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Abstract: In the last 30 years, severe soil acidification has been found in China due to acid deposition and
nitrogen fertilizer overuse. Understanding the spatial pattern and vertical variations in base saturation
percentage (BSP) and exchangeable cations (Ca2+, Mg2+, K+, Na+, H+ and Al3+) can directly benefit
fertilization management and ecological protection. Here, 1253 soil profiles were surveyed in tropical
and subtropical regions in China to investigate the spatial variations in BSP and exchangeable cations at
three soil depths of 0–20 cm, 20–50 cm and 50–100 cm. The spatial distributions were interpolated by using
advanced machine learning techniques. We found that the exchangeable Ca2+ (Exch. Ca), Mg2+ (Exch.
Mg) and BSP were significantly higher in paddy fields and uplands than in forests and gardens, regardless
of soil depth, while the exchangeable K (Exch. K) did not significantly differ between various land-use
types. The Exch. Ca and BSP in Anthrosols were significantly higher than those in Ferrosols, Argosols and
Cambosols in the three soil layers. The spatial prediction results indicated that exchangeable cations and
BSP were generally characterized by strong heterogeneity, and the Exch. Ca, Exch. K and exchangeable
H+ (Exch. H) contents and BSP declined with increasing soil depth. This study helps us understand the
spatial variation in BSP and exchangeable cations in the study area and benefits fertilization management
and environmental protection.

Keywords: base saturation percentage; digital soil mapping; exchangeable cations; land use; soil type

1. Introduction

Base saturation percentage (BSP), which is the total of four exchangeable base cations
(Ca2+, Mg2+, K+, and Na+) relative to cation exchange capacity (CEC), is a crucial chemical
index for assessing soil fertility [1,2]. A higher BSP indicates better nutrient availability
in the soil, while a lower BSP is an indication of soil acidification [1,3]. BSP is directly
influenced by the concentrations of exchangeable Ca2+ (Exch. Ca), Mg2+ (Exch. Mg),
K+ (Exch. K), Na+ (Exch. Na), H+ (Exch. H) and Al3+ (Exch. Al). Exchangeable base
cations play an important role in maintaining soil nutrients, providing essential nutrients
for plant growth [4–6] and buffering soil acidification [7]. Deficiencies in Ca, Mg and K
inhibit crop growth and thus indirectly affect crop yield and food quality [8,9]. The sum
of Exch. H and Exch. Al is referred to as the amount of exchangeable acid, and high
concentrations of exchangeable acids act as an important indicator of soil acidification. Alu-
minum toxicity in acidic soils can prevent plants from absorbing nutrients and functioning
properly, which can result in the decline of forests, subpar crop development, and even de-
creased harvests [10–14]. China’s total fertilizer application increased from 1.27× 1010 kg to
5.25 × 1010 kg between 1980 and 2020 [15]. Long-term fertilizer application has greatly
increased food production, but it has also caused environmental problems such as soil
acidification [16] and soil salinization [17], changing the content and composition of ex-
changeable cations in the soil and affecting soil fertility. BSP and exchangeable cations are
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important indicators of soil fertility and soil buffering capacity, and it is necessary to study
their spatial and vertical distribution characteristics.

Recent studies have shown that climatic conditions, soil conditions and human activi-
ties impact the amount and spatial distribution of BSP and exchangeable cations [18–24].
Base cation leaching and a decrease in BSP are caused by acid rain [19] and nitrogen depo-
sition [25]. The distribution of BSP and exchangeable cations varies under different parent
materials [24], land-use types, soil types and soil depths [18,23]. The excessive application
of nitrogen fertilizers will accelerate the loss of base cations, leading to the acidification of
agricultural soils [20–22]. Nevertheless, the reasonable application of inorganic fertilizer
and organic fertilizer effectively promote the accumulation of exchangeable base cations in
soil and the consumption of exchangeable acids, especially Exch. Ca and Exch. Al [26–28].

Compared with traditional soil mapping, digital soil mapping (DSM) is cost effective
and less time consuming, and the generated soil map is expressed by raster data, which can
more accurately express the spatial variation of soil properties [29,30]. DSM is a soil survey
and mapping method based on the soil-landscape hypothesis and spatial analysis and
mathematical modeling [30]. The soil-landscape model was first proposed by Jenny [31],
and then McBratney et al. [32] summarized previous studies and proposed SCORPAN
model (soil, climate, organisms, topography, parent material, age and space), which is
widely used in DSM. In recent decades, statistical methods, geostatistical methods and
machine learning have been the most widely used methods for the spatial interpolation of
soil properties [30]. Nevertheless, little attention has been given to BSP or exchangeable
cations, and thus, our understanding of the spatial variations in these critical soil properties
remains limited. Hengl et al. [33] compared random forest (RF) with linear regression
for producing soil maps of exchangeable cations in African soils, in which the cross-
validation results showed that the RF model was better. Song et al. [34] analyzed the spatial
variability of BSP with regard to land use and parent materials in southeastern China, and
the geostatistical method was adopted to generate the soil maps of BSP at the 0–20 cm and
20–40 cm depths. The authors found that the BSP in paddy fields was significantly higher
than that in forests and uplands at both depths (p < 0.001). At present, most of these studies
have focused on topsoils [35–38], and little attention has been given to subsoils, which may
be helpful for improving our understanding of the effect of long-term fertilization spatial
variation in BSP and exchangeable cations by comparing the topsoil properties of interest
with those of the weathered layer (C-horizon). Furthermore, producing three-dimensional
(3D) digital soil maps of these soil properties can provide support for filling gaps in deep
soil data.

A number of 3D digital soil mapping techniques have been proposed to predict the 3D
spatial distribution of soil properties at fixed depths and vertically variable patterns [39–45].
Grimm et al. [39] used RF to predict the spatial distribution of soil organic carbon (SOC) at
0–10 cm, 10–20 cm, 20–30 cm, and 30–50 cm in Barro Colorado Island, Panama. Veronesi
et al. [40] combined polynomial and ordinary kriging models to predict the 3D spatial dis-
tribution of soil compaction. Hengl et al. [41] used regression models to predict the 3D
spatial distribution of soil properties such as SOC and pH at six standard depths at the global
scale. Rentschler et al. [44] compared four depth functions using nonlinear machine learning
techniques and concluded that the use of exponential depth functions and random forests
are well suited for 3D SOC stock modeling. These studies have provided a wide range of
depth functions for 3D digital soil mapping, and we can choose the appropriate functions
in conjunction with our own research. In the tropical and subtropical regions of China, due
to the unique monsoon climate and the large-scale application of nitrogen fertilizers, the
leaching of soil is relatively strong. The loss of base cations and the high enrichment of Exch.
H and Exch. Al in this area have significantly reduced the soil fertility and caused serious
soil acidification [46]. BSP and exchangeable cations are important chemical indicators of
soil fertility. Studying their spatial variability in this region and conducting 3D digital soil
mapping are especially necessary for assessing current and potential soil productivity in
acidified soils and improving the quality of agricultural products.
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In this paper, the effects of environmental changes and long-term fertilization on
the spatial variations in BSP and exchangeable cations were investigated in tropical and
subtropical China. The main objectives of this study were to (1) investigate the differ-
ences in BSP and exchangeable cations regarding land use and soil types at soil depths of
0–20 cm, 20–50 cm and 50–100 cm and (2) evaluate the predictive performance of multiple
linear regression (MLR), geographically weighted regression (GWR) and random forest
(RF) for the soil mapping of these soil properties.

2. Materials and Methods
2.1. Study Area

The study was conducted in the subtropical and tropical region of China, which covers
an area of approximately 2.38 × 106 km2 and lies between latitudes 97◦26′ and 122◦22′ E
and longitudes 18◦11′ and 34◦0′ N (Figure 1). The mean annual air temperature (MAAT)
in the region ranges from 3.1 to 25.8 ◦C, and the mean annual precipitation (MAP) ranges
from 489 to 2763 mm. This region’s elevation ranges from −96 to 5208 m, and its average
slope is 8.8%. The northern subtropical zone is located north of the Yangtze River and south
of the Qinling-Huaihe line, with a wide distribution of plains and low hills. The range of
the middle subtropical zone is very large and the topography is relatively diverse, with
the plateaux, mountains, hills and basins being staggered throughout. The region includes
the Yunnan Plateau and the Guizhou Plateau, and the largest plain is that of Sichuan Basin.
Mountains and hills are widely distributed in the southern subtropics, while the plain area
is less so, with the largest plain area being the Pearl River Delta. The tropical region, which
is dominated by islands, covers a small area, accounting for only 1% of the total area of
China. The main land-use types in this area include forest, garden, grassland, paddy field
and upland, and the main soil types are Anthrosols, Ferrosols, Argosols, Cambosols and
Primosols, according to Chinese Soil Taxonomy [47]. Supplementary Table S1 indicates
how the classes in the World Reference Base for Soil Resources (WRB) [48] roughly match.
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Figure 1. Spatial distribution of sampling sites.

In addition, the study area is a significant agricultural production region in China. The
study area’s irrigated arable land made up about 40% of China’s total irrigated arable land
in 2020, and its application of agricultural fertilizer made up about 44% of China’s total
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agricultural fertilizer use [15]. Fertilizer application in the region has shown an increasing
trend for more than 30 of the last 40 years (Figure 2). Paddy fields and uplands are used for
crops such as food crops and are the main objects of long-term fertilization in the area.
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Figure 2. Changes in the trends of N fertilizer (N), P fertilizer (P2O5), K fertilizer (K2O) and compound
fertilizer in the study area. Note that the amount of fertilizer applied here refers to the discounted
amount, which is the amount of N fertilizer, P fertilizer, and K fertilizer after converting them to
N, P2O5, and K2O as 100 percent of their compositions, respectively. Compound fertilizers are
discounted according to the main components they contain. Data in 2006 and before 1999 were
obtained by fitting known data.

2.2. Soil Data

In this study, 1253 soil profiles were used (Figure 1), and 4761 soil samples were
collected from genetic horizons. The soil data were from the National Soil Series Survey
(2009–2019). Soil-forming factors such as climate, parent material, topography, vegetation
and human activity were fully considered in the National Soil Series Survey. Typical soil
profiles were collected and classified according to the soil-forming process and diagnostic
basis. Soil pits were typically dug to a depth of 1 m or to bedrock, and soil samples
were obtained from the divided soil layers for experimental purposes [49]. Air-dried soil
samples were sieved through a 2-mm mesh in the laboratory, and soil properties such as
soil texture, SOC, pH, CEC and exchangeable cations were measured. The exchangeable
cations measured included soil Exch. Ca, Exch. Mg, Exch. K and Exch. Na by displacement
with 1 mol/L NH4OAc (pH 7.0) and measurement by EDTA complexometric titration
(Ca2+ and Mg2+) and by flame photometry (K+ and Na+), and Exch. H and Exch. Al were
measured by displacement by 1 mol/L KCl [2]. In addition, the CEC was measured using
the 1 mol/L NH4OAc (pH 7.0) exchange method, and BSP was obtained by calculating the
total amount of the four exchangeable base cations (Ca2+, Mg2+, K+, and Na+) relative to
the CEC [50].

Soil depths generally vary across genetic horizons, and thus, these soil data should
be fitted to fixed soil depth increments to ensure the consistency of the comparison. We
used equal-area quadratic splines to fix the soil sample depths to 0–20 cm, 20–50 cm and
50–100 cm, and the spline smoothing parameter lambda (λ) was 0.1 by default [51].

2.3. Environmental Covariates

The selection of environmental covariates was based on the concepts of SCORPAN
(soil, climate, organisms, topography, parent material, age and space) [32]. A total of
18 covariates for soil attribute prediction were collected (Table 1). Nine terrain variables
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were extracted from the Shuttle Radar Topography Mission digital elevation model [52]
using SAGA GIS (http://www.saga-gis.org/, accessed on 6 April 2021): elevation, slope,
plan curvature (PlanCur), profile curvature (ProCur), channel network base level (Channel
level), vertical distance to channel network (DisToChann), topographic wetness index
(TWI), multiresolution index of valley bottom flatness (MRVBF) and multiresolution index
of ridge top flatness (MRRTF). The normalized difference vegetation index (NDVI) products
were obtained from https://www.vito-eodata.be (accessed on 8 April 2021). Fractional
vegetation cover (FVC) [53], leaf area index (LAI) [54] and evapotranspiration (ET) [55]
for 2010 were derived from the 8-day Global LAnd Surface Satellite (GLASS) products
and were calculated using data from the Moderate Resolution Imaging Spectroradiometer
(https://ladsweb.modaps.eosdis.nasa.gov, accessed on 9 April 2021). MAAT, MAP, sun-
shine duration (Solar), aridity index (Aridity) and annual soil temperature at a depth of
0–50 cm (SoilTemp) were collected from the Resource and Environmental Science and Data
Center (RESDC) (https://www.resdc.cn/, accessed on 9 April 2021), Chinese Academy
of Sciences. All environmental covariates were resampled to a spatial resolution of 1 km
in ArcGIS 10.7 using the bilinear interpolation algorithm. We selected covariates with
a variance inflation factor (VIF) < 10 for each model as the best predictor sets to avoid
multicollinearity between environmental variables [56].

Table 1. Environmental variables used in this study.

Covariates Abbr. Factors a) Resolution

Elevation DEM r 90 m
Slope Slope r 90 m
Plan curvature PlanCur r 90 m
Profile curvature ProCur r 90 m
Channel network base level Channel level r 90 m
Vertical distance to channel network DisToChann r 90 m
Topographic wetness index TWI r 90 m
Multiresolution index of valley
bottom flatness MRVBF r 90 m

Multiresolution index of the ridge
top flatness MRRTF r 90 m

Normalized difference vegetation index NDVI o 1 km
Fractional vegetation cover FVC o 500 m
Leaf area index LAI o 1 km
Mean annual air temperature MAAT cl 1 km
Mean annual precipitation MAP cl 1 km
Sunshine duration Solar cl 1 km
Aridity index Aridity cl 1 km
Annual soil temperature at
a depth of 0–50 cm SoilTemp cl 1 km

Evapotranspiration ET cl 1 km
a) r: terrain attributes; o: organisms; cl: climate.

2.4. Data Processing and Modeling

One-way analysis of variance (ANOVA) (p < 0.05) and Duncan’s multiple range test
were used to examine the differences in exchangeable cations or BSP under treatments of
soil types and land use. Logarithmic (log) and Box-Cox transformations were performed
to transform the data distribution close to a normal distribution for further analysis. The
number of samples with grassland or Primosols in exchangeable base cations were limited
for analysis, and thus, these samples were not included in variance analysis. Three MLR,
GWR and RF models were considered, and the best model was selected for mapping.

MLR is a linear regression technique that is very beneficial for predicting the optimal
relationship between a response variable and multiple independent variables, unlike
simple linear regression [57]. Therefore, it is widely used in establishing the relationship
between soil properties and various environmental variables. MLR is a global model whose

http://www.saga-gis.org/
https://www.vito-eodata.be
https://ladsweb.modaps.eosdis.nasa.gov
https://www.resdc.cn/
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parameters to be estimated do not change with changes in spatial location. The model can
be expressed as [56]:

ŷ(i) = β̂0 +
K

∑
k=1

β̂kxk(i) (1)

where ŷ(i) is the predicted soil property at sample point i, β̂0 is the estimated intercept, β̂k
is the estimated regression coefficient for predictor k, which is estimated by ordinary least
squares (OLS), and xk(i) is the value for the kth predictor at sample point i.

Different from MLR, GWR is a local regression model that embeds the spatial location
of the sample points into the regression parameters. The model parameters to be estimated
change with the spatial location of the sample points, thus obtaining the local relationship
between soil properties and environmental variables. The parameters of the GWR model
are estimated locally by the weighted least squares method [56]. The weight at each spatial
position is a function of the observation position determined in the surrounding specific
mode. Among them, the size of the weight represents the importance of the observation
point position for parameter estimation. The functional form of GWR can be expressed as
follows [58]:

ŷ(i) = β̂0(i) +
K

∑
k=1

β̂k(i)xk(i) (2)

where ŷ(i) is the predicted soil property at sample point i, β̂0(i) is the estimated intercept
at sample point i, and β̂k(i) and xk(i) are the estimated regression coefficient for predictor
k and the value for the kth predictor at sample point i, respectively.

RF is a nonlinear machine learning model and an algorithm based on a classification
tree [59]. Compared with most statistical modeling methods, it has the advantage of
being insensitive to multicollinearity; additionally, RF reduces overfitting and improves
the prediction accuracy of the model [39]. Therefore, RF is used extensively in the spatial
prediction of soil properties. The number of variables used to grow each tree (mtry) and
the number of trees to be grown in the forest (ntree) are two important parameters of RF.
In this study, both parameters used default values of 5 for mtry and 500 for ntree. The
statistical analysis of soil properties, as well as the modeling and mapping processes, were
carried out using R software (version 4.1.2) with the packages “agricolae”, “car”, “caret”,
“ggplot2”, “randomForest”, “raster”, “rgdal”, and “spgwr” and ArcGIS 10.7.

2.5. Model Validation and Prediction Variability Evaluation

In this study, a 10-fold cross-validation method was used to verify the accuracy of the
three models, and the root mean square error (RMSE) and coefficient of determination (R2)
were selected as two commonly used evaluation indexes [30,60]. Among them, R2 is used
to evaluate the prediction accuracy and model generalization ability, and a smaller RMSE
indicates lower model error. In addition, we used the quantile regression forest method [61]
to evaluate the prediction variability of the predicted maps with “quantregForest” package
in R software. The prediction variability was expressed as 5% lower and 95% upper
prediction limits at a 90% prediction interval [62–64]. The two evaluation indexes were
calculated as follows:

RMSE =

√
1
n

n

∑
i=1

(Pi −Oi)
2 (3)

R2 = 1− ∑n
i=1(Pi −Oi)

2

∑n
i=1
(
Oi −O

)2 (4)

where Pi and Oi represent the predicted and observed values of a soil property at sample
point i, respectively, O is the average of the observed values, and n is the total number of
sample points.
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3. Results
3.1. Summary Statistics of Soil Properties

Table 2 lists the statistical analysis results of exchangeable cations and BSP at soil
depths of 0–20 cm, 20–50 cm and 50–100 cm. Among the four exchangeable base cations,
the content of Exch. Ca was the highest, followed by that of Exch. Mg, and the contents
of Exch. K and Exch. Na were both lower. In exchangeable acidic cations, the Exch. Al
content was much higher than the Exch. H content. The mean BSP values were below 50%
at all three soil depths, indicating that the soil fertility in the study area was generally not
very good [65]. The skewness values of exchangeable cations and BSP were greater than 0,
showing a positive skewness distribution.

Table 2. Descriptive statistics of exchangeable cations and base saturation percentage a).

Soil Properties Depth N Min Mean Median Max STD Skewness Kurtosis

Exch. Ca 0–20 cm 764 0.02 4.98 3.74 42.10 4.95 2.17 8.22
(cmol(+)kg−1) 20–50 cm 748 0.02 4.77 3.60 36.44 4.89 1.64 3.83

50–100 cm 708 0.01 4.51 3.37 33.50 4.79 1.79 4.47
Exch. Mg 0–20 cm 779 0.02 1.14 0.75 13.78 1.38 3.57 18.66

(cmol(+)kg−1) 20–50 cm 765 0.03 1.15 0.68 9.70 1.48 2.87 9.88
50–100 cm 723 0.02 1.28 0.68 17.89 1.87 3.73 19.44

Exch. K 0–20 cm 779 0.03 0.27 0.22 2.41 0.22 3.76 22.92
(cmol(+)kg−1) 20–50 cm 765 0.01 0.19 0.14 2.58 0.18 5.29 51.63

50–100 cm 722 0.00 0.18 0.13 2.35 0.17 4.93 42.33
Exch. Na 0–20 cm 777 0.00 0.22 0.11 6.86 0.48 6.62 61.66

(cmol(+)kg−1) 20–50 cm 763 0.00 0.22 0.10 3.69 0.45 4.59 22.73
50–100 cm 721 0.00 0.24 0.11 5.75 0.52 5.41 36.50

Exch. H 0–20 cm 878 0.00 0.39 0.26 6.50 0.55 5.38 41.76
(cmol(+)kg−1) 20–50 cm 842 0.00 0.32 0.21 5.66 0.48 5.70 45.59

50–100 cm 773 0.00 0.27 0.17 6.09 0.46 6.22 53.29
Exch. Al 0–20 cm 886 0.00 2.94 1.80 22.20 3.03 1.42 2.67

(cmol(+)kg−1) 20–50 cm 849 0.00 2.90 1.97 20.02 2.98 1.34 2.13
50–100 cm 783 0.00 2.82 1.94 17.99 3.02 1.53 3.00

BSP 0–20 cm 1103 0.44 49.36 47.87 100.00 30.65 0.18 -1.19
(%) 20–50 cm 1067 0.68 48.67 47.33 100.00 31.91 0.14 -1.32

50–100 cm 1001 0.72 48.09 47.67 100.00 32.34 0.16 -1.36
a) N: sample size; Min: minimum; Max: maximum; STD: standard deviation; Exch. Ca: exchangeable Ca2+; Exch.
Mg: exchangeable Mg2+; Exch. K: exchangeable K+; Exch. Na: exchangeable Na+; Exch. H: exchangeable H+;
Exch. Al: exchangeable Al3+; BSP: base saturation percentage.

3.2. Effects of Different Land-Use Types on Soil Properties

The ANOVA results showed that there were significant differences in the Exch. Ca,
Exch. Mg, Exch. H, Exch. Al and BSP among various land-use types, while there was
no significant difference in Exch. K (Figures 3 and 4). Additionally, Exch. Na showed
a significant difference only in the 0–20 cm surface layer (p < 0.05). The numbers of
corresponding sampling points are shown in Tables S2 and S3.
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Figure 3. Effects of different land-use types on (a) Exch. Ca, (b) Exch. Mg, (c) Exch. K and (d) Exch.
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The Exch. Ca content in paddy fields was significantly higher than that in forests,
gardens and uplands, regardless of the soil layer (p < 0.05) (Figure 3a), while the Exch. Al
content was the lowest in paddy fields and the highest in forests (Figure 4c). The Exch. Mg
content and BSP in paddy fields and uplands were significantly higher than those in forests
and gardens (p < 0.05) (Figures 3b and 4c). The Exch. Ca content of the paddy fields was
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highest in the 20–50 cm layer and the Exch. Mg content was highest in the 50–100 cm layer.
The Exch. Ca2+, Exch. Mg2+, Exch. K+ and BSP were higher in the uplands and gardens in
the 0–20 cm layer than in the 20–50 cm and 50–100 cm layers. The Exch. Na content was
higher in the 50–100 cm layer than in the 0–20 cm layer in both paddy fields and uplands.
Specifically, the highest Exch. K content was found in the 0–20 cm layer for all land-use
types. The content of Exch. H under different land-use types (except grassland) decreased
with increasing soil depth.

3.3. Effects of Different Soil Types on Soil Properties

The ANOVA results for the exchangeable cations and BSP among different soil types
under the three soil layers are shown in Figures 5 and 6, and the numbers of corresponding
sampling points are shown in Tables S4 and S5. Exchangeable cations and BSP were
significantly different in different soil types except for Exch. H in the 0–20 cm layer.
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The Exch. Ca content and BSP in Anthrosols were significantly higher than those in
Ferrosols, Argosols and Cambosols in all three soil layers (p < 0.05) (Figures 5a and 6c),
while the contents of Exch. H and Exch. Al were the lowest under all five soil types. The
Exch. Ca, Exch. Mg, Exch. K and Exch. Na contents and BSP in the Ferrosols were the
lowest in the various soil types, while the Exch. H and Exch. Al contents were greater
among the five soil types. The highest Exch. K content was found in the 0–20 cm layer in
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all soil types. With increasing soil depth, the Exch. H content decreased in the different soil
types, while the Exch. Mg content increased in Anthrosols.

3.4. Performance of Model Prediction

The predictive performance of the MLR, GWR and RF models on exchangeable cations
and BSP after natural log transformation is shown in Table 3. The results suggested that
RF generally had the best predictive performance on all soil properties, followed by GWR,
and MLR had the worst predictive performance; thus, RF was used for subsequent spatial
mapping. Among these soil properties, RF had the best modeling effect on Exch. Na,
whose mean R2 values at the three soil depth intervals were approximately 0.5. In the three
soil depth intervals, the R2 values of Exch. Ca, Exch. Mg and BSP modeled by RF were
higher than 0.3, while the R2 values of Exch. K, Exch. H and Exch. Al were lower. With
increasing soil depth, the R2 values of Exch. Ca, Exch. H, Exch. Al and BSP decreased after
RF modeling, while the RMSE values increased.

Table 3. Validation indexes of soil exchangeable cations and BSP after natural log prediction by
three methods a).

Soil Properties Depth R2 RMSE

MLR GWR RF MLR GWR RF

Exch. Ca 0–20 cm 0.234 0.321 0.355 b) 1.158 1.105 1.040
(cmol(+)kg−1) 20–50 cm 0.256 0.333 0.353 1.271 1.214 1.180

50–100 cm 0.227 0.306 0.347 1.325 1.258 1.219
Exch. Mg 0–20 cm 0.235 0.280 0.319 0.901 0.876 0.849

(cmol(+)kg−1) 20–50 cm 0.235 0.260 0.351 1.006 0.989 0.925
50–100 cm 0.170 0.217 0.338 1.116 1.086 0.994

Exch. K 0–20 cm 0.112 0.180 0.188 0.626 0.602 0.596
(cmol(+)kg−1) 20–50 cm 0.206 0.268 0.276 0.642 0.619 0.613

50–100 cm 0.194 0.249 0.276 0.659 0.639 0.627
Exch. Na 0–20 cm 0.211 0.404 0.479 0.964 0.841 0.782

(cmol(+)kg−1) 20–50 cm 0.259 0.474 0.536 0.920 0.772 0.727
50–100 cm 0.241 0.421 0.496 0.932 0.809 0.749

Exch. H 0–20 cm 0.157 0.210 0.241 1.100 1.068 1.040
(cmol(+)kg−1) 20–50 cm 0.163 0.212 0.208 1.057 1.033 1.026

50–100 cm 0.061 0.100 0.102 1.147 1.136 1.125
Exch. Al 0–20 cm 0.094 0.108 0.144 1.530 1.524 1.487

(cmol(+)kg−1) 20–50 cm 0.078 0.086 0.130 1.620 1.618 1.583
50–100 cm 0.068 0.069 0.075 1.662 1.661 1.670

BSP 0–20 cm 0.200 0.319 0.352 0.813 0.746 0.726
(%) 20–50 cm 0.206 0.273 0.324 0.881 0.850 0.808

50–100 cm 0.178 0.221 0.310 0.933 0.900 0.824
a) R2: coefficient of determination; RMSE: root mean square error.; b) Bold refers to the best prediction for each
scenario.

3.5. Spatial Patterns of Soil Properties

The prediction maps of exchangeable cations and BSP in the study area at the three soil
depths of 0–20 cm, 20–50 cm, and 50–100 cm are shown in Figures 7 and 8. For Exch. Ca,
the Sichuan Basin, the mountainous area around the Sichuan Basin and Guizhou Plateau
in the northwest of the study area, and the Jianghan Plain and the Dongting Lake Plain
in the north of the study area had the highest predicted Exch. Ca content; the Jianghuai
Hilly Plain and lower Yangtze River Plain in the northeast of the study area and the Pearl
River Delta in the southeast coastal area were higher, while other areas had lower Exch.
Ca content. Moreover, the Exch. Ca content decreased with increasing soil depth. The
content of Exch. Mg increased gradually from east to west in the study area. The predicted
Exch. Mg content was the highest in the Sichuan Basin and Chengdu Plain located in the
northwestern part of the study area; higher in the Guizhou Plateau and Pearl River Delta;
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and lower in southern Yunnan located in the southwestern part of the study area and in
most areas located in the eastern and southeastern parts of the study area.
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Exch. K was highest in the Yunnan Plateau located in the southwest part of the study
area; higher in the Jianghuai Hilly Plain, lower Yangtze River Plain and Pearl River Delta;
and lowest in southern China. The Exch. K content in the study area generally decreased
with increasing soil depth. The Exch. Na content was predicted to be the highest in the
Nanxiang Basin in the northern part of the study area, Jianghuai Hilly Plain and lower
Yangtze River Plain; higher in the Jianghan Plain, Yunnan Plateau and Pearl River Delta;
and lower in other regions.

The spatial distribution patterns of Exch. H and Exch. Al were similar. In general, the
contents of Exch. H and Exch. Al were higher in most coastal areas located in the eastern
and southeastern parts of the study area and in southern Yunnan, and they were lower
in the Guizhou Plateau. Furthermore, the Exch. H content decreased with increasing soil
depth. For BSP, it was highest in the Guizhou Plateau and lowest in southern Yunnan and
most of the eastern and southeastern coastal areas of the study area. Additionally, BSP
decreased slightly with increasing soil depth.

The prediction variability assessment results of exchangeable cations and BSP based
on the quantile regression forest method are shown in Figures S1–S7. The results showed
that different soil properties had various spatial patterns of prediction variability, but the
same property at different depths had similar patterns. The corresponding prediction
variability was generally high where the predicted value of Exch. K and Exch. Na was high.
However, for all soil properties, this 90% prediction range is quite wide, which indicates
that there is still room for improvement.
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4. Discussion
4.1. Variations in Exchangeable Cations and BSP

The Exch. Ca and Exch. Mg contents and BSP in paddy fields and uplands were
significantly higher than those in forests and gardens regardless of soil depth (p < 0.05),
while the Exch. Al content in forest and garden soils was significantly higher than that
in paddy field and upland soils (p < 0.05), probably indicating base cation leaching in
forest and garden soils and the complex impact of long-term fertilization on agricultural
soils (Figure 2). The intense influence of atmospheric acid deposition on forests and the
consumption of large amounts of base cations by forest trees during growth were the main
causes of base cation leaching from forest soils [66,67]. The low base cations in gardens may
be attributed to the heavy application of nitrogen fertilizers (Figure 2) and the harvesting
of fruits [68,69]. The Exch. Ca and Exch. Mg contents and BSP were high and soil acidity
was low in paddy fields and uplands, which is consistent with the findings of Li et al. [70].
Long-term application of phosphorus fertilizer as well as organic fertilizer in the study area
replenished the base cations in the agricultural soils and increased the Exch. Ca and Exch.
Mg contents [70]. The Exch. Ca content in paddy fields was significantly greater than that
in uplands in the three soil layers, which may originate from the prolonged flooding of
paddy fields. The reduction of Fe-Mn oxides in paddy soils consuming protons to reduce
the H+ concentration in solution [71] and the higher organic matter content [72] may both
promote the adsorption of base cations by soil colloids.

The profile distribution characteristics of Exch. Ca and Exch. Mg in paddy soils
(Figure 3a,b) may be related to the leaching and sedimentation of both on different profile
levels of paddy soils under flooding and fertilization conditions [71]. The Exch. Ca,
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Exch. Mg and Exch. K contents and BSP were higher in uplands and gardens at the
0–20 cm depth than at the 20–50 cm and 50–100 cm depths, mainly because the effect
of fertilizer application on exchangeable base cations and BSP decreased with increasing
soil depth [73–75]. However, the Exch. Na content was higher in the 50–100 cm depth of
paddy and upland soils than in the 0–20 cm depth (Figure 3d), probably due to the stronger
leaching of Exch. Na under rainy and fertilized conditions [71]. There was no significant
difference between Exch. K under different land-use types (Figure 3c), as most applied
fertilizer K in cropland was transferred to unexchangeable K or absorbed by crops due to
the higher fertilizer efficiency than that of N and P fertilizer [76,77]. In addition, the high
crop uptake and leaching rates due to the hot and rainy monsoon climate jointly resulted
in a low Exch. K content [78].

The high Exch. Ca content and high BSP in Anthrosols may also be influenced by
management measures such as artificial fertilization. There were no significant differences
in exchangeable cation contents (except Exch. K) and BSP between Argosols and Cambosols
at the three soil depths, indicating that the soil fertility of the two soil types was similar. The
four exchangeable base cation contents and BSP in Ferrosols were the lowest in different
soil types regardless of soil depth, while the contents of Exch. H and Exch. Al were higher.
This result was mainly due to the influence of tropical and subtropical monsoon climate
with a relatively high degree of mineral weathering, which led to the strong leaching of
base cations and enhanced soil acidity [79]. Furthermore, Exch. K content was the highest
in the topsoil (0–20 cm) due to surface aggregation (Figures 3c and 5c). The uptake of K
by plants, biological restitution of dead leaves and long-term fertilization all contributed
to the accumulation of Exch. K in the topsoil [49,80]. Except for grassland, the Exch. H
content decreased with increasing soil depth under different land-use types and soil types
(Figures 4a and 6a), which mainly stemmed from the fact that the Exch. H content of the
topsoil was more influenced by acid deposition and nitrogen fertilization [81].

4.2. Spatial Variations in Exchangeable Cations and BSP

Both exchangeable cations and BSP exhibit strong spatial heterogeneity. The high
content of both Exch. Ca and Exch. Mg in the Sichuan Basin (Figure 7) were related to
the specific soil type of the Sichuan Basin. The main soil type in this region is purple soil
(Entisols in the US Soil Taxonomy system) [82], which has a short soil formation time and
is rich in mineral components [83]. Minerals release large amounts of base cations during
weathering, resulting in high levels of exchangeable base cations in purple soil [84]. The
high Exch. Ca content and BSP and the low contents of Exch. H and Exch. Al in the Guizhou
Plateau were associated with its widely distributed karst landscape. Karst soils in karst
regions have very high Ca2+ contents owing to their special geological topography [85].
The adsorption of Exch. Ca, Exch. H and Exch. Al by soil colloids is competitive [46], so the
contents of Exch. H and Exch. Al were low in this region. According to the definition of BSP,
the value of BSP is larger when the total content of exchangeable base cations is high and
the content of exchangeable acid is low. In contrast, the soil Exch. Ca and Exch. Mg contents
and BSP in southern Yunnan and most of the eastern and southeastern coastal areas located
in the study area were low, and supplementation with calcium and magnesium fertilizer is
urgently needed.

Even if the overall Exch. K did not significantly differ in regard to land use, long-term
fertilization and topography jointly resulted in a heterogeneous pattern of Exch. K. The
highest Exch. K content was found in the Yunnan Plateau, probably due to the relatively
abundant K resources and the high application of K fertilizer and organic fertilizers [86].
The contents of the four exchangeable base cations in the lower Yangtze River Plain and
Pearl River Delta were high, especially Exch. Na, probably because climate change has
led to sea level rise [87], which has affected the horizontal movement of soil salts and is
detrimental to the export of salts in the region [88], resulting in saline soils. The spatial
distribution pattern of Exch. H and Exch. Al were basically consistent with the spatial
distribution trend of pH in the study of Liu et al. [81]. This result confirmed the higher soil
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acidity in southern Yunnan and southeastern coastal areas, which may be related to the
increased acid deposition and unreasonable use of chemical fertilizers [89]. In addition,
the Exch. Ca, Exch. K and Exch. H contents and BSP in the study area decreased with
increasing soil depth. This result was associated with the restitution effect of accumulation
and the decomposition of biological residues with higher Ca and K contents and in the
topsoil [80] and the influence of acid rain and nitrogen fertilizer input in the shallow layer
in the south [81].

5. Conclusions

Based on the national soil survey down to the 1 m soil depth, we found that long-term
fertilization led to greater Exch. Ca and Exch. Mg contents and BSP in both paddy fields
and uplands than in natural ecosystems irrespective of soil depth. However, long-term
fertilization did not result in a greater Exch. K in cropland than in natural soils, possibly due
to the fixation processes of soil K and the high efficiency of K fertilizer. The Exch. Ca content
and BSP in Anthrosols were significantly higher than those in Ferrosols, Argosols and
Cambosols in the three soil layers (p < 0.05). From the perspective of vertical variation, we
found that the Exch. Ca, Exch. K and Exch. H contents and BSP decreased with increasing
soil depth. RF was the best predictor of all dependent variables, and the most accurate
prediction was for Exch. Na, with an R2 of 0.479–0.536. The prediction results indicated that
exchangeable cations and BSP were generally characterized by strong heterogeneity. These
results might help us to better understand the spatial variation in exchangeable cations
and BSP in tropical and subtropical China and are also useful for precision agriculture and
environmental protection.
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