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Abstract: Tunisia is known to be a country with poor water resources, and water scarcity is evident in
certain regions. In the long term, this situation could worsen, given the increased risk of drought. The
olive tree (Olea europaea L.) is one of the plants best adapted to this climate, and numerous studies have
been carried out to assess the effects of water stress. The aim of this work was to study and compare
the ecophysiological behavior of a main Tunisian olive cultivar (Chetoui) and four rare Tunisian olive
cultivars (Chemchali, Besbessi, Sayali and Jarboui) under drought stress and to identify the main
parameters while comparing the tolerance of the cultivars studied to this abiotic stress. One-year-old
olive trees grown in pots in a greenhouse were subjected to four drought treatments (i.e., 15, 30, 45
and 60 days of drought stress) in comparison with control trees. The evaluation of the response of the
olives to this induced stress was based on five parameters: relative water content (RWC), stomatal
resistance (SR), photosystem PSII, maximal photochemical efficiency (FV/FM), performance index on
absorption basis (PI), measured by the handy PEA, and chlorophyll index, measured by SPAD. The
relative water content (RWC) of the five cultivars decreased with increasing drought stress. Jarboui
showed lower RWC values than Chemchali, especially under severe drought stress. This result was
confirmed by changes in fluorescence characteristics. FV/FM, PI and SPAD index decreased during
the development of drought stress. These observations are discussed in relation to the strategies
developed by the cultivars to grow under drought stress. The Principal Component Analysis allowed
the parameter with the strongest loading factor, which is FV/FM, to be highlighted and the cultivars
most tolerant to drought stress to be distinguished. These cultivars, Besbessi and Sayali in the north
of Tunisia and Chemchali in the south, can present a possible alternative to replace the local or foreign
cultivars most cultivated in the country, which are characterized by high water needs.

Keywords: chlorophyll index; drought stress; Olea europaea L.; performance index; relative water content

1. Introduction

Climate change is one of the major challenges facing humanity nowadays. The
Mediterranean region is described as a climate change “hot spot” view of the increasing
warming [1]. In fact, a 40% reduction in water availability is predicted by the end of this
century along the coastal areas of the Mediterranean countries [2,3].

Tunisia as a southern Mediterranean country is characterized by low rainfall and
limited renewable water resources, which is accompanied by overexploited groundwa-
ter resources [4,5]. In fact, the climate change impact in Tunisia is predicted to induce
an increase of 1.1 ◦C in annual average temperature and a considerable decrease in an-
nual precipitation, which is estimated to reach 15% by 2050 in the southern regions of
the country [6–8].

The investigation of a set of scenarios combining future water availability in Tunisia
and water use efficiency show that the agricultural sector would be negatively affected
and that the mostly affected regions would be the north east, central west and southern
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areas [9]. Olive cultivation is the main agricultural activity in the country, and olive farms
are extended over one-third of the total crop area, where the climate varies from arid to
semi-arid, representing 1.85 million hectares [10,11]. A study of the social and private
profitability of tree-based adaptation options to climate change in Tunisia showed that
irrigated olive tree production is profitable for farmers, while rainfed plantation is not
profitable at all. It is therefore necessary to adopt strategies that ensure that farmers
increase their income without increasing the use of agricultural water [12]. In this context,
the investigation of minor varieties which have proven the high potential for quality
improvement of oils [13,14], in addition to the major varieties in the country Chemlali
and Chetoui, is of great importance, and especially in terms of their adaptability to water
scarcity conditions [15].

Olive trees are one of the most suitable and adapted species to the Mediterranean-type
climate. Nowadays, olive trees face new challenges and threats related to climate change,
especially the increase in the occurrence of extreme weather events linked with an increased
warming and drought [16,17]. These severe conditions predicted in future climate scenarios
may induce physiological changes as well as alterations in the phenological responses of
olive trees [18–20].

One of the main detrimental effects of drought is a decrease in soil water potential,
which impairs the plant’s ability to absorb water, thereby reducing the ability of roots to
absorb nutrients from the soil and transport water to shoots [21].

Among all the resistances that water have to overcome through the plant, leaves
are considered as the major ones since they play an important role in the regulation of
stomata [22,23]. Olive leaves can withstand very low water potentials, maintaining full
rehydration capacity even when losing nearly 40% of their water content [24]. The stomatal
aperture regulation is one of the primary drought responses allowing water losses reduction
and the maintenance of an appropriate plant water status [25,26]. The most related trait to
this stomatal conductance regulation is the leaf hydraulic conductance, which decreases
exponentially with leaf water potential [27–29]. Olive trees are characterized by a tight
control mechanism that can reduce excessive water loss by closing their stomata progres-
sively when soil water availability decreases, which significantly decreases transpiration
rate and contributes to preserving positive turgor pressure of the cells [20,26,30–32]. The
plant’s response to water deficit differs depending on the stage at which it is imposed.
In fact, if it started in the beginning of the plant development, the inhibition of cell ex-
pansion results in a reduced leaf area, while if it started after a significant leaf area has
developed, leaves will senesce and can fall off. These responses restrict the photosyn-
thetic zone and contribute to the decline in the whole-canopy photosynthesis [25,33]. The
reduction in photosynthesis, linked to the decrease in leaf water potential, depends on
the stomata closure, with the consequence of a reduction in the conductance of the CO2
diffusion [34–36]. The extent of damage to the photosynthetic mechanism, particularly to
photosystem II (PSII), can be evaluated by the Chlorophyll a fluorescence technique, which
is a non-destructive and rapid testing method [37,38]. Further advances in chlorophyll
fluorescence techniques allowed the introduction of new parameter that takes into account
all of the main photochemical processes, such as absorption and trapping of excitation
energy, electron transport further than primary plastoquinone (QA) and dissipation of
excess excitation energy [39]. This parameter is performance index (PI). It is a suitable and
sensitive parameter that reflects the functionality of both photosystems I and II and that
gives quantitative information on the current state of plant performance under different
abiotic and biotic stress conditions [40–42].

The objectives of the present study were: to understand the ecophysiological behavior
of 5 Tunisian cultivars in response to drought stress; to decide which parameter(s) to use
for early screening of cultivars for real-time monitoring of their tolerance; and to jeopardize
the future supply of olive production by selecting more tolerant cultivars.
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2. Materials and Methods
2.1. Plant Material and Experimental Design

This study was conducted in 2021 at the Olive Institute at the specialized unit in
Sousse. The research station latitude and longitude were 10◦ E and 35◦ N, respectively.
One year-old plants of five cultivars ‘Chemchali’, ‘Sayali’, ‘Jarboui’, ‘Besbessi’ and ‘Chetoui’
were used in this experiment. All plants of the studied cultivars were transferred to 4 L
pots containing peat and perlite in a 1:1 ratio, maintained for three months in full irrigation
and nutritional conditions in a greenhouse.

The plants were homogeneous and of the same size, about 1.2 m high. Mean average
day- and night-time temperatures in the greenhouse were 32 ◦C and 18.8 ◦C, respectively,
while day- and night-time humidities were 65 and 85%, respectively.

Plants were subjected to drought stress from 2 May 2021 until 30 June 2021. The
drought stress treatments were gradually imposed by withholding water. Four drought
stress levels were considered and compared to a control treatment (T0), in which the soil
water potential was kept constant because plants were well-watered daily. Drought-stressed
plants showed mild water deficit after 15 days without watering (T15), moderate stress
after 30 days without watering (T30), severe stress after 45 days without watering (T45)
and more severe stress after 60 days without watering (T60). Control and drought-stressed
trees were arranged in a complete randomized design with four replications. Drought
stress (five levels, including the control treatment) and cultivars (five) were considered as
treatments. In total, 100 olives trees were used.

2.2. Relative Water Content

The water status of the plants was identified by measuring the leaf relative water
content (RWC). This RWC was calculated as: %RWC = 100 × (FW − DW)/(TW − DW).
Where FW = fresh weight, DW = dry weight after 48 h drying at 80 ◦C, TW = turgid weight
obtained after 48 h in distilled water at 4 ◦C in the dark [33,34]. RWC was performed with
eight replicates for each treatment and for each cultivar.

2.3. Stomatal Resistance

Stomatal resistance (SR, s·cm−1) was measured using a porometer (AP4, Delta-T
Device, Burwell, Cambridge, UK). The measurements were carried out on leaves from
the middle part of branches of each olive tree plant. Stomatal resistance was performed
between 10:30 and 12:30 a.m. with 8 repetitions for each treatment and each cultivar.

2.4. Chlorophyll Fluorescence

Chlorophyll a fluorescence was measured by a Plant Efficiency Analyser Handy-
PEA Plant Efficiency Analyser, (Hansatech Instruments Ltd., Norfolk, UK). After leaves’
adaptation to darkness (30 min), the fluorescence of the Chlorophyll a was induced by
applying a pulse of saturating red light (peak at 650 nm, 3000 mmol m−2·s−1). The data
obtained were used to identify two biophysical parameters that describe the PSII maximal
photochemical efficiency (FV/FM) and the performance index on absorption basis (PI).

PI parameter was calculated according to Strasser et al. [43] as follows:

PI =
1 − (F0/ FM)(

M0/VJ
) × FM − F0

F0
×

1 − VJ

VJ

where F0 is the fluorescence intensity at 50 µs, FJ is fluorescence intensity at the J step (at
2 ms), FM represents maximal fluorescence intensity, VJ is relative variable fluorescence at 2 ms
calculated as VJ =

(
FJ − F0

)
/(FM − F0) and M0 represents initial slope of fluorescence kinetics,

which can be derived from the equation: M0 = 4× (F300µs − F0)/(FM − F0). Moreover, FV/FM
parameter is calculated according to the equation: FV/FM = (FM − F0)/FM.

FV/FM and PI were performed with eight replicates for each treatment and for
each cultivar.
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2.5. SPAD Index

The leaf chlorophyll index or SPAD index was measured using the SPAD-502 m (Spec-
trum Technologies, Inc., Aurora, IL, USA). This non-destructive method was performed
in the greenhouse with 10 replicates for each treatment and for each cultivar as described
by Moula et al. [44].

2.6. Dry Matter Accumulation

At the end of the experiment, four plants were randomly harvested per cultivar. The
plants were divided into root and shoot fractions. Dry mater was determined after drying
the root and shoot fractions at 70 ◦C for 72 h.

2.7. Statistical Analysis

All the results were reported as the mean values of separate replications and a test
of equal variances was conducted using Levene’s test. The various parameters measured
were the subject of a one-way analysis of variance (ANOVA) and a multiple comparison
according to the Tukey’s post hoc test with statistical significance at a 95% confidence
level (p < 0.05). Two-way ANOVA was performed to see the interaction between the
effect of water stress and the effect of cultivar. Multivariate analysis was performed
by principal component analysis (PCA). All statistical analysis were processed with the
program MINITAB (Minitab Inc. Version 18, Coventry, UK).

3. Results
3.1. Effect of Drought Stress on Relative Water Content

Table 1 shows that drought stress decreased the relative water content (RWC) of the leaves
of the five cultivars studied. At the beginning of the experiment, the leaves of all plants were
characterised by almost the same relative water content between 90.14% and 92.67%.

Table 1. Effect of drought stress treatments on five Tunisian olive cultivars.

Cultivar T RWC (%) SR (s·cm−1) FV/FM PI SPAD Index

Besbessi

T0 92.67 ± 1.31 A,a 1.39 ± 0.21 B,d 0.828 ± 0.003 CD,a 12.27 ± 0.41 A,a 90.41 ± 1.58 A,a

T15 92.84 ± 1.27 A,a 2.03 ± 0.34 B,d 0.828 ± 0.004 A,a 11.68 ± 0.65 A,a 88.63 ± 2.80 A,ab

T30 88.00 ± 0.99 A,b 3.76 ± 0.46 B,c 0.827 ± 0.006 AB,a 8.39 ± 0.68 B,b 84.03 ± 1.89 B,bc

T45 78.99 ± 1.66 A,c 6.86 ± 0.52 B,b 0.801 ± 0.011 A,b 5.20 ± 0.65 BC,c 84.96 ± 1.22 A,abc

T60 55.00 ± 1.20 A,d 13.73 ± 0.71 A,a 0.790 ± 0.01 B,b 3.72 ± 0.04 D,d 82.39 ± 1.30 AB,c

Chemchali

T0 92.17 ± 0.33 AB,a 1.37 ± 0.15 B,d 0.834 ± 0.004 BC,a 12.54 ± 0.67 A,a 89.34 ± 2.30 A,ab

T15 90.15 ± 0.56 AB,a 2.03 ± 0.59 B,d 0.832 ± 0.007 A,a 11.33 ± 0.24 A,ab 90.39 ± 3.09 A,a

T30 79.95 ± 2.81 B,b 44.9 ± 0.47 AB,c 0.830 ± 0.0006 AB,a 10.58 ± 0.31 A,b 89.13 ± 2.20 A,ab

T45 73.33 ± 3.21 A,b 7.75 ± 0.65 AB,b 0.817 ± 0.005 A,b 8.056 ± 0.92 A,c 86.41 ± 2.09 A,ab

T60 54.99 ± 6.61 A,c 11.69 ± 0.46 B,a 0.830 ± 0.0006 A,a 6.60 ± 0.44 A,c 82.97 ± 2.12 AB,b

Chetoui

T0 90.14 ± 0.22 B,a 1.25 ± 0.14 B,d 0.821 ± 0.002 D,a 12.52 ± 0.23 A,a 89.38 ± 1.74 A,a

T15 87.91 ± 1.06 B,a 3.25 ± 0.41 AB,c 0.825 ± 0.002 A,a 10.89 ± 0.44 AB,b 89.47 ± 2.54 A,a

T30 72.77 ± 2.25 C,b 6,00 ± 0.87 A,b 0.817 ± 0.010 B,ab 8.56 ± 0.58 B,c 84.18 ± 1.62 B,ab

T45 60.70 ± 2.46 C,c 8.42 ± 0.32 A,a 0.799 ± 0.002 A,b 5.40 ± 0.16 B,d 79.45 ± 1.22 B,b

T60 49.71 ± 1.33 A,d 9.66 ± 0.42 C,a 0.722 ± 0.012 D,c 1.57 ± 0.03 C,e 79.24 ± 2.58 B,b

Jarboui

T0 91.49 ± 0.77 AB,a 2.00 ± 0.14 A,c 0.841 ± 0.004 B,a 11.66 ± 0.45 a,a 89.11 ± 1.88 A,a

T15 92.11 ± 2.00 A,a 4.48 ± 0.66 A,b 0.831 ± 0.004 A,a 10.21 ± 0.18 b,b 87.18 ± 1.22 A,a

T30 77.27 ± 0.61 BC,b 5.94 ± 0.83 A,a 0.836 ± 0.014 AB,a 9.13 ± 0.23 b,c 86.87 ± 0.23 AB,a

T45 55.00 ± 1.70 C,c 6.81 ± 0.20 B,a 0.800 ± 0.007 A,b 3.68 ± 0.06 c,d 85.43 ± 2.43 A,ab

T60 37.00 ± 1.00 B,d 7.10 ± 0.40 D,a 0.745 ± 0.005 C,c 1.51 ± 0.33 c,e 81.07 ± 1.89 AB,b

Sayali

T0 92.50 ± 0.68 A,a 1.56 ± 0.13 B,d 0.851 ± 0.001 A,a 12.30 ± 0.128 A,a 91.14 ± 1.57 A,a

T15 92.02 ± 2.11 A,a 2.46 ± 0.30 B,d 0.839 ± 0.010 A,ab 10.99 ± 0.19 AB,b 88.52 ± 0.92 A,a

T30 86.49 ± 2.80 A,b 3.53 ± 0.26 B,c 0.842 ± 0.005 A,a 10.46 ± 0.15 A,b 90.10 ± 1.10 A,a

T45 67.30 ± 0.64 B,c 5.00 ± 0.55 C,b 0.795 ± 0.021 A,c 4.92 ± 0.67 BC,c 88.60 ± 0.436 A,a

T60 53.00 ± 1.090 A,d 8.03 ± 0.39 D,a 0.811 ± 0.002 A,bc 3.14 ± 0.52 B,d 85.03 ± 0.97 A,b
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Table 1. Cont.

Cultivar T RWC (%) SR (s·cm−1) FV/FM PI SPAD Index

p-value

Cultivar <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Treatment <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Cultivar × Treatment <0.0001 <0.0001 <0.0001 <0.0001 0.009

Values represent the means ± standard deviations. Different capital letters in the same column indicate signifi-
cantly different values per p < 0.05 between different cultivars for the same treatment and different lower-case
letters in the same column indicate significantly different values per p < 0.05 between different treatments for the
same cultivar. All cultivars have the same value for this treatment and there is no significant difference.

(T15) showed no significant effect on RWC for any of the cultivars. RWC decreased by
5%, 15% and 40%, respectively, for Besbessi olive trees under moderate, severe and severe
water stress compared to well-watered plants. For Chemchali cultivar, RWC decreased
by 13%, 20% and 40% for T30, T45 and T60 treatments, respectively, compared to T0. For
Sayali cultivar, the decrease was quantified at 6.5%, 28% and 43% for T30, T45 and T60
treatments, respectively. For Jarboui, the most significant decrease was observed in T60,
followed by Chetoui with 64% and 45%, respectively.

3.2. Effect of Drought Stress on Stomatal Resistance

The monitoring of stomatal resistance showed an increase in this parameter according
to the intensity of the drought stress. This increase was progressive in all cultivars.

However, after 2 months of stress (T60), statistical analysis showed significant differ-
ences in the increase of SR between the five cultivars (Table 1). The highest values were
around 13.7 s·cm−1 and 11.7 s·cm−1 for Besbessi and Chemchali, respectively.

3.3. Effect of Drought Stress on PSII Maximal Photochemical Efficiency (FV/FM) and Performance
Index (PI)

Table 1 shows the evolution of (FV/FM) during the experiment. The decrease of FV/FM
started at T45. However, there was no significant difference between the five cultivars.
However, after 60 days of progressive drought stress, Besbessi, Chetoui and Jarboui showed
a significant decrease in FV/FM compared to the other two cultivars.

The performance index (PI) is a sensitive indicator of drought stress in plants [40].
Table 1 shows the evolution of the PI during the stress treatments. At the beginning of the
treatment, the PI showed stability for all cultivars. A decrease was then observed during
the course of the drought stress. The T60 treatment showed a reduction in PI of 87.5%, 87%,
74%, 70% and 47% for Chetoui, Jarboui, Sayali, Bessbassi and Chemchali, respectively.

3.4. Effect of Drought Stress on SPAD Index

At the beginning of the drought stress treatment, a slight decrease in the SPAD index
values was observed, but no significant difference was found between the cultivars studied
(Table 1). During the T30 treatment, Chetoui starts to be the most affected cultivar in
terms of SPAD index until it reaches the lowest value towards the end of the experiment
with 79.24.

3.5. Effect of Drought Stress on Dry Matter Accumulation

At the end of the experimental period, dry matter (DM) accumulation was signif cantly
affected by the drought stress treatments (Table 2). DM showed a drastic decrease for all
cultivars. A pronounced decrease was observed for Jarboui (85%) compared to the control
plants. Significant differences were observed among cultivars.

3.6. Principal Component Analysis

Principal component analysis (PCA) was applied to the five measured physiological
parameters for all the cultivars studied. The first two principal components (PCs) explained
93.9% of the total variance (PC1: 85.3%; PC2: 8.6%). The loading plot in Figure 1A shows
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that the majority of the studied traits are positively correlated with the first component PC1,
and only the stomatal resistance parameter is negatively correlated with PC1. Regarding
the second component PC2, there is a negative correlation with four traits, with the highest
eigenvalue registered for FV/FM, which is considered to be the strongest loading factor,
followed by SR and a positive correlation with two traits, biomass and relative water
content. Figure 1B shows a clear separation between the physiological behavior of the olive
plants in the initial state before the drought stress treatment T0 and the olive plants after
60 days of progressive drought stress.

Table 2. Effect of drought stress treatments on dry matter accumulation of five Tunisian
olive cultivars.

Cultivar
Treatment

T0 T60

Besbessi 139.69 ± 19.21 D,a 27,91 ± 0.38 C,b

Chemchali 177.01 ± 8.54 B,a 31.075 ± 0.79 B,b

Chetoui 149.13 ± 0.85 CD,a 27.03 ± 1.98 C,b

Jarboui 251.78 ± 2.47 A,a 37.130 ± 0.36 A,b

Sayali 174.80 ± 15.81 BC,a 32.11 ± 0.43 B,b

Values represent the means ± standard deviations. Different capital letters in the same column indicate signifi-
cantly different values per p < 0.05 between different cultivars for the same treatment, and different lower-case
letters in the same row indicate significantly different values per p < 0.05 between different treatments for the
same cultivar.

1 

 

 
Figure 1. Principal component analysis of olive samples from five cultivars according to six agronom-
ical and physiological parameters: (A) loading plot of samples and studied parameters; (B) samples
distribution according to the measurement dates T0 and T60; (C) samples distribution according
to cultivars.
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The distribution of these samples on the axes of the first and second principal com-
ponents allowed three groups to be distinguished (Figure 1C): The group of well-watered
olive trees (in the red circle), the group of varieties Chemchali, Sayali and Besbessi (in
the green circle) and the group of varieties Chetoui and Jarboui (in the blue circle). The
cultivars in the third group were most affected by drought stress and were characterized
by the highest decrease in (FV/FM).

4. Discussion

Leaf relative water content (RWC) is a commonly used indicator to evaluate plant
water status and drought resistance [45]. In this sense, RWC provides measurement of
the ‘water deficit’ of plant leaves and may indicate a degree of stress expressed under
unfavorable conditions such as drought [46]. Previous studies used RWC measured for
both control and stressed olive cultivars as a first indication about the response to drought
stress [19,20,47,48]. In the present study, a significant decrease of RWC was found after
30 days for all the cultivars. After 60 days of drought stress, Besbessi, Chemlali, Sayali and
Chetoui cultivars show a similar RWC. Only Jarboui reached very low level of RWC (<50%).

The reduction of the water status observed for all the studied cultivars has been
followed by a stomatal resistance (SR) increase. This can be explained by the closing
of the stomata due to drought stress [19,49]. In fact, stomatal closure is an efficient
way to preserve water under this situation, and to adjust CO2 input sufficiently for
optimal photosynthesis [50].

A significant correlation was found between RWC and SR under increasing levels
of drought stress (Figure 1A). The distribution of the values showed a linear relationship.
Increasing levels of drought stress led to decreasing values of RWC and increasing SR
simultaneously, compared to control plants.

The distribution of the values showed a linear relationship. Maximum amounts
of RWC and minimum values of SR were achieved in control plants T0. In our study,
non-stressed plants presented the values of SR < 4 S·m−1 and the values of RWC > 80%.

Based on the regression illustrated in Figure 2A, two drought stress ranges could be
identified for all cultivars amongst increasing drought levels. The first range is “moderate
stress”, which corresponded to values of RWC in the interval of 80–60% and of values
SR in the interval of 4–8 S m−1. The second range is “severe stress”, which presented the
values of RWC < 60% and the values of SR < 8. Practically, plants grown under “moderate
stress” were drought stressed of 30 and 45 days and those grown under “severe stress”
were stressed with 60 days of drought.

As reported for several Mediterranean species, including olive [19,20,51,52], chloro-
phyll was negatively affected by stress imposition in all cultivars. In this sense, leaf
Chlorophyll meter (SPAD-502) has been used with various crops as an indirect indicator of
plant Chlorophyll content [53].

Jarboui and Chetoui present a low SPAD index (Table 1) after 60 days of drought stress.
Chlorophyll loss, due to pigment degradation, may be a consequence of oxidative stress
increases [19,48,54]. Moreover, it may represent an adaptative feature to cope with stress,
particularly in species usually exposed to excess of excitation energy as olive trees, resulting
in lower leaf light absorbance that contribute to photoprotection [52]. The fact that FV/FM
and PI were negatively affected, simultaneously with chlorophyll, also suggests that this
stress induced damages in the photosynthetic apparatus of all cultivars, and specifically for
sensitive ones, which supports its higher susceptibility.

Exposure of leaves to increasing drought stress resulted in subsequent decreases in
FV/FM (Table 1). FV/FM and PI decreased only slightly for Besbessi, Chemchali and Sayali,
and more substantially for Jarboui and Chetoui, after 60 days of drought stress. The de-
creases in FV/FM and PI can be described as a down-regulation of PSII that reflects the pro-
tective or regulatory mechanism to avoid photodamage of the photosynthetic apparatus [19].
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A significant relationship was determined between SR, PI and RWC (Figure 2B,C).
The PI is therefore a sensitive parameter to water statute for olive trees. In contrast to
this, a continuous decrease in PI parameter was observed from the very beginning of
dehydration following the decrease of RWC [40,55]. Statistically, significant differences
were also found in the PI parameter among all tested olive cultivars. The results show
that PI may serve as an index of plant/cultivar vitality and/or sensitivity to drought stress
reflecting their different drought tolerance.

To classify cultivars according to their degrees of tolerance to drought stress, Lepeduš
et al. [39] confirmed that the performance index is one of the main reliable parameters of
chlorophyll fluorescence.
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To demonstrate the sensitivity of these non-destructive parameters to drought stress,
the dry matter accumulation (DM) was assessed. DM showed that the most affected cultivar
is Jarboui and the most tolerant is Besbessi. The integration of DM in the PCA confirmed
the classification of cultivars according to their tolerance to drought stress.

According to the results of the present study, Chetoui and Jarboui are the most sensitive
cultivars to drought stress, while Chemchali, Besbessi and Sayali were the most tolerant
ones. These conclusions were confirmed by the PCA.

Finally, the above-mentioned parameters were ranked according to their sensitivity to
detect stress, allowing decision-making on which parameter(s) should be used for early
screening of tolerant cultivars. FV/FM and SR were considered as the strongest loading
factor of screening drought.

These cultivars, Besbessi and Sayali in the north of Tunisia and Chemchali in the south,
can present a possible alternative to replace the local or foreign cultivars most cultivated in
the country which are characterized by high water needs.

In conclusion, the introduction of new cultivars far from their traditional growing areas
without any previous testing in the new locations cannot be considered as good agricultural
practice. The tolerance and adaptation of these cultivars to even dryer conditions need to
be investigated. The handy PEA and the SPAD-502 can be used as a rapid tool to support
site-specific water management in olive orchards. Furthermore, this study indicates that
the nondestructive parameters will be able to help in the investigation of tolerant cultivars.

5. Conclusions

After analyzing the data, we can conclude that the five studied cultivars showed
different drought-tolerance levels when subjected to water stress. In fact, two groups
were distinguished, the most drought-sensitive cultivars Chetoui and Jarboui, and the
drought-tolerant ones Besbessi, Sayali and Chemchali. These tolerant cultivars could be
better known and appreciated by Tunisian olive growers for large-scale plantations in
future as a strategy to replace water-intensive cultivars and address drought issues.
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