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Abstract: Study of rhizospheric microbial communities of plants growing under different environ-
mental conditions is important for understanding the habitat-dependent formation of rhizosphere
microbiomes. The rhizosphere bacterial communities of four amaranth cultivars were investigated in
a laboratory pot experiment. Amaranthus tricolor cv. Valentina, A. cruentus cv. Dyuimovochka, and
A. caudatus cvs. Bulava and Zelenaya Sosulka were grown for six months in three soils with different
anthropogenic polyelemental anomalies and in a background control soil. After the plant cultivation,
the rhizosphere soils were sampled and subjected to metagenomic analysis for the 16S rRNA gene.
The results showed that the taxonomic structure of the amaranth rhizosphere microbiomes was
represented by the dominant bacterial phyla Actinobacteriota and Proteobacteria. A feature of the
taxonomic profile of the rhizobiomes of A. tricolor cv. Valentina and A. cruentus cv. Dyuimovochka
was a large abundance of sequences related to Cyanobacteria. The formation of the amaranth rhi-
zosphere microbiomes was largely unaffected by soils, but cultivar differences in the formation of
the amaranth rhizosphere microbial structure were revealed. Bacterial taxa were identified that are
possibly selected by amaranths and that may be important for plant adaptation to various habitat
conditions. The targeted enrichment of the amaranth rhizosphere with members of these taxa could
be useful for improving the efficacy of amaranth use for agricultural and remediation purposes.

Keywords: Amaranthus spp.; rhizosphere microbial communities; rhizosphere bacterial diversity;
technogenically contaminated soils; phytoremediation

1. Introduction

In the past decade, research in rhizosphere biology has enjoyed an increased inter-
est [1–4]. This interest is because the plant root zone is a unique niche that is saturated with
physical, chemical, and biological interactions between macro- and microorganisms and
between organisms and their environment. Studies on the functions of rhizosphere microor-
ganisms have led researchers to understand their important role in plant life. Specifically,
microbes improve plant nutrition through atmospheric nitrogen fixation, mobilization of
hard-to-reach phosphorus, increased availability of trace elements, and siderophore produc-
tion. Furthermore, microbes participate in plant growth regulation through the production
of phytohormones and other phytoactive substances, and they increase plant adaptability
through stimulation of the antioxidant defense, induction of systemic resistance, and protec-
tion from pathogens and organic/inorganic toxicants. Rhizosphere microbial communities
are studied by both culture-based [2,5] and culture-independent methods [3,6–8], which
helps to protect plants against diseases, improve yields, and increase the efficacy of plant
use to restore disturbed soils (phytoremediation). Modern molecular technologies make it
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possible to develop tools for the artificial modeling of rhizosphere microbiomes, which is of
great importance for improving agricultural biotechnologies and predicting their results [9].

The main factors affecting the formation of plant-microbial complexes are the plant
species [10] and the soil type [11]. Plant-root-associated microbiomes are considered an
important extension of the plant genome itself [12]. The endosphere is the most plant-
species-dependent and conserved compartment of rhizobacteria, which determines the
so-called plant core microbiome [13]. Components of the core microbiome can be present
in and can largely determine the composition of the microbiomes of other root zones, in-
cluding the rhizoplane and the rhizosphere [10,14]. By contrast, the root-free edaphosphere
(bulk soil) is the most plant-independent niche, whose microbiome is characterized by
greater variability and is determined by the soil type. The rhizosphere microbiome is
crucial for connecting plant and soil microbiomes [12,15]. Plants control the composition
of their rhizosphere microbiome via root exudates and can modify it by selecting ben-
eficial microorganisms, thereby contributing largely to the effectiveness of agricultural
biotechnologies [1,14,16].

The organisms present in the rhizosphere include bacteria, fungi, oomycetes, nema-
todes, protozoa, algae, viruses, archaea, and arthropods [15], with bacteria being the most
numerous. Bacterial diversity in the rhizosphere can be heavily influenced by abiotic and en-
vironmental conditions and can differ depending on the soil type and the plant genotype [7].
Studies on the metagenomes of plant rhizosphere communities are extremely relevant in
modern science, because they carry specific information on the rhizobiomes of economi-
cally important plants and lead researchers to develop methods for their modification so
that the efficiency of a particular agricultural biotechnology can be increased [7,15,17,18].
The rhizosphere microbiome composition has already been characterized for many plant
species (e.g., [15,17,19,20]).

Amaranth is a widespread plant genus, many species of which are of great economic
importance. A. caudatus, A. cruentus, and some other species are ancient grain and oilseed
crops, which are grown in many countries. A. tricolor is also grown as a vegetable plant
rich in essential amino acids and biologically active substances [21]. Many cultivars of
A. caudatus, A. hypochondriacus, A. tricolor, and other species have richly colored leaves and
hanging inflorescences and are used as ornamental crops. A number of Amaranthus plants
are able to accumulate heavy metals [22–26] and radionuclides [27] and are, therefore, re-
garded as promising remediators. Soil phytoremediation from both organic and inorganic
pollutants is known based on plant-microbial interactions [28], and the presence in the plant
rhizosphere of microorganisms resistant to pollutants and able to promote plant growth is
critical to the phytoremediation of polluted soils. In this context, the study of rhizosphere
microbial communities may contribute to the characterization of the remediation potential
of amaranth plants. Information on amaranth-associated rhizosphere microorganisms is ex-
tremely limited, but interesting. It was reported that rhizosphere microbiomes of a number
of amaranth species are characterized by a pronounced abundance of representatives of
Cyanobacteria [29].

The purpose of the study was to characterize the microbial communities of four
Amaranthus cultivars grown on soils with anthropogenic polyelemental anomalies. Com-
parison of the rhizosphere microbiomes of plants growing under different environmental
conditions will make it possible to better understand the habitat-dependent and species-(or
cultivar)-dependent formation of microbiomes of these plants.

2. Materials and Methods
2.1. Soil Sampling

The soil samples used in the pot experiment were those of urban soils based on gray
forest soils (WRB, 2006: Greyic Phaeozems), which were characterized by polyelemental
anomalies [30]. The soils were collected in the sanitary protection zones near Kosaya
Gora Iron Works (KGIW; Tula, Russia) and Tulachermet Co. (Tula, Russia) and on Tula’s
central avenue, Lenin Avenue. The background soil was collected near the Yasnaya Polyana
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museum estate of Leo Tolstoy (Tula Region, Russia). The content of toxic substances in
the background soil did not exceed the maximum permissible concentration (MPC) and
approximate permissible concentration (APC); however, the iron content was quite high
as compared with the world values, but minimal as compared with that of the urban soils
used. Soil was sampled and prepared for the determination of toxic elements in accordance
with the Russian State Standard [31]. Soil samples (~2 kg) from each location were taken
from a depth of 0–25 cm from several sampling points using the envelope method. In total,
at least 15 samples taken from each location were mixed and used for the pot experiment
and analyses.

2.2. Soil Characterization

Soil used in our experiment was characterized on several parameters, such as type
(on the basis of particle size distribution); pH; total carbon, water-soluble carbon, humus,
N-NO3, N-NH4, and P2O5 contents; oil products; and metal(loid)s content. In the potassium
chloride extract of soil, the potentiometric determination of pH using a glass electrode and
a Mettler Toledo Delta 320 pH meter (Mettler-Toledo Instruments Shanghai Ltd., Shanghai,
China) was carried out in accordance with the Russian State Standard [32]. Total organic
carbon was determined according to [33]. The technique included the dichromate-wet
combustion of soil organic matter by concentrated sulfuric acid and the quantitative colori-
metric determination (at 590 nm) of the amount of Cr2+ generated by dichromate oxidation
of soil organic matter. To determine the content of water-soluble carbon, aqueous (distilled
water) extracts from the soil samples were obtained, and after drying, were subjected to
the same procedure as the dried soil samples. Based on the data obtained, the total carbon,
water-soluble carbon, and humus content were calculated. The content of mobile (available)
phosphorus (P2O5) in mg/100 g was measured photocolorimetrically according to [34].
The method is based on the extraction of mobile compounds of phosphorus from the soil
with a solution of ammonium carbonate and the subsequent photocolorimetric determina-
tion (at 710 nm) of phosphorus in the form of a blue phosphorus–molybdenum complex.
Nitrates and water-soluble ammonium were measured by standard photocolorimetric
methods [35,36]. The determination of nitrates included the extraction of nitrates from
soil with a potassium chloride solution, reduction of nitrates to nitrites with hydrazine
in the presence of copper as a catalyst, and photometric measurement (at 545 nm) of the
colored diazo compound formed. The determination of exchangeable ammonium included
the extraction of exchangeable ammonium from soil with a potassium chloride solution,
generation of a colored indophenol compound formed by the interaction of ammonium
with hypochlorite and sodium salicylate in an alkaline medium, and photometry of the
colored solution (at 655 nm). All photocolorimetric measurements were carried out using
an Evolution 60 UV-Vis Spectrophotometer (Thermo Scientific, Madison, WI USA). Oil
products were measured gravimetrically [37]. The method is based on extraction of oil
products with chloroform from air-dried soil, separation from polar compounds by liquid
chromatography after replacing the solvent with hexane, and quantitative determination by
gravimetric analysis. The determination of the elemental composition of soils was carried
out using X-ray fluorescence analysis in the certified Laboratory of Chemical-analytical
Research of GIN RAS. Soil preparation for analysis and quality control was carried out fol-
lowing certified methods and recommendations [30,38]. The concentrations of Mn, Fe, V, Cr,
Ni, Cu, Zn, Pb, and As were determined using a serial wave XRF spectrometer “S4 Pioneer”
(Bruker AXS GmbH, Karlsruhe, Germany) with a rhodium tube (capacity 4 kW). The
obtained data were processed using the S4 Spectra Plus program using coefficients for
correction of the routine samples matrix effects. Standard samples of the composition IAEA
Soil-7, SChT-1.2 (soil), GBW-07404, 07405 (soil) were used as reference samples for soil
analysis. The concentration of potentially toxic trace elements in the soil was compared
with the MPCs and APCs of the metals by hygienic standards that meet international
standards [39,40]. All chemical analyses of soil were performed in at least triplicate.
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2.3. Experimental Design

We used four Amaranthus cultivars bred by the All-Russian Research Institute of
Vegetable Breeding and Seed Production of the Federal Scientific Vegetable Center (VNIIS-
SOK; Odintsovo District, Moscow Region, Russia). The specific cultivars were Valentina
(A. tricolor L.), Dyuimovochka (A. cruentus L.), Bulava (A. caudatus L.), and Zelenaya So-
sulka (A. caudatus L.). The description of the Amaranthus cultivars used is given in Table S1.

Plant seeds (~50 mg) were sown in soil-filled 2 L plastic pots. After one month,
the seedlings were thinned out, leaving 10 plants per pot. Plants were cultivated under
controlled conditions (day/night light cycle, 14/10 h; temperature, 22/24 ◦C) for 6 months.
There were three replicates for each combination of Amaranthus cultivar and soil. At the
end of growth, the plants were removed from the pots, and the soil was vigorously shaken
off the roots. The rhizosphere soil adhering to young roots from 5 plants from each pot
were combined from three replicates of one variant, and mixed samples were used for
metagenomic analysis. The remaining soil adhering to the root surface as rhizosphere soil
was carefully scraped off with sterilized tweezers.

2.4. A 16S rRNA Gene-Based Metagenomic Analysis of Rhizosphere Soil

Extraction and purification of soil DNA for metagenomic analysis was carried out
using the Fast DNA®SPIN Kit for Soil (MP Biomedicals, Santa Ana, CA, USA) and a
Fast Prep®24 homogenizer (MP Biomedicals, Santa Ana, CA, USA), according to the
manufacturer’s instructions.

A 16S rRNA sequencing library was constructed, according to the 16S metagenomics
sequencing library preparation protocol (Illumina, San Diego, CA, USA),
targeting the V3 and V4 hypervariable regions of the 16S rRNA gene. The initial PCR was
performed with template DNA using region-specific adapters shown to have
compatibility with the Illumina index and sequencing primers (forward primer:
5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3′; re-
verse primer: 5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGG
GTATCTAATCC-3′) [41]. Amplification was performed using the Veriti™ Thermal Cycle,
96-Well (Applied Biosystems™, Foster City, CA, USA), according to the Illumina protocol.
After the first round of amplification, PCR products were visualized using gel electrophore-
sis. Then, the PCR products were purified with AMPure XT magnetic beads, and the second
PCR was performed using primers from a Nextera XT Index Kit (Illumina). Subsequently,
purified PCR products were quantified with a Qubit dsDNA HS Assay Kit (Thermo Scien-
tific) on a Qubit 2.0 fluorometer. The sample pool (4 nM) was denatured with 0.2 N NaOH,
diluted further to 10 pM, and combined with 20% (v/v) denatured 4 pM PhiX, prepared
following Illumina guidelines. Sequencing of 16S rRNA gene V3–V4 variable regions was
performed on the Illumina MiSeq platform in 2 × 300 bp mode.

2.5. Bioinformatics and Statistical Analysis

Reads were analyzed using QIIME2 software, version 2022.8 (http://qiime2.org/,
accessed on 25 February 2023) [42]. Before filtering, there were 118,339 read pairs per
sample on average. Raw reads were processed using the DADA2 algorithm implemented
in QIIME [43]. After quality filtering, chimera and phiX sequences removal, we analyzed
17,870 joined read pairs per sample on average. The taxonomy was assigned to the se-
quences using the Naive Bayes classifier pre-trained on the latest SILVA 138 database
99% OTUs [44]. The number of observed features varied from 601 to 1030. To character-
ize the richness and evenness of the bacterial community, alpha diversity indices were
calculated using Chao1, Shannon, and Simpson metrics. Similarities between microbial
compositions of the samples were evaluated using the beta diversity characteristics, which
were estimated using weighted and unweighted Unifrac measures with further non-metric
multidimensional scaling (nMDS) visualization.

Venn diagrams were constructed with Creately software (https://creately.com/lp/
venn-diagram-maker/, accessed on 5 February 2023; Cinergix Pty Ltd., Melbourne, VIC,

http://qiime2.org/
https://creately.com/lp/venn-diagram-maker/
https://creately.com/lp/venn-diagram-maker/
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Australia). Spearman’s rank correlation coefficients were calculated with Statistica software
13 (TIBCO Software Inc. 2017, Statsoft Russia, Moscow, Russia). Other calculations were
done with Excel 2019 software (Microsoft, Redmond, WA, USA).

3. Results
3.1. Soil Characteristics

For all soils used in the experiment, the main characteristics were determined: type;
pH; and the total content of (including water-soluble) carbon, biogenic forms of nitrogen
(NH4 and NO3) and phosphorus (P2O5), heavy metals and metalloids (Fe, Mn, V, Ni, Cu,
Zn, Pb, and As), and hydrocarbons. The results are given in Table 1.

Table 1. Characteristics of the soils used in the experiment.

Properties Background Soil
(Yasnaya Polyana) KGIW Tulachermet Lenin Ave.

Soil type Clay loam Clay loam Sandy loam Clay loam
pH 6.20 7.26 7.35 7.29
Total carbon (% of air-dried soil) 4.87 ± 0.05 4.41 ± 0.11 4.84 ± 0.33 3.83 ± 0.06
Water-soluble carbon (% of total carbon) 0.14 ± 0.05 0.13 ± 0.02 0.14 ± 0.06 0.12 ± 0.03
Humus (% of air-dried soil) 8.12 ± 0.16 7.14 ± 0.14 7.62 ± 0.15 6.16 ± 0.12
Humus carbon (%) 4.72 ± 0.09 4.15 ± 0.08 4.43 ± 0.09 3.58 ± 0.07
N-NO3 (mg/kg dw) 20.5 ± 1.2 28.2 ± 1.6 38.6 ± 3.5 41.1 ± 2.4
N-NH4 (mg/kg dw) 12.9 ±1.2 6.9 ± 0.7 9.5 ± 0.3 2.3 ± 0.2
P2O5 (mg/kg dw) 51.0 ± 4.8 159.5 ± 3.6 98.4 ± 7.6 218.0 ± 6.7
Oil products (g/kg dw) 1.5 ± 0.6 2.6 ± 0.4 4.1 ± 1.0 2.5 ± 0.7
Metal(loid)s (mg/kg dw):
Fe 15,600 ± 1860 78,100 ± 1280 120,600 ± 5830 37,400 ± 2160
Mn 1300 ± 67 5700 ± 180 1100 ± 87 1600 ± 58
V 57 ± 3.0 41 ± 4.1 136 ± 7.2 61 ± 2.9
Ni 25 ± 3.1 31 ± 4.2 55 ± 3.3 35 ± 2.8
Cu 29 ± 2.3 52 ± 4.1 75 ± 0.8 378 ± 0.9
Zn 47 ± 2.0 310 ± 9.4 161 ± 3.6 186 ± 5.3
Pb 18 ± 2.1 72 ± 6.0 26 ± 0.7 59 ± 1.1
As 5.1 ± 0.4 5.9 ± 0.5 6.4 ± 0.2 7.3 ± 0.3

Note: Data expressed as mean ± standard deviation (n ≥ 3). Bold type means the permissible concentrations [29,30]
were exceeded for: Fe (MPCtotal 1500 mg/kg), Mn (MPCtotal, 1500 mg/kg), V (MPCtotal, 100 mg/kg), Ni (APCtotal,
sandy loam, 20 mg/kg; APCtotal, clay loam, 80 mg/kg), Cu (MPCtotal 55 mg/kg; APCtotal, sandy loam, 33 mg/kg),
Zn (APCtotal, clay loam, 220 mg/kg; APCtotal, sandy loam, 55 mg/kg), As (APCtotal, sandy loam, 2 mg/kg;
APCtotal, clay loam, 10 mg/kg), and oil products (1.0 g/kg). The oil product content in soil is not regulated at the
regional level; the recommended value is 1.0 g/kg.

All soil samples were represented by gray forest soils, had neutral or close to slightly
acidic pH values, and were also characterized by a high content of iron. The soils of
the sanitary protection zones near Kosaya Gora Iron Works (KGIW; Tula, Russia) and
Tulachermet Co. (Tula, Russia) and the urban soil of Tula’s central avenue, Lenin Avenue,
all have an excessive content of heavy metals and oil products, indicating human-caused
pollution. The KGIW soil had a high content of Mn, Zn, and petroleum products, which
exceeded MPCs by 380, 140, and 260%, respectively. The Tulachermet soil had a high
content of V, Ni, Cu, Zn, As, and oil products, exceeding MPCs and APCs by 36, 275, 127,
290, 300, and 410%, respectively. The Lenin Avenue soil had a high content of Mn, Cu, and
oil products, exceeding the permissible concentrations by 690, 107, and 250%, respectively.
The background soil was that collected near the Yasnaya Polyana museum estate of Leo
Tolstoy (Tula Region). In it, the content of environmentally regulated elements did not
exceed the MPCs or APCs.
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3.2. Metagenomic Analysis of Rhizosphere Microbial Communities of Amaranthus spp.
3.2.1. Diversity of Rhizosphere Communities

Sequencing of the 16s rRNA gene from 16 rhizosphere samples resulted in
1,915,453 raw reads. After data denoising and chimera screening, 17,870 joined read pairs
per sample on average were used for further identification. Rarefaction curves obtained
with the normalized OTU number almost reached saturation levels for all samples, indicat-
ing that the bacterial communities were covered well by the sequence analysis (Figure S1).
The sequences with >97% similarity were combined into operational taxonomic units
(OTUs). The OTUs were assigned to 38, 124, 288, 449, and 804 taxa at the phylum, class,
order, family, and genus levels, respectively.

To characterize the bacterial diversity and the richness of the microbial communities,
we calculated the α- and β-diversity (Table 2 and Figure 1).

Table 2. The α-diversity indices for the rhizospheric microbial communities of amaranths grown on
different soils.

Soil Plant Observed
Features Chao1 Shannon

Index
Simpson

Index Faith PD

Background A. tricolor cv. Valentina 743 748.000 8.6560 0.9964 81.03
A. cruentus cv. Dyuimovochka 716 718.111 8.6309 0.9957 73.42
A. caudatus cv. Bulava 890 898.347 8.5701 0.9930 86.78
A. caudatus cv. Zelenaya Sosulka 910 916.949 8.7466 0.9955 97.51

Tulachermet A. tricolor cv. Valentina 741 743.258 8.6019 0.9956 87.83
A. cruentus cv. Dyuimovochka 823 829.343 8.8715 0.9970 87.65
A. caudatus cv. Bulava 1010 1014.614 9.2749 0.9978 92.29
A. caudatus cv. Zelenaya Sosulka 819 831.470 8.8402 0.9967 81.70

KGIW A. tricolor cv. Valentina 807 807.786 8.9055 0.9970 82.02
A. cruentus cv. Dyuimovochka 806 806.992 8.6081 0.9940 88.70
A. caudatus cv. Bulava 990 994.844 9.1206 0.9970 97.06
A. caudatus cv. Zelenaya Sosulka 964 974.350 9.1507 0.9974 88.53

Lenin Ave. A. tricolor cv. Valentina 832 836.833 8.9232 0.9969 85.43
A. cruentus cv. Dyuimovochka 601 602.600 8.4401 0.9959 63.57
A. caudatus cv. Bulava 758 766.928 8.3750 0.9926 81.42
A. caudatus cv. Zelenaya Sosulka 707 716.784 8.5888 0.9957 74.67
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Figure 1. Principal coordinate analysis for the rhizosphere microbial communities of the Amaranthus
cvs.: triangles (N), A. tricolor cv. Valentina; circles (•), A. cruentus cv. Dyuimovochka; squares (�),
A. caudatus cv. Bulava; diamonds (�), A. caudatus cv. Zelenaya Sosulka; blue, background soil; yellow,
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The α-diversity was measured by using the species richness indices (Chao1, Shannon,
and Simpson indices; Faith’s phylogenetic diversity [PD], Table 2). Traditional (Shannon’s
and Simpson’s) and phylogenetic (Faith’s PD) indices of bacterial alpha-diversity in the
rhizosphere communities of amaranths yielded similar conclusions: all communities were
quite diverse and differed between plant species (cultivars) grown on the same soil.

A comparison of the rhizosphere microbiomes of different samples showed that the
influence of soils on the formation of rhizosphere communities was not pronounced: the
samples were not grouped according to soils. Yet, there were pronounced differences
in rhizospheric samples according to the plant species studied (Figure 1). A. caudatus cv.
Bulava and A. caudatus cv. Zelenaya Sosulka formed one cluster, which distinctly distanced
itself from A. tricolor cv. Valentina, whereas the cluster of A. cruentus cv. Dyuimovochka
had intersections with both A. caudatus cultivars.

3.2.2. Taxonomic Structure of Rhizosphere Communities

MiSeq sequencing showed that the amaranth rhizosphere communities included
804 genera of bacteria belonging to 449 families of 38 phyla.

Figure 2 illustrates the relative abundances of OTUs associated at the phylum level
in the rhizosphere of the amaranth cultivars studied. In different soils in the rhizosphere
communities of cv. Valentina, most OTUs were assigned to Actinobacteriota (29–39%),
Proteobacteria (17–29%), Chloroflexi (8–18%), Cyanobacteria (4–18%), and Acidobacteriota
(4–6%). In the rhizosphere cv. Dyuimovochka, the dominant phyla were also Actinobac-
teriota (25–42%), Proteobacteria (19–31%), Chloroflexi (6–12%), Cyanobacteria (3–19%),
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The list of taxa at the family level, for which the share of amaranths in the rhizosphere
was ≥1%, is given in Table S2. Of the dominant Actinobacteriota phylum, 51 families
were identified, of which 13 were most abundant (Table S2, Figure 3), making up 80 to
86% of all detected actinobacterial families in the amaranth rhizosphere. The family
Gaiellaceae had the maximum share in the rhizospheric population of actinobacteria. Its
abundance reached 1.8–3.0% in the rhizosphere of cv. Valentina, 1.5–4.6% in the rhizosphere
of cv. Dyuimovochka, 2.1–3.7% in the rhizosphere of cv. Bulava, and 1.9–2.9% in the
rhizosphere of cv. Zelenaya Sosulka. Other notable actinobacteria were members of
the families Nocardioidaceae (1.9–4.8% of all actinobacteria) and Micromonosporaceae
(0.8–5.4%) and members of the orders Solirubrobacterales (67-14 family) and MB-A2-108
(MB-A2-108 family).
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Acidobacteriota f_Bryobacteraceae; g_Bryobacter
f_Thermoanaerobaculaceae; g_Subgroup 10
o_Vicinamibacterales; f_uncultured; g_uncultured
f_Vicinamibacteraceae; g_Vicinamibacter

Actinobacteriota o_Actinomarinales; f_uncultured; g_uncultured
f_Ilumatobacteraceae; g_Ilumatobacter
f_Ilumatobacteraceae; g_uncultured
f_MB-A2-108; g_MB-A2-108
f_Mycobacteriaceae; g_Mycobacterium
f_Geodermatophilaceae; g_Blastococcus
f_Micromonosporaceae; g_unknown
f_Micromonosporaceae; g_Actinoplanes
f_Nocardioidaceae; g_Nocardioides
f_Pseudonocardiaceae; g_Lechevalieria
f_Pseudonocardiaceae; g_Pseudonocardia
f_Streptomycetacea; g_Streptomyces
f_Gaiellaceae; g_Gaiella
o_Gaiellales; f_uncultured; g_uncultured
f_67-14; g_67-14
f_Solirubrobacteraceae; g_Solirubrobacter

Bacteroidota f_Flavobacteriaceae; g_Flavobacterium
Chloroflexi f_Roseiflexaceae; g_uncultured

f_JG30-KF-CM45; g_JG30-KF-CM45
f_Gitt-GS-136; g_Gitt-GS-136
f_KD4-96; g_KD4-96

Cyanobacteria f_Coleofasciculaceae; g_Microcoleus PCC-7113
f_Phormidiaceae; g_Phormidium IAM M-71
f_Phormidiaceae; g_Tychonema CCAP 1459-11B
f_Phormidiaceae; g_uncultured

Firmicutes f_Bacillaceae; g_Bacillus
Gemmatimonadota f_Gemmatimonadaceae; g_uncultured

f_Longimicrobiaceae; g_YC-ZSS-LKJ147
Myxococcota f_BIrii41; g_BIrii41
Proteobacteria; f_Azospirillaceae; g_Skermanella
c_Alphaproteobacteria f_Sphingomonadaceae; g_unknown

f_Sphingomonadaceae; g_Novosphingobium
f_Sphingomonadaceae; g_Sphingomonas
f_Beijerinckiaceae; g_unknown 0

f_Beijerinckiaceae; g_Methylobacterium-Methylorubrum 1

f_Rhizobiaceae;_ 3

f_Rhizobiaceae; g_Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium 4

f_Xanthobacteraceae;_ 5

Proteobacteria; f_Comamonadaceae;_ 7

c_Gammaproteobacteria f_Nitrosomonadaceae; g_Ellin6067 8

f_Oxalobacteraceae; g_Massilia 9

f_Pseudomonadaceae; g_Pseudomonas 11

f_Unknown_Family; g_Acidibacter 14

Background Tulachermet KGIW Lenin Ave.

Figure 3. Heat map illustrating the relative abundances of OTUs associated at the genus level of the
microbial communities in the rhizospheres of four amaranth cultivars grown on different soils.

In another dominant phylum, Proteobacteria, 93 bacterial families were identified. In
total, 10 of them (Table S2, Figure 3) made the largest contribution to the structure of the
amaranth rhizosphere microbiomes (54–76% of all detected families). Alphaproteobacteria
was the major class of the phylum, accounting for 64–84% of all OTUs assigned to the
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Proteobacteria. Among the Alphaproteobacteria, the dominant position was occupied by
the families Sphingomonadaceae (3–7%) and Beijerinckiaceae (1–6%); a large proportion
of OTUs also belonged to the Rhizobiaceae family (1–5%). The Gammaproteobacteria
class accounted for 17 to 45% of all OTUs assigned to the Proteobacteria phylum, and the
Nitrosomonadaceae and Comamonadaceae families were its predominant representatives.
The contribution of the Betaproteobacteria and Deltaproteobacteria classes to the overall
taxonomic structure of the amaranth microbiomes was not noticeable.

The rhizosphere microbiomes of two species of Amaranthus (A. tricolor cv. Valentina
and A. cruentus cv. Dyuimovochka) were clearly enriched with members of the Cyanobacte-
ria phylum, among which the Coleofasciculaceae and Phormidiaceae families dominated on
all soils (Table S2, Figure 3), but were poorly represented in the rhizosphere of A. caudatus
cv. Bulava and cv. Zelenaya Sosulka. The Phormidiaceae family was also abundant in
the rhizosphere of A. tricolor cv. Valentina and A. cruentus cv. Dyuimovochka. This family
was poorly represented in the rhizosphere of A. caudatus cv. Bulava and was not in the
rhizosphere of cv. Zelenaya Sosulka. This may indicate that the maintenance of these
bacterial taxa by host plants is species specific.

The species-specific changes in the taxonomic profile of the amaranth rhizosphere com-
munities, as induced by the soil characteristics, can be seen in Figures 2 and 3. Spearman’s
rank correlation and principal component analysis did not reveal significant correlations
between the kinds of soil used and the dominant taxa in the amaranth rhizosphere mi-
crobiomes. However, a close correlation was established between the cultivars (rs = 0.64,
p < 0.05) and the abundance of OTUs assigned to the Cyanobacteria phylum. In addition,
moderate correlations were found between the cultivars and the abundance of the Aci-
dobacteriota (rs = 0.55, p < 0.05), Bacteroidota (rs = 0.52, p < 0.05), and Planctomycetota
(rs = 0.52, p < 0.05) phyla in the rhizosphere communities.

3.2.3. Shared and Unique Taxa among Rhizosphere Microbial Communities

To determine which OTUs were shared by or were specific to the rhizosphere of each
cultivar on the four soils, we did several comparative analyses (Figure 4).

In the background soil, the largest number of OTUs at the bacterial species level
was found in the rhizosphere of A. caudatus cv. Zelenaya Sosulka, followed by A. tricolor
cv. Valentina, A. caudatus cv. Bulava, and A. cruentus cv. Dyuimovochka. A total of
127 species were shared and accounted for from 30 to 39% of the rhizosphere communities
of the 4 plant cultivars. The percentage of unique taxa ranged from 24 to 30%. The
maximal number of unique species (125) was found for the rhizosphere of A. caudatus cv.
Zelenaya Sosulka.

In the Tulachermet soil, the largest number of OTUs at the bacterial species level
was found in the rhizosphere of A. caudatus cv. Bulava, followed by A. cruentus cv.
Dyuimovochka, A. tricolor cv. Valentina, and A. caudatus cv. Zelenaya Sosulka. A total of
124 species were shared and accounted for from 28 to 34% of the rhizosphere communities
of all plant cultivars. The percentage of unique taxa ranged from 23 to 29%. The maximal
number of unique species (125) was found for the rhizosphere of A. caudatus cv. Bulava.

In the KGIW soil, the largest number of OTUs at the bacterial species level was found
in the rhizosphere of A. caudatus cv. Bulava, followed by A. cruentus cv. Dyuimovochka,
A. caudatus cv. Zelenaya Sosulka, and A. tricolor cv. Valentina. A total of 121 species were
shared and accounted for from 28 to 33% of the rhizosphere communities of all plant
cultivars. The percentage of unique taxa ranged from 25 to 30%. The maximal number of
unique species (128) was found for the rhizosphere of A. caudatus cv. Bulava.

In the Lenin Ave. soil, the largest number of OTUs at the bacterial species level was
found in the rhizospheres of A. tricolor cv. Valentina, followed by A. caudatus cv. Zelenaya
Sosulka, A. caudatus cv. Bulava, and A. cruentus cv. Dyuimovochka. Only 88 species were
shared and accounted for from 23 to 25% of the rhizosphere communities of the 4 plant
cultivars. The percentage of unique taxa ranged from 24 to 29%. The maximal number of
unique species (133) was found for the rhizosphere of A. tricolor cv. Valentina.
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Among the unique taxa identified in the rhizosphere microbiome of each amaranth
variety, those taxa that occur in at least two different soils were determined (Tables S3–S6).
Overall, 53, 39, 50, and 52 such taxa were revealed in the rhizosphere of A. tricolor cv.
Valentina, A. cruentus cv. Dyuimovochka, and A. caudatus cvs. Bulava and Zelenaya Sosulka,
respectively. In addition, seven, two, eight, and six such unique taxa were revealed in the
rhizosphere of cvs. Valentina, Dyuimovochka, Bulava, and Zelenaya Sosulka, respectively,
grown in three different soils studied (Table 3). Most of those taxa were represented by
uncultured bacteria.
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Table 3. Unique bacterial taxa revealed in the rhizosphere of Amaranthus plants and occurred in three
different soils.

Plant Cultivars Bacterial Taxa

A. tricolor
cv. Valentina

g_Chloronema; s_Scytonema tolypothrichoides Background; Tulachermet; KGIW

g_Leptolyngbya_VRUC_135;s_uncultured bacterium Background; Tulachermet; Lenin Ave.
g_Alsobacter; s_Alsobacter_metallidurans Tulachermet; KGIW; Lenin Ave.
g_C0119; s_uncultured_bacterium Background; Tulachermet; Lenin Ave.
g_Rhodocytophaga; s_uncultured Bacteroidetes Background; Tulachermet; KGIW
f_Rhodanobacteraceae; g_uncultured; s_uncultured bacterium Background; Tulachermet; KGIW
g__DS-100; s_unknown Tulachermet; KGIW; Lenin Ave.
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Table 3. Cont.

Plant Cultivars Bacterial Taxa

A. cruentus
cv. Dyuimovochka

g_Methylophilus; s_uncultured bacterium Tulachermet; KGIW; Lenin Ave.
g_CENA518; s_uncultured_bacterium Tulachermet; KGIW; Lenin Ave.

A. caudatus
cv. Bulava

g_Nakamurella; g_unknown; s_unknown Background; Tulachermet; KGIW
g_Pir4_lineage; s_uncultured Pirellula Background; Tulachermet; Lenin Ave.
f_Moraxellaceae; g_uncultured; s_uncultured gamma Background; KGIW; Lenin Ave.
f_0319-7L14; g_0319-7L14; s_uncultured bacterium Background; Tulachermet; Lenin Ave.
o_Planctomycetales; f_uncultured; g_uncultured Background; Tulachermet; KGIW
f_Phycisphaeraceae; g_uncultured Tulachermet; KGIW; Lenin Ave.
f_Kapabacteriales; g_Kapabacteriales Tulachermet; KGIW; Lenin Ave.
f_Sericytochromatia; g_Sericytochromatia Background; Tulachermet; KGIW

A. caudatus
cv. Zelenaya Sosulka

f_Vicinamibacteraceae; g_Vicinamibacteraceae;s_uncultured Geothrix Tulachermet; KGIW; Lenin Ave.
f_Xanthomonadaceae; g_unknown; s_unknown Background; Tulachermet; KGIW
f_Rhodanobacteraceae; g_Ahniella; s_uncultured bacterium Background; Tulachermet; Lenin Ave.
f_Latescibacterota; g_Latescibacterota; s_uncultured soil Background; Tulachermet; Lenin Ave.
f_Blastocatellaceae; g_Aridibacter; s_uncultured bacterium Background; KGIW; Lenin Ave.
f_Subgroup 22; g_Subgroup 22 Tulachermet; KGIW; Lenin Ave.

The bacterial taxa listed in Table 3 are unique to each of the four plant cultivars studied
and can be considered as plant-specific.

4. Discussion

Studies characterizing the rhizosphere microbiomes of Amaranthus plants are extremely
scarce. Nambisan et al. [29] found that the Cyanobacteria phylum is distinctly enriched
in the roots and the rhizosphere soil of the three grain amaranths—A. hupochondriacus,
A. cruentus, and A. caudatus. Our study confirmed that the peculiarity of the rhizosphere
microbial communities of two of the three Amaranthus species (A. tricolor cv. Valentina
and A. cruentus cv. Dyuimovochka) is the distinct presence of cyanobacteria along with
the dominant bacterial phyla, such as Proteobacteria, Actinobacteriota, and Chloroflexi.
In addition, we obtained the first data on the rhizosphere microbiome of another ama-
ranth species, A. tricolor. In Nambisan et al.’s research [29], the negative controls were
other plant species (Beta vulgaris, Cicer arietinum, and Solanum lycopersicum), and in their
rhizobiomes, no predominance of cyanobacteria was observed. In our study, besides the
amaranth rhizosphere, we also analyzed the rhizosphere of other plants under the same
experimental conditions—Sorghum bicolor cv. Sucro and Sorghum bicolor cv. Biomass. The
rhizosphere of these plants showed no predominance of cyanobacteria either [20]. An
analysis of the taxonomic profile of the cyanobacteria found in the amaranth rhizobiomes
made it possible to identify members of the dominant Microcoleus and Phormidium genera.
The presence of these genera in the rhizosphere of various plants was also noted earlier [4,45].
The accumulated data indicate that the amaranths may have specifically selected cyanobac-
teria from the surrounding soil microflora. In turn, cyanobacteria favor the growth of
the amaranth plants, possibly through their plant-beneficial characteristics. It is known
that cyanobacteria can produce plant-growth-promoting substances, including auxins,
gibberellins, cytokinins, abscisic acids, vitamins, and amino acids [4,46–48]. Cyanobacteria
can also add organic matter, synthesize and liberate amino acids and vitamins, reduce the
content of soil oxidizable matter, provide oxygen to the submerged rhizosphere, ameliorate
salinity, buffer the pH, solubilize phosphates, and increase the efficiency of fertilizer use in
crop plants [46]. Cyanobacteria such as Nostoc and Microcoleus can form associations with
cycads [49] and Gunnera [50] and can fix nitrogen [45], either as free-living organisms or in
association with host plants, in which they reside in specific tissues. Cyanobacteria such as
Calothrix and Anabena can be used as biofertilizers [51]. Rhizospheric cyanobacteria are still
insufficiently studied, although interest in their use for soil fertilization and plant-growth
promotion is increasing steadily [4]. The established abundance of cyanobacteria in the



Agronomy 2023, 13, 759 12 of 16

amaranth rhizosphere requires further and deeper research on the part they play in plant
vital activity.

To determine the contribution of different plant species (or cultivars) to the forma-
tion of their rhizosphere community in a particular soil, we compared their taxonomic
composition, identifying shared and unique taxa (Figure 4). It was revealed that only
about a third of taxa were shared between all four amaranths studied, and also about a
third of taxa were unique. The contribution of A. tricolor cv. Valentina and A. cruentus cv.
Dyuimovochka to the selection of cyanobacteria in their rhizosphere was confirmed. In
addition, we revealed that two cultivars of A. caudatus selected different unique taxa in their
rhizosphere, which suggests the cultivar-specific formation of rhizosphere microbiomes by
amaranths (Tables S2–S5). No debated that plant root exudates are the principal connecting
link between plant and plant-root-associated microbial communities [1,14,16]. In turn, the
composition of root exudates is determined by plant physiology, which is different among
plant species and even cultivars.

Current views hold that the relative content of individual taxa in the microbial com-
munity is a biological indicator of the soil status—for example, heavy metal pollution [52].
The urban soils used in our experiment were polluted by heavy metals. Many taxa iden-
tified in the amaranth rhizosphere microbiomes had previously been described as resis-
tant to heavy metals or as oil-degraders, and they may be important for the resistance
of amaranth to the human-caused pollution of soil. These taxa include (1) members
of Proteobacteria, such as the genera Pseudomonas [18,53,54], Novosphingobium [55,56],
Sphingomonas [57], Rhizobium [58,59], and Massilia [18,60]; (2) members of Actinobacteri-
ota, such as Mycobacterium, Nocardiodes, Streptomyces [61], and the family Gaiellaceae [62];
(3) members of the Cyanobacteria phylum, such as the genus Microcoleus [63]; and (4) mem-
bers of Firmicutes, such as the genus Bacillus [18]. In the rhizosphere of the amaranths
used in this study, some of these taxa were present in large numbers (the genera Gaiella,
Nocardiodes, Microcoleus, Novosphingobium, and Pseudomonas), whereas others were found
in minor or single samples. Of note, increased numbers of members of Gaiellaceae had
previously been found by Sun et al. [62] in the metal-polluted rhizosphere of crops. Those
authors found a significant correlation between the increased abundance of Gaiellaceae-
related bacteria and various metals and metalloids, and they concluded that these bacteria
play a potentially active ecological part in the interaction with soil metals.

Rhizospheric microbial communities exert a great effect on the phytoremediation of
metal-contaminated soils, not only by changing the bioavailability of metals [64], but also
by promoting plant growth under pollutant stress through the fixation of nitrogen; produc-
tion of phytohormones (indole-3-acetic acid, cytokinins, and gibberellins), siderophores,
and enzymes (1-aminocyclopropane-1-carboxylate deaminase); and transformation of nu-
trients [65–67]. However, only 2–5% of rhizosphere microorganisms contribute to plant
growth, and plants naturally select these beneficial microorganisms, which help them
to grow and survive, especially under unfavorable conditions [3]. In the rhizospheric
microbial communities of the amaranths used in this study, alongside cyanobacteria, we
identified other groups of rhizobacteria with plant-growth-promoting potential (Figure 3).
These included Bacillus (Bacillaceae, [68,69]), Sphingomonas (Sphingomonadaceae, [70]),
Streptomyces (Streptomycetaceae, [69,71]), Pseudomonas (Pseudomonadaceae, [72]), and
Rhizobium (Rhizobiaceae, [73]). Although the percentages of these taxa varied between
cultivars and soils, their mere presence indicates that the rhizosphere microbiomes have
the potential to promote amaranth growth on all urban soils tested.

We were unable to reveal any significant influence of the soils on the taxonomic struc-
ture of the amaranth rhizospheric microbiomes. Only about one third of the taxa identified
in the cultivar rhizosphere microbiomes were common to all soil samples (Figure 4), which
may indicate the maintenance of a specific plant microbiome, regardless of the kind of
soil. We supposed that peculiarities and differences in the plant root exudate composition
among plant cultivars had stronger differences than among soils, which resulted in the
formation of different rhizosphere microbiomes depending more on the plants.
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It is known that the composition of rhizosphere microbial communities is determined
not only (and possibly not so much) by the soil type, but also by the plants. In our case,
all soils studied were Greyic Phaeozems with slight differences, and all plants tested were
Amaranthus belonging to different species. The compositions of the studied rhizosphere
communities were quite similar, but the analysis of the obtained results revealed a greater
influence of plants than soils.

For the final characterization of the amaranth core rhizobiomes, additional studies of
the endosphere microbiome of each plant are required.

5. Conclusions

Limited data are available on the structure of the rhizosphere microbial communities
of Amaranthus spp. We conducted a comparative study on the rhizosphere microbiomes
of four Amaranthus cultivars (A. tricolor cv. Valentina, A. cruentus cv. Dyuimovochka,
A. caudatus cv. Bulava, and A. caudatus cv. Zelenaya Sosulka). The cultivars were grown
in an unpolluted (background) soil and in three polluted soils with polyelemental anoma-
lies. The A. tricolor rhizosphere microbiome was characterized for the first time. The
taxonomic structure of the amaranth rhizosphere microbiomes was represented by the
dominant bacterial phyla Actinobacteriota, Proteobacteria, and Chloroflexi and by the
phyla Cyanobacteria, Acidobacteriota, Planctomycetota, and Bacteroidota. In the taxo-
nomic profile of the rhizobiomes of two Amaranthus species (A. tricolor cv. Valentina and
A. cruentus cv. Dyuimovochka), there was a significant abundance of OTUs associated
with the Cyanobacteria phylum. Bacterial taxa were identified that are possibly selected by
amaranth plants during their coexistence and that may be important for plant adaptation
to various habitat conditions, including polluted soils. The targeted enrichment of the ama-
ranth rhizosphere microbiomes with members of these taxa could be useful for improving
the efficacy of amaranth use for agricultural and remediation purposes.
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