rainfall and high temperatures [5–8]. SD is an
adaptive trait that helps plants survive in harsh environments. However, PHS can break
SD and promote seed germination under unfavorable conditions, which is also a crucial
trait for plant survival [5,9].

Traits associated with seed germination, such as PHS, SD, and low-temperature ger-
mination (LTG), are highly complex, involving various physical and biochemical quality
factors. They are quantitative traits subject to complex genetic control mechanisms, and
germination-associated genes have been reported to be affected by auxin, abscisic acid
(ABA), and gibberellin (GA) levels, which are major signaling molecules involved in germi-
nation induction [10].
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Auxin is a phytohormone that is involved in various physiological processes, includ-
ing phototropism, cell differentiation, cell expansion, floral opening, organ abscission,
and seed germination [11]. Endospermic sugars are an essential energy source for seed
germination and determine SD and germination by affecting ABA signaling [12]. GA
promotes germination, which requires not only initiating embryo metabolic activity, but
also breaking the physical barrier of the seed coat surrounding the embryo [13]. Several
studies have proposed SD regulation as the predominant factor affecting PHS [4,14–18].

Many QTLs with these traits have been reported in different subspecies and eco-
types [15,19–21]. Fourteen QTLs related to SD were identified using recombinant inbred
line (RIL) and restriction fragment length polymorphism markers [22], and qSD-3, -5, -6,
and -11 were detected using a double-haploid population [23]. qPHS-11 was identified
under field and greenhouse conditions through whole-genome resequencing [24]. qSDR9.1
and qSDR9.2 were identified on chromosome 9 using chromosome segment substitution
lines and simple sequence repeat markers [25]. Only a few genes (SD1-2 and Sdr4) have
been identified through map-based cloning [26,27]. Using a genome-wide association study
(GWAS), 10 loci associated with PHS were reported on chromosomes 1 and 4 based on a
subset of SNPs, with 277 accessions from the 3000 Rice Genomes Project [28].

Improving PHS tolerance in rice is a major breeding objective [29]. To overcome PHS
in rice under unpredictable weather conditions, genes and alleles associated with PHS must
be identified. To address the incorporation of PHS tolerance into commercial rice cultivars,
we conducted QTL and fine-mapping analysis with a mapping population derived from
crossing high-quality Japonica varieties. We propose that the QTLs and candidate genes
detected in this study could be used in commercial rice breeding programs.

2. Materials and Methods
2.1. Plant Materials

A PHS tolerance line (PHS-T) and a PHS susceptible line (PHS-S) were selected from
a RIL population generated through crossing ‘Jinsang’, a parent producing high-quality
rice, with ‘Gopum’, which also produces high-quality rice but is susceptible to PHS [30,31].
In the RIL population, parent plants were selected with similar agricultural traits, except
for the PHS trait; as a result, the F2 and F3 populations showed pronounced segregation of
tolerance and susceptibility, whereas traits such as plant height, heading date, culm length,
and panicle length were uniform. In the previous study, 88 F2 from a cross between PHS-T
and PHS-S were used for QTL analysis to identify candidate regions [32]. The heterozygous
plant was selected from the F2 population to generate F3 plants for further fine-mapping
(Figure 1). PHS-T, PHS-S, and 241 F3 plants were grown in the experimental field at Pusan
National University in 2018 and 2020.
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2.2. Phenotypic Evaluation of Pre-Harvest Sprouting

At forty-five days after flowering (DAF), three panicles from each parent and the 241
F3 plants were evaluated for PHS rates under growth chamber (GC) conditions. Panicles
were wrapped in paper towels and placed in water (100% relative humidity). Materials
were incubated at 20 ◦C for seven days in a growth chamber [19]. For haplotype analysis,
93 Korean-bred varieties were also evaluated for PHS tolerance using 45 DAF panicles



Agronomy 2023, 13, 818 3 of 11

under growth chamber conditions. All statistical analyses were conducted using R software
version 4.1.3 for Windows.

2.3. Fine-Mapping of qPHS1GC and qPHS1FC

To conduct a fine-mapping analysis, four InDel markers and two CAPS markers
were designed from the variations between PHS-T and PHS-S at the detected QTL re-
gion reported in the previous study. Genotype data of PHS-T and PHS-S were acquired
through whole-genome resequencing using an MGISEQ-2000 platform (MGI, Shenzhen,
China) [32]. Genomic DNA was extracted from fresh rice leaves according to a modified
CTAB protocol [33]. Polymerase chain reaction (PCR) was performed as follows: 95 ◦C
for 5 min, followed by 35 cycles of 95 ◦C for 30 s, 55–58 ◦C for 30 s, 72 ◦C for 30 s, and a
final elongation step at 72 ◦C for 7 min. PCR products were analyzed using a Fragment
Analyzer TM (Agilent, Santa Clara, CA, USA).

2.4. RNA Extraction and qRT-PCR

RNA was isolated from 45 DAF rice grains of PHS-T and PHS-S using an RNeasy
Plant Mini Kit (QIAGEN, Hilden, Germany), and samples were treated with RNase-Free
DNase (QIAGEN, Hilden, Germany) to remove genomic DNA. Complementary DNA
(cDNA) was synthesized using a SuperScript III Kit (Thermo Fisher Scientific, Boston,
MA, USA), with primers for target genes designed using Primer 3 [34]. Reactions were
performed in triplicate, and actin expression was used as an internal baseline control. The
samples were kept on ice until immediately before qRT-PCR analysis using QuantStudio 1
(Thermo Fisher Scientific, Boston, MA, USA). The run parameters followed a standard PCR
protocol, beginning with reverse transcription at 50 ◦C for 15 min, denaturation at 95 ◦C
for 2 min, followed by 50 amplification cycles consisting of a denaturation step at 95 ◦C for
15 s and annealing and extension at 60 ◦C for 1 min, with fluorescence acquisition in the
annealing/extension phase. QuantStudio Software version 1.5.2 (Thermo Fisher Scientific,
Boston, MA, USA) was used to analyze the data. The cycle threshold was set to 0.05, and
the baseline was chosen automatically. Two-tailed t-tests were performed using GraphPad
software to compare samples. Statistical significance was reported at p < 0.01.

2.5. Genome Sequence Data for Korean-Bred Rice Varieties

A total of 93 Korean-bred rice varieties from the national agrobiodiversity center of
the Rural Development Administration (RDA, Wanju, Republic of Korea) were used to
detect variations of PHS (Table S1). Genomic data of the 93 varieties were produced with an
approximately eight-fold mean coverage using an Illumina HiSeq 2500 Sequencing Systems
Platform (Illumina Inc., San Diego, CA, USA). Raw reads were aligned against the rice
reference genome (IRGSP 1.0) for genotype calling. To generate a genotype dataset, the
following parameters were used for haplotype analysis: missing value < 1%, minor allele
frequency > 5%, and heterozygosis ratio < 5%, as implemented in PLINK software [35].

2.6. Haplotype Analysis for Korean-Bred Varieties

SNPs and InDel regions were used for haplotype analysis, excluding missing and
heterozygote regions. The average score and variety count were determined from phe-
notype data for each variety, and haplotypes that were significantly associated with the
phenotype were identified. The online tool Gene Structure Display Server 2.0 was used for
the visualization of gene structures and SNP and InDel positions [36].

2.7. Seed Germination Assay and ABA Treatment

To evaluate the effects of ABA on seed germination, grains were harvested at 45 DAF
and were dehulled. To determine the ABA sensitivity regarding post-gemination growth,
husked seeds were sterilized using 0.15% HgCl2 and were washed in sterilized water.
Then, the seeds were spread for germination on micro agar. Three days after incubation,
seedlings with the same growth vigor were transferred onto untreated micro agar and 2
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µM ABA-treated micro agar, respectively. Seeds and seedlings were grown in a growth
chamber under a 14/10 h light/h dark cycle at 28 ◦C. Photos were taken, and shoot length
was measured seven days after transplanting [37].

3. Results

3.1. Fine-Mapping of qPHS1FC and qPHS1GC

In the previous study, the 17 linkage groups were constructed by filtering 376 SNPs
from 12,737 SNPs between PHS-T and PHS-S. Under two different conditions, field condi-
tion (FC) and GC, two QTLs, i.e., qPHS1FC and qPHS1GC, were detected in the same position
under each condition, and this QTL was identified between ch01-0.040 and ch01-0.063
(Figure 2a) [32]. In this QTL, new polymorphic InDel markers and CAPS markers were
developed for fine mapping of qPHS1FC and qPHS1GC. To identify the specific genomic
regions associated with PHS, the heterozygous F2 plant was selfed to produce a subsequent
F3 population. A total of 241 F3 plants were genotyped using InDel (In1–In4) and CAPS
(SNP1 and SNP2) markers (Figure 2b and Table S2). Homozygous recombinants in the F3
population were identified using markers and evaluated for PHS resistance. Based on the
genotypes and tolerance phenotypes of the homozygous recombinants, a high-resolution
map of the qPHS1FC and qPHS1GC locus was established. Through the procedure described
above, a candidate region was detected and narrowed down that could be confined be-
tween markers SNP2 and In4 (Figure S1). Based on the results of genotype and phenotype
assays, narrowed-down regions of qPHS1FC and qPHS1GC were found to be located in the
interval between the SNP2 and In4markers, which spanned a 50 Kbp region in the genome
sequence. This region contained five predicted genes (Figure 2c).
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3.2. qPHS1FC and qPHS1GC Candidate Gene Prediction 

Figure 2. Fine-mapping of qPHS1FC and qPHS1GC. (a) Physical map of the qPHS1FC and qPHS1GC

locus using F2:3 plants. (b) High-resolution mapping of the qPHS1FC and qPHS1GC locus using F3:4

plants. (c) Candidate genes of qPHS1FC and qPHS1GC. Black blocks indicate candidate genes with
SNPs or InDel polymorphisms.

3.2. qPHS1FC and qPHS1GC Candidate Gene Prediction

Among five candidate genes of qPHS1FC and qPHS1GC, three candidate genes, Os01g0-
111200, Os01g0111300, and Os01g0111500, were monomorphic between PHS-S and PHS-T
(Table 1). Therefore, the remaining two genes (Os01g0111400 and Os01g0111600) were
cloned and sequenced to detect the respective regions. Os01g0111400 had one SNP between
the parents. One SNP in Os01g0111400 was detected in the third exon; the SNP was a T
and an A in the PHS-T and PHS-S lines, respectively, and caused an amino acid change
from serine to threonine (Figure 3a and Table 1). Os01g0111600 showed a 16 bp deletion
region in the fourth exon of PHS-S, giving rise to a stop codon-type of amino acid (Table 1
and Figure 3b).
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Table 1. Candidate genes for the qPHS1GC and qPHS1FC.

Gene Name Length of CDS (bp) Putative Function Reported Gene Sequence Variation

Os01g0111200 1863 Expressed protein No variation
Os01g0111300 162 Expressed protein No variation

Os01g0111400 2106 Transposon protein 1 SNP: T→ A caused
Ser→ Thr

Os01g0111500 888 Regulation of root hair
development

OsbHLH125
OsRSL1 No variation

Os01g0111600 525
Regulation of ABA

signaling-mediated seed
germination

OsMFT2 1 InDel: 16 bp deletion
caused stop codon
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grey block and yellow vertical lines indicate exons, untranslated regions, and SNPs, respectively.

3.3. Expression Patterns of Os01g0111400 and Os01g0111600

Expression analysis was performed to investigate the transcript type of Os01g0111400
and Os01g0111600 in PHS-S and PHS-T during the grain-filling stage. For expression
analysis, primers of target genes (Os01g0111400 and Os01g0111600) were designed for
qRT-PCR (Table S3). The relative expression level of Os01g0111400 was similar between the
two parents (Figure 4a), whereas the relative expression of Os01g0111600 was markedly
higher in PHS-T than in PHS-S, and the 16 bp deletion type exhibited reduced expression
(Figure 4b). These results suggest that Os01g0111600 acts as a positive regulator of PHS
during seed germination rather than Os01g0111400, and the deletion region leads to PHS
sensitivity.



Agronomy 2023, 13, 818 6 of 11Agronomy 2023, 13, x FOR PEER REVIEW 6 of 12 
 

 

 
Figure 4. Expression analysis of candidate genes. (a) Os01g0111400 expression in PHS-S and PHS-T 
45 days after flowering. (b) Os01g0111600 expression in PHS-S and PHS-T at 45 days after flowering. 
Values were normalized against the level of OsAct1. Error bars represent standard deviations (n = 
3). 

3.4. Haplotype Analysis of Os01g0111600 in Korean-Bred Varieties 
Haplotype analysis was performed using genotype data of 92 Korean-bred varieties. 

The haplotype analysis of Os01g0111400 separated three haplotypes, and the Korean-bred 
rice varieties with a haplotype with polymorphic SNP had a decreased PHS rate; however, 
it was not statistically significant (Figure S2). The other candidate gene, Os01g0111600, 
contained three SNPs in exon 1 and two SNPs and one InDel in exon 4 (Figure 5a). PHS-
T and PHS-S were also confirmed to belong to Hap 2 and Hap 1 in Os01g0111600, respec-
tively. Five SNPs and one InDel were divided into four haplotypes, with a maximum phe-
notypic variation of 95.6% for PHS between Hap 1, Hap 3, and Hap 4 (Figure 5b). In con-
clusion, InDel 1 in exon 4 caused amino acid changes, which showed significant differ-
ences regarding PHS. This gene was identified as a candidate gene for PHS tolerance in 
Korean-bred varieties (Figure 5b). 

 
Figure 5. Haplotype analysis of Os01g0111600. (a) Schematic representation of the gene structure 
and SNP positions in Os01g0111600. (b) Results of haplotype analysis of Os01g0111600. Yellow and 
blue blocks and gray lines indicate exons, untranslated regions, and intron regions, respectively. 
Black vertical bars represent SNPs and InDel regions. Hap: haplotype. Letters a, b, and c represent 
significant differences at *** p < 0.001 (Duncan’s test). 

  

Figure 4. Expression analysis of candidate genes. (a) Os01g0111400 expression in PHS-S and PHS-T
45 days after flowering. (b) Os01g0111600 expression in PHS-S and PHS-T at 45 days after flowering.
Values were normalized against the level of OsAct1. Error bars represent standard deviations (n = 3).

3.4. Haplotype Analysis of Os01g0111600 in Korean-Bred Varieties

Haplotype analysis was performed using genotype data of 92 Korean-bred varieties.
The haplotype analysis of Os01g0111400 separated three haplotypes, and the Korean-bred
rice varieties with a haplotype with polymorphic SNP had a decreased PHS rate; however,
it was not statistically significant (Figure S2). The other candidate gene, Os01g0111600,
contained three SNPs in exon 1 and two SNPs and one InDel in exon 4 (Figure 5a). PHS-T
and PHS-S were also confirmed to belong to Hap 2 and Hap 1 in Os01g0111600, respectively.
Five SNPs and one InDel were divided into four haplotypes, with a maximum phenotypic
variation of 95.6% for PHS between Hap 1, Hap 3, and Hap 4 (Figure 5b). In conclusion,
InDel 1 in exon 4 caused amino acid changes, which showed significant differences regard-
ing PHS. This gene was identified as a candidate gene for PHS tolerance in Korean-bred
varieties (Figure 5b).
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3.5. Response to ABA Treatment of PHS-S and PHS-T

To investigate the effects of ABA on the germination performance of PHS-S and
PHS-T, the germination rate under ABA treatment and normal conditions was evaluated
using husked full seeds freshly harvested 45 DAF. Under ABA treatment conditions, seeds
revealed some delay in germination; among them, the PHS-T showed higher sensitivity
to ABA than PHS-S (Figure 6a). Shoot lengths of PHS-S and PHS-T controls (0 µM ABA)
were 8.5 and 8.3 cm, respectively, whereas shoot lengths were 2.9 and 0.8 cm, respectively,
with 2 µM ABA (Figure 6b). Thus, PHS-T exhibited some delay in germination under ABA
treatment conditions, whereas PHS-S showed a relatively lower sensitivity as compared
with PHS-T (Figure 6).
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3.6. Co-Segregation between Indel Markers of Os01g0111600 and the PHS Trait

Co-segregation analysis was conducted. The genotypes of the 16bp deletion region
of Os01g0111600 and the germination rate under PHS conditions were examined using
panicles of F2:3 and F3:4 populations 45 DAF and a 16bp deletion detection marker (Table 2
and Figure 7a,b). The distribution of F2:3 populations under growth chamber conditions
showed that most plants were of the PHS-T type, and fewer were of the PHS-S type
(Figure 7c). Among F2:3 individuals under growth chamber conditions, the PHS-T type had
a lower germination rate than the PHS-S type (Figure 7c). Additionally, F2:3 populations
under field conditions showed similar results to the growth chamber conditions (Figure 7d).
The F3:4 populations contained more PHS-T type than PHS-S type individuals, and the
PHS-T type had a lower germination rate than the PHS-S type (Figure 7e).

Table 2. Primer used for co-segregation analysis of Os01g0111600.

Marker Name Type Forward Primer (5′-3′) Reverse Primer (5′-3′) PHS-T-Type (bp) PHS-S-Type (bp)

Os01g0111600-16bp InDel GGTGGGGATACACAGGTACG CCTCTGGGAGTTGAAGTGGA 166 150
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Figure 7. Co-segregation analysis of the Os01g0111600-16bp InDel marker using a fragment analyzer
in F2:3 and F3:4 populations. Tolerance type: 166 bp; susceptible type: 150 bp. (a) Co-segregation
analysis of the OS01g0111600-16bp InDel marker in the F2:3 population. (b) Co-segregation analysis
of the OS01g0111600-16bp InDel marker in the F3:4 population. (c) Pre-harvest sprouting rate of the
PHS-T type in the F2:3 populations under growth chamber conditions. (d) Pre-harvest sprouting rate
of the PHS-T type in the F2:3 populations under field conditions. (e) Pre-harvest sprouting rate of
the PHS-T type in the F3:4 populations under growth chamber conditions. PHS-T type, H, PHS-T
type, and n indicate the reference type, heterozygote, 16bp deletion type, and number, respectively.
GC and FC represent growth chamber and field conditions, respectively. Letters a, b, and c represent
significant differences at p < 0.001 (Duncan’s test).

4. Discussion

PHS is one of the most important processes regarding rice yield and quality, and it
is closely associated with SD, which inhibits seed germination under high humidity and
temperature conditions [38]. Regarding traits associated with seed germination, the effects
of PHS, SD, and LTG are extremely complex, involving various physical and biochemical
factors. These are quantitative traits subject to complex genetic control mechanisms, and
germination-associated genes have been reported to be affected by auxin, ABA, and GA
levels, which are major signaling molecules involved in germination induction [10].

In order to identify candidate genes associated with the genetic regulation of PHS
tolerance, we chose two inbred lines (PHS-T and PHS-S) from F7 RIL and generated a
population using PHS-T and PHS-S for analyses. The population in this study was derived
from the same parental lines (‘Jingsang’ and ‘Gopum’), and PHS-T and PHS-S were selected
to have the same agronomy trait except for the PHS trait in the F7 RIL population. Therefore,
we used genotype resequencing because most nucleotide regions showed monomorphic
SNPs and InDel regions in PHS-T and PHS-S. Through resequencing analysis, polymorphic
SNPs were detected between PHS-T and PHS-S, and filtered SNPs were used to construct
the genetic map for the QTL analysis in the previous study [32]. These materials were
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derived to elaborate mapping and narrow down the QTL region from the fine-mapping
analysis in this study.

Os01g0111600 was reported to regulate ABA signaling genes and ABA levels in seed
germination [39,40]. The Arabidopsis cytochrome P450 CYP707A gene codes enzymes
involved in ABA catabolism. Overexpression of the CYP707A gene resulted in reduced ABA
levels and decreased seed dormancy, while knockdown of the gene resulted in increased
ABA levels and enhanced seed dormancy. Their findings suggest that the CYP707A gene
plays a key role in ABA catabolism and seed dormancy regulation [39]. The NCED5 gene
encodes an enzyme involved in ABA biosynthesis in rice seed dormancy. Overexpression
of the NCED5 gene led to increased ABA levels and enhanced seed dormancy, while
knockout of the gene resulted in decreased ABA levels and reduced seed dormancy. It
was also suggested that other members of the NCED gene family also contributed to ABA
accumulation and seed dormancy regulation in rice [40]. In a related study, OsMFT2
knockout lines exhibited pre-harvest sprouting, whereas OsMFT2 overexpression lines
showed delayed germination [37]. ABA was demonstrated to be highly associated with
seed germination, as well as low-temperature germination and dormancy, and the ABA
level was determined to be related to delayed or exhibited germination [10,12]. To confirm
the functions of candidate genes identified in this study, we evaluated the responses of
ABA treatment in each parent plant. After broken seed dormancy of PHS-T and PHS-S,
the growing degree of these seeds was compared in the normal micro agar condition
and ABA treatment micro agar condition, respectively. PHS-S exhibited reduced ABA
sensitivity in seed and post-germination, and PHS-T showed hypersensitivity to ABA in
both germination steps, indicating the function of PHS-T in ABA signaling (Figure 6).

For co-segregation analysis, the Os01g0111600-16bp marker was developed to distin-
guish the 16bp InDel region in the Os01g0111600 from the population in this study. PHS-S
type varieties in the population showed an increasing rate of PHS, and PHS-T type varieties
showed a decreased tendency compared to the PHS-S type (Figure 7). In the group of
Korean-bred rice varieties, those classified as PHS-S types showed an increase in PHS rates
(Figure 5). Therefore, using a developed marker from polymorphic InDel regions that affect
variance is expected to help to identify PHS tolerance.

In this study, we identified candidate genes that are associated with PHS in the
developed populations. A QTL region identified in a previous study was utilized to
execute fine-mapping analysis, the Os01g0111600 gene was considered the final candidate
gene, and we inferred that a 16bp deletion was the core mutation site associated with
PHS rate differences in the two Japonica parents. PHS leads to reduced rice grain quality
and yield. We propose that the results of this study constitute an important resource for
molecular breeding and for furthering the understanding of rice trait genetics.

5. Conclusions

In this study, PHS was surveyed using PHS-T, PHS-S, and developed populations to
identify candidate genes associated with PHS tolerance. New polymorphic InDel markers
and CAPS markers were developed for fine mapping, and five candidate genes signif-
icantly associated with PHS were identified on chromosome 1. Among these genes, in
Os01g0111600, the 16 bp deletion in the fourth exon of PHS-S was detected; it resulted
in a premature stop codon. Haplotype analysis revealed that InDel caused significant
differences in PHS, and co-segregation analysis indicated that the 16 bp deletion region of
Os01g0111600 was significantly correlated with the PHS germination rate. We also observed
that PHS-T exhibited higher sensitivity to ABA than PHS-S. Based on our findings, we pro-
vided a selection marker associated with PHS in Os01g0111600. This result will enable us to
identify the specific genetic variants responsible for the observed differences and enhance
our understanding of the genetic basis of the trait, ultimately aiding the development of
improved crop yield and quality strategies.
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Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/agronomy13030818/s1. Figure S1. Recombination events and
their effects on tolerance phenotypes in qPHS1FC and qPHS1GC genotypes. Figure S2: Haplotype
analysis of candidate genes. (a) Schematic representation of the gene structure and SNP positions in
Os01g0111400. (b) Results of haplotype analysis of Os01g0111400. Table S1: List of Korean-bred lines
for this study. Table S2: Primers used for fine mapping of qPHS1FC and qPHS1GC. Table S3: Primers
used for qRT-PCR of candidate genes.
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