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Abstract: Two multivariate models were compared to assess their yield predictability based on
long-term (1980–2021) rice yield and weather datasets over eleven districts of Karnataka. Simple
multiple linear regression (SMLR) and artificial neural network models (ANN) were calibrated
(1980–2019 data) and validated (2019–2020 data), and yields were forecasted (2021). An intercompari-
son of the models revealed better yield predictability with ANN, as the observed deviations were
smaller (−37.1 to 21.3%, 4% mean deviation) compared to SMLR (−2.5 to 35.0%, 16% mean devia-
tion). Further, district-wise yield forecasting using ANN indicated an underestimation of yield, with
higher errors in Mysuru (−0.2%), Uttara Kannada (−1.5%), Hassan (−0.1%), Ballari (−1.5%), and
Belagavi (−15.3%) and overestimations in the remaining districts (0.0 to 4.2%) in 2018. Likewise, in
2019 the yields were underestimated in Kodagu (−0.6%), Shivamogga (−0.1%), Davanagere (−0.7%),
Hassan (−0.2%), Ballari (−5.1%), and Belagavi (−10.8%) and overestimated for the other five districts
(0.0 to 4.8%). Such model yield underestimations are related to the farmers’ yield improvement
practices carried out under adverse weather conditions, which were not considered by the model
while forecasting. As the deviations are in an acceptable range, they prove the better applicability
of ANN for yield forecasting and crop management planning in addition to its use for regional
agricultural policy making.

Keywords: statistical model; SMLR; ANN; rice yield; weather

1. Introduction

Rice (Oryza sativa L.) is the most important staple food crop of India, next to wheat;
is used for food and animal fodder; and is cultivated in a 45.76 million ha area, with a
production 124.3 million tons in the country. Karnataka is the major rice-growing state in
India, contributing 3 percent of the country’s rice area (1.397 million ha) and 3.45 percent
(4.29 million tons) of production [1]. The crop is cultivated in a wide range of soils and
rainfall and temperature situations. As a unique example, it is cultivated in areas where
rainfall ranges from 600 to 3000 mm per annum [2]. The unique feature of rice culture in
Karnataka is that either sowing or transplanting is seen in all seasons of the year, and the
durations of cultivated rice varieties vary from 100 to 180 days, depending on the season and
agroclimatic conditions. Despite its ability to adapt to a wide range of climatic conditions,
the crop suffers from severe yield variability due to changes in weather factors [3]. Weather
factors affect the crop both in direct and indirect ways: directly, as a source of water for crop
growth and as an energy source for physiological aspects though light and temperature,
and indirectly through the mineralization of nutrients, their movement to the plant root
zone, etc. [4,5]. Further, these direct and indirect impacts of weather factors are the results
of individual weather factors or the interactive effect of two or more weather factors on
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the crop yield. Previously, a lot of work has been carried out to estimate the impacts of
individual weather factors on crop yield [6–8], but few recent studies have shown the
interactive effects of weather factors on crop performance [9,10]. Studies in this direction
will help in understanding crop responses in terms of final yield and provide a forecast of
the crop prior to harvest [11].

The estimation of the interactive effects of weather factors on crop yield are aided by
advancements in crop yield forecasting techniques, which predict a crop yield based on
the weather variables that prevailed during the crop growth period. Such forecasting tech-
niques, commonly called ‘crop models’ are handy in crop planning, as they are developed
based on multidisciplinary sources of information such as edaphic (land use, soil physical
properties, soil pH, soil fertility, soil moisture, etc.) [12], meteorological (temperature, rain-
fall, relative humidity, etc.) [13], management (row spacing, seed quantity, the fertilizers
and pesticides used, etc.), and crop factors (genotype x environment interaction) [14]. Such
models are classified into three groups based on the input requirements [15]: empirical or
statistical models, simulation models, and weather analysis models. All of these models
rely upon two important aspects: the usage of the traditional approach of mathematical
models and the application of artificial intelligence [16].

Previously, in many studies statistical methods such as multiple linear regressions
(MLRs) have been employed to develop statistical crop yield prediction models [17–19].
These models should be used cautiously, as there is a chance of model overfitting because
of the overdependence of the dependent factor (yield) on independent factors (weather
variables), as the independent factors are known for multicollinearity [20]. To overcome the
problem of model overfitting, methods such as stepwise multiple linear regression (SMLR),
artificial neural network (ANN), least absolute shrinkage and selection operator (LASSO),
or elastic net (ENET) have been adopted in many previous studies to increase the precision
in yield forecasts [21]. The SMLR models only consider major factors responsible for
yield formation. The technological advancements have also brought solutions for complex
agricultural problems that linear systems are unable to resolve. One such advancement is
the use of neural networks; they take into account the multidirectional interactions between
independent variables to precisely simulate the dependent variable [22]. Previously, many
attempts were made in this direction using statistical and simulation models [23–25]. Here,
an effort was made to establish and compare statistical (SMLR) and neural network (ANN)
models for yield estimation to arrive at a better model with the intention of aiding regional
policy making.

2. Materials and Methods
2.1. Study Area

The major rice districts of Karnataka were selected for the study. The majority of
the districts were judged based on the area and production of the crop; these eleven
districts contribute to roughly 50 percent of the state’s rice area and production. In total,
eleven districts (Table 1, Figure 1a,b) were selected, considering their contributions to
production over many years. As the crop was introduced to new districts in recent years,
the fear of dataset unavailability prevented us from choosing those districts. Among the
eleven districts, the highest area, production, and productivity of rice (178.5 thousand ha,
723.0 thousand t, and 4051.2 kg/ha, respectively) were observed in Ballari district, and
lower levels were observed in Dakshina Kannada (DK) district (8.1 thousand ha area and
23.4 thousand t of production). Lower productivity of the crop was noticed in Uttara
Kannada (UK) district (2149.3 kg/ha).



Agronomy 2023, 13, 704 3 of 20
Agronomy 2022, 12, x FOR PEER REVIEW 3 of 21 
 

 

 

 

Figure 1. Percentage of rice area (a) and percent contribution to state’s rice production (b) by each 

district of the study area (Source: Rice area and production (2021), Directorate of Economics and 

Statistics, GoK). 

  

Figure 1. Percentage of rice area (a) and percent contribution to state’s rice production (b) by each
district of the study area (Source: Rice area and production (2021), Directorate of Economics and
Statistics, GoK).



Agronomy 2023, 13, 704 4 of 20

Table 1. Area, production, and productivity of rice (2020).

Districts Rice Area * Production ** Productivity (kg/ha)

Ballari 178.5 723.0 4051.2
Belagavi 60.7 166.7 2744.3

Chikkamagaluru 14.0 37.5 2668.3
Dakshina Kannada 8.1 23.4 2883.4

Davanagere 126.1 444.2 3523.7
Hassan 39.6 99.1 2502.9
Kodagu 21.3 56.4 2643.1
Mysuru 87.1 263.1 3021.4

Shivamogga 88.2 245.1 2778.1
Udupi 40.2 115.3 2870.7

Uttara Kannada 47.0 101.0 2149.3
Karnataka 1484.0 4717.5 3178.0

* Area in thousand hectares. ** Production in thousand tons.Source: Rice area and production (2021), Directorate
of Economics and Statistics, GoK.

2.2. Dataset

Long-term (42 years; 1980 to 2021, Table S1) datasets pertaining to the area, production,
and productivity of rice in the state were collected from the Directorate of Economics
and Statistics, Government of Karnataka. Daily weather data (maximum and minimum
temperature, morning and evening relative humidity, and rainfall) pertaining to the study
years were collected from the India Meteorological Department, Pune, for the districts
under study.

2.3. Methodologies Used for Yield Forecast

Two approaches of crop yield forecast are in vogue recently [26]. One is the data-
intensive, cumbersome simulation model. These have limited applicability since they
cannot be applied to large spatiotemporal scales due to the unavailability of sufficient input
data. Therefore, the other method, statistical models using crop yield and weather data by
means of simple regression, can be broadly used as an alternative to process weather-based
statistical models [27]. For successful weather-based forecasting, statistical models should
first be calibrated and tested using historical datasets. A district-wise yield model for rice
in Bihar was developed using meteorological data, and it showed that models were able to
predict preharvest crop yield with good accuracy. Most of the statistical models use multiple
linear regression (MLR) equations to develop statistical crop yield prediction models [28].
To overcome multi-colinearity between independent variables, feature selection (stepwise
multiple linear regression (SMLR), least absolute shrinkage and selection operator (LASSO),
or the elastic net (ENET) method) or feature extraction (principal component analysis)
statistical techniques can be used. In a few studies, PCA has been used in conjunction with
MLR. However, studies on the comparison of the performance of models with and without
feature selection, feature extraction, and a combination of both the methods for forecasting
crop yield are meagre. In this context, our study has found an opportunity to develop
and select a statistical forecasting model using SMLR and ANN for major rice-growing
districts of Karnataka, with the objectives to (i) develop district-wise crop yield prediction
models using multivariate models and (ii) evaluate the predictive performance of the
developed models. The methodology followed for both SMLR and ANN are summarized
in the next section.

2.3.1. Generation of Weather Indices

Weather indices were generated based on composite weather variable methods. Two
types of weather variables were generated, i.e., unweighted and weighted weather variables.
Unweighted weather indices are calculated using the sum of weekly weather variables
experienced during a crop period, while the weighted indices are calculated using the
sum product of this correlation coefficient and the value of the weekly weather variable.
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Correlation coefficients between the yield and the weather variables experienced during
the respective week were calculated. Similar weather index-based yield forecasting model
approaches were used for rice, wheat, sugarcane, and potato in Uttar Pradesh, India [29].
The procedure for the computation of unweighted and weighted weather indices is sum-
marized below. In total, 42 weather variables were generated to determine their effects on
the yield of rice.

Unweighted weather indices:

Zij =
m

∑
w=1

XiwZii′ j =
m

∑
w=1

XiwXi′w

Weighted weather indices:

Zij =
m

∑
w=1

rj
iw XiwZii′ j =

m

∑
w=1

rj
ii′m Xiw Xi′w

where:

• Xiw/Xii ′—the value of the ith/ihth weather variable understudy in the wth week;
• rjiw/rjii/e—the correlation coefficient of the detrended yield with the ith weather

variable/product of the ith and ia th weather variables in the wth week;
• m—the week of the forecast.

2.3.2. Simple Multiple Linear Regression (SMLR)

ICAR, the Indian Agricultural Statistical Research Institute (IASRI), has developed
models that express the effect of weather variables on the yields of the respective correlation
coefficients between the yield and weather variables. Here, the yield is considered a de-
pendent variable, and the weekly weather variables are considered independent variables.
The weekly weather variables were generated using daily data by averaging the daily
maximum temperature (daily TMAX) and minimum temperature (daily TMIN) and the
morning relative humidity (daily RHI) and evening relative humidity (daily RHII) and
summing up the rainfall (daily RF) and were used for further analysis (Figure 2) and for
the generation of the weather indices indicated in Table 2.
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Multiple linear regression (MLR) is the standard and simplest approach for the devel-
opment of calibration models, but its application for datasets with independent variables
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with large sample numbers is not always successful [30]. However, feature selection in
the form of stepwise MLR (SMLR) gives good results over large datasets. A stepwise
regression procedure was adopted for the selection of the best regression variable among
many independent variables [31].

Table 2. Weather-derived indices used in models using composite weather variables.

Weather Variables
Unweighted Weather Indices (0) Weighted Weather Indices (1)

TMAX (1) TMIN (2) RF (3) RHI (4) RHII (5) Tmax (1) Tmin (2) RF (3) RHI (4) RHII (5)

Maximum temperature (1) Z10 Z11
Minimum temperature (2) Z120 Z20 Z121 Z21

Rainfall (3) Z130 Z230 Z30 Z131 Z231 Z31
Morning relative humidity (4) Z140 Z240 Z340 Z40 Z141 Z241 Z341 Z41
Evening relative humidity (5) Z150 Z250 Z350 Z450 Z50 Z151 Z251 Z351 Z451 Z51

The SMLR-based statistical inference relies upon the assumption that the sample mean
is approximately normally distributed while testing the population mean. This necessitates
checking for normality in the sample dataset [32]. Nearly 40 different normality tests have
been developed and have proven their vitality in many statistical analyses by their different
applicability values because the power would change owing to the sample size and the
nature of the data [33]. Hence, one should be cautious when choosing an appropriate test
of normality. In this study, the Shapiro–Wilk test [34] was used to test the normality of
district-wise yield data.

2.3.3. Artificial Neural Networks (ANN)

Attaining the maximum crop yield at the minimum cost is one of the aims of agricul-
tural production. Hence, the early detection and management of problems associated with
crop yield indicators can help to increase yields. Recently, the application of artificial intelli-
gence (AI), such as artificial neural networks (ANNs) (Figure 3), fuzzy systems, and genetic
algorithms, has been shown to be more efficient in solving these problems. Using these
processes can make models easier to use and more accurate when working with complex
natural systems with many inputs. In the present study, we used three layers, namely input,
hidden, and output feed-forward artificial neural network. Each layer had neurons or
nodes interconnected with each other. The number of nodes in the input and output layers
was fixed by the dataset used. There was a need to take care when choosing the optimal
number of hidden layers while implementing the ANN for yield forecasting by using the
‘train’ function of the ‘caret’ package using the method ‘nnet’ with 10-fold cross-validation
in R software [35]. Here, the analysis was carried out by selecting 80 percent of the data for
calibration (training) purposes and the remaining dataset for validation (testing). In the
present study, 32 weather indices were used as inputs. Yield was the dependent variable,
and the rest were independent variables.

Agronomy 2022, 12, x FOR PEER REVIEW 7 of 21 
 

 

neurons or nodes interconnected with each other. The number of nodes in the input and 

output layers was fixed by the dataset used. There was a need to take care when choosing 

the optimal number of hidden layers while implementing the ANN for yield forecasting 

by using the ‘train’ function of the ‘caret’ package using the method ‘nnet’ with 10-fold 

cross-validation in R software [35]. Here, the analysis was carried out by selecting 80 per-

cent of the data for calibration (training) purposes and the remaining dataset for valida-

tion (testing). In the present study, 32 weather indices were used as inputs. Yield was the 

dependent variable, and the rest were independent variables. 

 

Figure 3. Diagrammatic representation of ANN. 

2.4. Tests of Model Performance 

Model performance was tested using different statistical model performance evalua-

tion measures. The use of more than one measure helped us to evaluate a single model’s 

performance and compare multiple models. In this study, the R2, root-mean-square error 

(RMSE), normalized root-mean-square error (nRMSE), and modeling efficiency (EF) were 

calculated using the formulae: 

R2 = (

1
n

∑ (Mi − M̅)(Oi − O̅)n
i=1

σMσO
)

2

   

R2 is the proportion of variation in the outcome that is explained by the predictor 

variables. In multiple regression models, it corresponds to the squared correlation be-

tween the observed outcome values and the values predicted by the model. The higher 

the R-squared (~1), the better is the model prediction. 

RMSE = √
1

n
∑(Oi − Mi)

2

n

i=1

         

This measures the average magnitude of the errors and is concerned with deviations 

from the actual value. An RMSE value of zero indicates that the model has a perfect fit. 

The lower the RMSE, the better the model and its predictions. 

nRMSE = √
1

n
∑(Oi − Mi)

2

n

i=1

×
100

O̅
      

EF = 1 −
∑ (Oi − Mi)

2n
i=1

∑ (Oi − O̅)2n
i=1

 

Figure 3. Diagrammatic representation of ANN.



Agronomy 2023, 13, 704 7 of 20

2.4. Tests of Model Performance

Model performance was tested using different statistical model performance evalua-
tion measures. The use of more than one measure helped us to evaluate a single model’s
performance and compare multiple models. In this study, the R2, root-mean-square error
(RMSE), normalized root-mean-square error (nRMSE), and modeling efficiency (EF) were
calculated using the formulae:

R2 =

(
1
n ∑n

i=1
(
Mi − M

)(
Oi − O

)
σMσO

)2

R2 is the proportion of variation in the outcome that is explained by the predictor
variables. In multiple regression models, it corresponds to the squared correlation between
the observed outcome values and the values predicted by the model. The higher the
R-squared (~1), the better is the model prediction.

RMSE =

√
1
n

n

∑
i=1

(Oi −Mi)
2

This measures the average magnitude of the errors and is concerned with deviations
from the actual value. An RMSE value of zero indicates that the model has a perfect fit. The
lower the RMSE, the better the model and its predictions.

nRMSE =

√
1
n

n

∑
i=1

(Oi −Mi)
2 × 100

O

EF = 1− ∑n
i=1(Oi −Mi)

2

∑n
i=1
(
Oi −O

)2

Mi: model output; M and σM: mean and standard deviation of model output, respec-
tively; Oi: observations; O and σo: mean and standard deviation of observations, respectively.

The normalized root-mean-square error expresses the spread around the measure-
ments and is used for the classification of model performance into distinct groups (excellent,
good, fair, and poor when the values are in the ranges of <10%, 10–20%, 20–30%, and >30%,
respectively) [36], while the modeling efficiency indicates whether the model describes the
data better than simply using the average of the predictions. Optimal values are the ones
that are close to 1.

3. Results
3.1. Observed Variability in Rainfall in the Study Districts

Rice seeding in Karnataka starts in June (24th SMW) and mostly ends in September
(39th SMW). The spatial and temporal (weekly) rainfall distribution during the study period
over the region was calculated and is depicted in Figure 4a,b. The average rainfall of all
the districts indicated the maximum rainfall in the 27th SMW (2–8th July), and the rainfall
declined from the 28th SMW (16–22nd July). Most of the districts followed the same trend,
except Dakshina Kannada, where the rainfall was comparatively higher throughout the
crop growth period. Spatially, the three coastal districts, Udupi, Dakshina Kannada, and
Uttara Kannada, received more rainfall during the crop growth period (194.4, 164.0, and
118 mm, respectively) and annually. These were followed by Malnad districts Shivamogga,
Chikkamagaluru, and Kodagu (104.3, 80.6, and 102.8 mm, respectively), and the remaining
four interior districts, Hassan, Mysuru, Davanagere, and Ballari (41.0, 41.9, 21.7, and
25.3 mm, respectively) received lower rainfall during the crop growth period. Many studies
have indicated the impact of such an unequal spatial distribution of rainfall [37–40] on the
yield variability of rainfed crops. However, crops such as rice are capable of producing
yields under irrigated situations, and rainfall distribution has a meagre impact, although in
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Karnataka only a few rice-growing districts are under irrigation (Ballari and Mandya), and
in the remaining districts rice is grown in rainfed conditions. Hence, in the present study,
only the kharif datasets on area, production, and productivity were collected and used.
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3.2. Description of Rice Yield Variability in the Study Districts

The summary statistics of yield data pertaining to the eleven rice-growing districts
of Karnataka over the years 1980–2019 are presented in Table 3. The maximum yield
from the collected data was observed in Davanagere district (3541.17 kg ha−1), and the
minimum yield was observed in Belagavi district (1950.63 kg ha−1). The standard deviation
of the yields across the districts varied between 244.57 and 643.37 kg ha−1. Among the
districts, higher yield variability (CV) was observed in Ballari and Belagavi (18.4 and 31.7%,
respectively). Such variability in the Kharif rice yield in these districts was mainly attributed
to the characteristic high temperatures in these districts, causing crop failures under minor
changes in intra-annual rainfall distribution. Further, for the sake of fitting SMLR, the
normality of the yield data was tested using normal Q–Q plots (Figure 5) and Shapiro–Wilk
tests. The yield data were found to be normally distributed, as indicated by Shapiro–Wilk
test (p value > 0.05), for all districts except Mysuru (p value = 0.003). The normal Q–Q plots
also confirmed normality, as the quintiles almost formed a diagonal line, thereby fulfilling
the basic assumption of the parametric models (MLR, LASSO, and ENET).

Table 3. Statistics of rice yield variability in eleven study districts.

District Mean Maximum Minimum Std CV (%)
Shapiro–Wilk Test

Statistic p Value

Ballari 3485 4571 2406 643.3 18.4 1.78 0.162
Belagavi 1951 3096 589 618.9 31.7 1.45 0.269

Chikkamagaluru 2547 3023 2062 249.5 9.8 1.36 0.266
Dakshina Kannada 2529 3375 2061 328.4 12.9 2.3 0.091

Davanagere 3541 4135 3114 244.5 6.9 0.53 0.774
Hassan 2653 3417 1602 444.3 16.7 0.93 0.510
Kodagu 2656 3126 2064 245.5 9.2 2.02 0.117
Mysuru 3147 3669 1968 305.3 9.7 38.87 0.003

Shivamogga 2710 3539 2024 346.8 12.8 0.71 0.056
Udupi 2674 3250 1904 311.1 11.6 1.58 0.505

Uttara Kannada 2055 2758 1462 288.3 14.0 0.26 0.433

3.3. Rice Yield Forecasting Models
3.3.1. Stepwise Multiple Linear Regression Model

The Kharif rice yields were forecasted during 2021 at the F3 (preharvest) stage using
SMLR with SPSS statistical software for eleven districts (Belgavi, Dakshina Kannada, Da-
vanagere, Hassan, Chikkamaglur, Udupi, Shivamogga, Ballari, Mysore, Kodagu, and Uttara
Kannada). Its regression equation, the weather variables influencing the equation, and
the standard error (SE) of the estimated values resulting from different weather variables
are presented in Table 4. Here, a lower SE (94.99) was observed in Udupi district, and a
higher SE (465.48) was seen in Belagavi district. The method of yield forecasting at various
crop growth stages had a variable capability of yield estimation. The forecasts given at
the midcrop (F2) and preharvest (F3) stages had better similarity to the observed yield
compared to that forecasted at the vegetative stage, i.e., F1 [41]. Previously, such models
have proven their worth in forecasting the yields of many crops, such as sugarcane and
potato [42].
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Table 4. Rice yield prediction equations using stepwise multiple linear regression for different
districts of Karnataka during 2021 at preharvest (F3) stage.

District Regression Equation Weather Variables in the Equation F Std. Error

Ballari Y = −13.44 + 35.87 *Time + 8.61 *Z10 + 0.04 *Z341 Time, Tmax, Rf *Rh1 118.54 201.3
Belagavi Y = −145.69 + 0.25 *Z231 + 0.60 *Z251 Tmin *Rf, Tmin *Rh2 19.39 465.48

Chikkamagaluru Y = −74.7731 + 22.23 *Time + 10.63 *Z10 + 0.26 *Z131 Time, Tmax, Tmax *Rf 50.52 248.45
Dakshina Kannada Y = 25.81 + 42.80 *Time-4.93 *Z51*0.40 *Z121 Time, Rh2, Tmax *Tmin 90.21 181.93

Davanagere Y = −61.0 + 30.14 *Time + 13.84 * Z10 + 0.16 *Z131 Time, Tmax, Tmax *Rf 115.9 190.31
Hassan Y = −193.35 + 113.07 *Time + 0.030 *Z450 Time, Rh1 *Rh2 119.76 213.9
Kodagu Y = −69.33 + 16.88 *Time + 6.29 *Z50-0.18 * Z250 + 0.01 *Z341 Time, Rh2, Tmin *Rh2, Rf *Rh1 64.6 175.83
Mysuru Y = −215.62 + 18.56 *Time + 9.71 *Z51 + 5.56 *Z121 Time, Rh2, Tmax *Tmin 58.53 250.23

Shivamogga Y = −773.35 + 195.47*Z11 Tmax 169.45 218.64
Udupi Y = −162.82 + 49.15 *Time + 5.02 *Z121 + 0.27 *Z141 + 0.007*Z230 Time, Tmax *Tmin, Tmax *Rh, Tmin *Rf 217.11 94.99

Uttara Kannada Y = −1285.31 + 16.73 *Z20 + 199.08 *Z21 Tmin 42.2 244.28

The resulting stepwise multiple linear regression model was validated for the period
from 2018 to 2019 at the preharvest stage to determine the accuracy of the models. The
district-wise predicted rice yield deviation from the observed yield is depicted in Table 5.
The yields were underestimated by the model. The error percentages for Kodagu, My-
suru, Udupi, Uttara Kannada, Dakshina Kannada, Ballari, and Belagavi were found to be
−34.5%, −2.1%, −1.4%, −6.2%, −1.2%, −8.4%, and −65.1%, respectively, while for rest of
the districts it showed overestimations during 2018. Similarly, during 2019 five districts
underestimated the rice yield, with error percentages of −1.2%, −2.4%, −8.5%, −13.0%,
and −42.3% in Kodagu, Shivamogga, Uttara Kannada, Ballari, and Belagavi, respectively,
whereas for the other six districts the predicted yields were overestimated by the model,
ranging from 1.3 to 14.9 percent. The results revealed that there seemed to be less agreement
between the observed and the predicted yield, as the error calculated by this model was
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not found within the acceptable limit, i.e., ±10% for all districts, whereas for a few districts
it showed excellent agreement between the observed and predicted yields.

Table 5. District-wise error percentage of Kharif rice yield (Kg/ha) at preharvest (F3) stage, validated
for 2018 and 2019 using a stepwise multiple linear regression.

District

2018 2019

Predicted Yield
(kg/ha)

Observed Yield
(kg/ha)

Error
(%)

Predicted Yield
(kg/ha)

Observed Yield
(kg/ha)

Error
(%)

Ballari 3926 4256 −8.4 4046 4571 −13.0
Belagavi 1608 2655 −65.1 1853 2637 −42.3

Chikkamagaluru 2937 2532 13.8 2663 2532 4.9
Dakshina Kannada 3117 3154 −1.2 3155 3022 4.2

Davanagere 3815 3187 16.5 3863 3514 9.0
Hassan 3252 2482 23.7 3642 3101 14.9
Kodagu 2192 2948 −34.5 2662 2695 −1.2
Mysuru 3100 3166 −2.1 3521 3314 5.9

Shivamogga 2784 2669 4.1 2825 2893 −2.4
Udupi 3059 3101 −1.4 3071 3032 1.3

Uttara Kannada 2065 2194 −6.2 2214 2403 −8.5

The model performance was evaluated with the R2, RMSE, and correlation coefficient
(CC). The RMSE ranged between 83.75 and 447.25. Here, a lower RMSE was observed in
Udupi district, and a higher RMSE was found in Belagavi district, as an RMSE value close
to 0 indicates better model performance. Meanwhile, the CC ranged between 0.51 and 0.95,
and the R2 ranged between 0.60 and 0.98. An R2 above 0.6 is said to be a good fit, whereas
an R2 between 0.4 and 0.6 is moderate. From the table, we can observe that all eleven
districts showed R2 values above 0.6 (Table 6).

Table 6. Statistical evaluation of kharif rice yield using stepwise regression.

District R2 RMSE Correlation Coefficient (CC)

Ballari 0.94 188.60 0.90
Belagavi 0.60 447.25 0.70

Chikkamagaluru 0.84 236.12 0.80
Dakshina Kannada 0.91 171.52 0.89

Davanagere 0.95 175.44 0.70
Hassan 0.94 199.92 0.93
Kodagu 0.91 162.28 0.80
Mysuru 0.87 235.92 0.68

Shivamogga 0.90 212.48 0.51
Udupi 0.98 83.75 0.95

Uttara Kannada 0.78 234.30 0.65

3.3.2. Artificial Neural Network Model

A feed-forward neural network with a single hidden layer with eight neurons was
fitted with a ‘logistic activation function’ (default in r package ‘nnet’) using a calibra-
tion/training dataset from 2001 to 2017 (Figure 6). The resulting artificial neural network
model was validated/tested with a test dataset for the period from 2018 to 2019 to determine
the prediction accuracy of the model. Here, the district-wise predicted rice yield deviated
from the observed yield, as depicted in Table 7. During 2018, the negative observed error
for yields indicated underestimations by the model in Mysuru (−0.2%), Uttara Kannada
(−1.5%), Hassan (−0.1%), Ballari (−1.5%), and Belagavi (−15.3%), while for rest of the dis-
tricts it showed overestimations by the model ranging from 0.0 to 4.2. Likewise, during 2019,
six districts had rice yield underestimations, i.e., Kodagu (−0.6%), Shivamogga (−0.1%),
Davanagere (−0.7%), Hassan (−0.2%), Ballari (−5.1%), and Belagavi (−10.8%) districts,
whereas for the other five districts the predicted yields were overestimated. Figure 7a,b
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reveals the excellent agreement between the observed and predicted yields using SMLR
and ANN. But more accurate estimates were found in ANN model. As the error calculated
by this model was within the acceptable limit, i.e., ±10% for all the districts and this model
can be used to predict yields and was superior to the SMLR.
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Table 7. District-wise error percentage of Kharif rice yield (Kg/ha) forecasted using artificial neural
network (ANN) during 2018 and 2019.

District
2018 2019

Predicted Observed Error (%) Predicted Observed Error (%)

Ballari 4192 4256 −1.5 4351 4571 −5.1
Belagavi 2303 2655 −15.3 2379 2637 −10.8

Chikkamagaluru 2644 2532 4.2 2652 2649 0.1
Dakshina Kannada 3153 3154 0.0 3029 3022 0.2

Davanagere 3203 3187 0.5 3490 3514 −0.7
Hassan 2480 2482 −0.1 3096 3101 −0.2
Kodagu 2949 2948 0.03 2678 2695 −0.6
Mysuru 3159 3166 −0.2 3482 3314 4.8

Shivamogga 2670 2669 0.04 2889 2893 −0.1
Udupi 3101 3101 0.0 3031 3032 0.0

Uttara Kannada 2161 2194 −1.5 2469 2403 2.7
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The prediction abilities of the fitted ANN models were evaluated in terms of the
coefficient of determination (R2), the root-mean-square error (RMSE), and the mean absolute
percentage error (MAPE) [43]. Here, the performance analysis included the computation of
different statistical parameters, viz. the mean absolute error (MAE), root-mean-square error
(RMSE), and normalized root-mean-square error (nRMSE) values for rice crops of different
locations (Table 8). A model with smaller RMSE, nRMSE, and MAE values and higher EF
values was considered to be the best. The model’s performance using ANN as indicated
was validated using RMSE values between 1.60 and 281.01; nRMSE values between 0.06 and
15.40; MAE values between 1.22 and 187.72, and EF values between 0.80 and 1.00. Among
the predicted districts yields, the lowest values of RMSE (1.60), NRMSE (0.06), MAE (1.22),
and EF (1.00) were found in Shivamogga district, and the highest were observed in Belagavi
district with 281.01, 15.40, 187.72, and 0.80 for RMSE, NRMSE, MAE, and EF, respectively.
The model was said to perform excellently, with an nRMSE value less than 10 percent,
categorized as excellent, for ten out of eleven districts and an nRMSE value categorized
as good for one district, as it was between 10 and 20 percent. This observed variability
among the models was due to the consideration of less independent parameters by SMLR
compared to ANN, which took into account multiple interactions between the weather
variables [44].

Table 8. Statistical evaluation of validated kharif rice yield using an artificial neural network (ANN).

District RMSE nRMSE nRMSE * MAE EF

Ballari 88.61 2.70 Excellent 46.04 0.96
Belagavi 281.01 15.40 Good 187.72 0.80

Chikkamagaluru 99.75 3.91 Excellent 53.23 0.94
Dakshina Kannada 15.21 0.61 Excellent 6.93 1.00

Davanagere 28.34 0.80 Excellent 20.79 0.99
Hassan 6.88 0.25 Excellent 4.66 1.00
Kodagu 71.99 2.72 Excellent 42.86 0.93
Mysuru 44.45 1.40 Excellent 29.95 0.98

Shivamogga 1.60 0.06 Excellent 1.22 1.00
Udupi 3.83 0.15 Excellent 1.99 1.00

Uttara Kannada 131.06 6.45 Excellent 72.77 0.82
* nRMSE classes: <10% = Excellent, 10–20% = Good, 20–30% = Fair, and >30% = Poor.

3.4. Effect of Weather Variables on Rice Yield

Rice, being one of the major food grain crops whose productivity is largely dependent
on weather variables, has shown yield variability due to the impacts of individual and
interactive effects of different weather variables. The average weekly temperature (Tmean)
of the study regions during the rice growing period varied between 22 and 26 ◦C (Table 9),
which is very much within the optimal temperature range required for rice growth from
15–18 to 30–33 ◦C, [45]. The average weekly maximum temperature (Tmax) ranged be-
tween 26 and 30 ◦C, and previous studies have observed yield variability of rice due to
temperature fluctuations [46–48]. Sometimes the maximum temperature exceeded 35 ◦C,
which has caused destructive effects on rice growth and yield [49]. This may be due to
alterations in enzyme activities, leading to changes in the rate of photosynthesis, respiration,
and other physiological aspects [17,50]. Higher temperatures were found to decrease the
duration of the crop life cycle, thereby shortening the grain filling period, which might lead
to lower crop yields and grain quality. The RHI ranged between 69 and 94%, and the RHII
ranged between 59 and 91%. Higher relative humidity has an antagonistic effect on crop
yield, as higher humidity causes a reduction in evapotranspiration, thereby lowering the
cooling effect due to evaporation [51]. It also supports incidences of pests and diseases,
which lead to reductions in crop yield. However, a higher vapor pressure deficit during
anthesis leads to a reduction in the panicle temperature due to transpirational cooling,
which helps in reducing high-temperature-induced spikelet sterility [52]. The average
rainfall in the region varied between 27.7 and 181.8 mm during the crop growth period
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(Table 9). In districts such as Ballari, the rainfall was much too low to support crop growth,
even though the yield levels were high. This was merely due to the availability of sufficient
irrigation water through reservoirs. This strengthens crop management, as rainfall during
the flowering and ripening stages reduces pollination and causes lodging [53].

Table 9. Statistics of weather variables observed during the crop growth period.

Statistic Tmax
(◦C)

Tmin
(◦C)

Tmean
(◦C)

RHI
(%)

RHII
(%)

Rainfall
(mm)

Mean 27.9 20.8 24.3 87.1 79.0 85.6
Maximum 30.6 22.5 26.4 94.0 91.5 181.8
Minimum 26.3 19.4 22.9 69.0 59.0 27.7

Standard deviation 1.2 1.0 1.1 6.7 9.1 50.0
Coefficient of variation (%) 4.4 5.0 4.5 7.7 11.5 58.4

3.5. Comparison of SMLR and ANN for the Predictability of Regional Rice Yield

The yields forecasted for rice during 2021 at the preharvest (F3) stage using a stepwise
multiple linear regression (SMLR) and an artificial neural network (ANN) for eleven
growing districts of Karnataka during kharif season are presented in Table 10. The yields
forecasted by SMLR ranged from 2294 to 4093 kg/ha. The higher yield was predicted for
Udupi (4093 kg/ha) district, followed by Hassan (3929 kg/ha), whereas the lower yield
was predicted in Belagavi (2294 kg/ha), followed by Uttara Kannada (2314 kg/ha) district.
Further, the ANN forecasted yields ranging from 2172 to 3919 kg/ha, and the higher
yield was predicted in Ballari (3919 kg/ha) district, followed by Shivamogga (3586 kg/ha),
whereas the lower yield was predicted in Uttara Kannada (3586 kg/ha), followed by
Mysuru (2318 kg/ha) district. Meanwhile, the percentage deviations from the observed
yield ranged between −2.5 and 35.0% (mean: 16%) in SMLR, and −37.1 to 21.3 percent
(mean: 4%) deviations were observed using ANN. These outcomes prove the usability of
ANN over SMLR in crop yield forecasting.

Table 10. District-wise average Kharif rice yield and predicted yields using a stepwise multiple linear
regression and an artificial neural network (ANN) during 2021 at the preharvest (F3) stage.

District Average Yield *
SMLR ANN

Predicted Yield 2021
(kg/ha)

Deviation
%

Predicted Yield 2021
(kg/ha)

Deviation
%

Ballari 3302 3223 −2.5 3919 15.7
Belagavi 1847 2294 19.5 2348 21.3

Chikkamagaluru 2555 2747 7.0 2447 −4.4
Dakshina Kannada 2492 3223 22.7 2753 9.5

Davanagere 3551 3834 7.4 2882 −23.2
Hassan 2746 3929 30.1 3166 13.3
Kodagu 2648 2591 −2.2 2785 4.9
Mysuru 3177 3579 11.2 2318 −37.1

Shivamogga 2872 3225 10.9 3586 19.9
Udupi 2660 4093 35.0 2785 4.5

Uttara Kannada 2044 2314 11.7 2172 5.9

Average 2718 3235 16.0 2833 4.1

* Observed yield (kg/ha) averaged from 1980 to 2019.

The average district yield forecasted using stepwise multiple linear regression was
found to be 3235 kg ha−1, and using artificial neural network (ANN) this value was found
to be 2833 kg ha−1 at the preharvest stage compared to the average yield (1980–2019)
of 2718 kg ha−1, as depicted in Figure 8. The forecasted mean yield during 2021 using
both the methods was found to be higher than the average yield. As the model is purely
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weather-based, good rains during the crop growing season could be the reason for higher
yield estimates for 2021 in all forecasted districts.
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Figure 8. District-wise yield prediction for Kharif rice (kg/ha) using an artificial neural network and a
stepwise multiple linear regression during 2021, along with the average yield comparison. Numbers
in parenthesis indicate the deviation percentages from the average yields.

4. Discussion

Agriculture is a production sector that is highly dependent on the climatic condi-
tions [54–56]. Especially in tropical countries such as India, where the majority of the crop
production is dependent on the climate. While agricultural output is dependent on other
factors, such as pest and diseases, weeds and their management decisions, etc., those can
be modified in an effort to provide the best growing environment for the crops [57]. Even
after providing the best growing environment for the crop, variations in the crop yield
are observed. Such variations are majorly attributed to spatial and temporal variations
in weather factors [58]. This weather-induced production variability impacts regional
food security, thus making it necessary to study the major weather factors behind crop
production. The quantification of weather impacts on the crop growth is a cumbersome
task, as weather factors impart yields through their direct and interactive effects. The
present study involved the use of statistical (SMLR) [59,60] and machine learning tools
(ANN) [61] to generate a better rice yield forecast model. As the crop is a staple food crop
of the majority of the population in Karnataka, its interaction with weather needs to be
assessed to have an advance estimate of its production in the region and to plan the alter-
natives for improving the productivity of the secured food supply. Previous studies have
shown the crop’s dependence on weather, but few number studies have been conducted
on quantifying the interactive effects of weather on rice crops. Therefore, efforts are being
made to assess the interactive effects of weather factors on rice productivity through the
generation of weather indices based on composite weather variable methods [62,63] for
understanding the joint effect of two variables [64–66].

The SMLR and ANN models were calibrated (1980–2017) and validated (2018–2019)
using the historical datasets of weather variables (IMD) and crop yield datasets (state
agriculture department) to forecast the 2021 yield. In order to fit the SMLR, the normality
in the yield data was checked using the Shapiro–Wilk test and Q-Q plots, which indicated
that all districts’ yield datasets were normally distributed (p value > 0.05 and quantiles
centered around the diagonal line) except Mysuru (p value = 0.001). The comparison of
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the SMLR and ANN models revealed a higher percentage deviation from the observed
yield, ranging between −2.5 and 35.0 (mean: 16%), in SMLR compared to ANN (range:
−37.1 to 21.3, mean: 4%), making ANN a better model for forecasting. This might be due
to the ability of ANN to take an account of the collinearity between weather variables for
yield prediction [67,68] Further, the district-wise yield predictability of ANN was assessed
using the mean absolute error (MAE), which ranged between 1.22 and 187.72 with a mean
of 42. Among the districts, the lowest value of MAE (1.22) was observed in Shivamogga,
and the highest was in Belagavi district, indicating better predictability of ANN in these
districts, and the mean RMSE obtained using the ANN model was found to be 70 compared
to 213 in the regression model [69]. Hence, the use of machine learning tools such as ANN,
LASSO, NNET, etc., paves a path for precision yield forecasting, which could be promising
for decision making in future crop management and the planning of policies for improved
yield production.

5. Conclusions

Machine learning approaches are promising alternatives or complimentary tools to
support the commonly used crop simulation model for yield prediction, but their efficacy
has to be evaluated before applying them to a specific crop or cropping system yield pre-
diction. As a crop’s performance is influenced by more than one external factor such as the
weather and the interactions between the weather factors themselves, a special method is
needed to assess performance. Previously, several linear models were developed based
on the direct relationships between the yield and the weather. They failed to measure the
impact of multicollinearity between weather factors on the yield. Therefore, an attempt
to determine this impact using a machine learning tool (ANN) and compare it with a
simple regression model such as SMLR was made in the present study. Two multivariate
models, SMLR and ANN, were used to forecast rice yields in major rice-growing districts
of Karntaka. The outcomes demonstrated that an artificial neural network (ANN) can be
utilized for yield prediction for the area with satisfactory results compared to a stepwise
multiple linear regression since a good agreement was realized between the ANN-predicted
and the observed yield, which was indicated by the root-mean-square error, normalized
root-mean-square error, R2 statistics, and prediction error percentage. There are various
advantages of ANNs over conventional approaches; they provide a stable analytical alter-
native to conventional regression techniques, which are often limited by strict assumptions
of normality, linearity, variable independence, etc. As ANNs are able to capture interactions
between independent variables, they allow a quick and easy method for modeling the
complex agricultural phenomenon that is otherwise nearly impossible to explain.
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58. Frieler, K.; Schauberger, B.; Arneth, A.; Balkovič, J.; Chryssanthacopoulos, J.; Deryng, D.; Levermann, A. Understanding the

weather signal in national crop-yield variability. Earth’s Future 2017, 5, 605–616. [CrossRef] [PubMed]
59. Kitchen, N.R.; Sudduth, K.A.; Drummond, S.T. Electrical conductivity as a crop productivity measure for claypan soils. J. Prod.

Agric. 1999, 12, 607–617. [CrossRef]
60. Rumelhart, D.E.; McClelland, J.L. Parallel Distributed Processing; MIT Press: Boston, MA, USA, 1986; Volume 1.
61. Ge, J.; Zhao, L.; Gong, X.; Lai, Z.; Traore, S.; Li, Y.; Long, H.; Zhang, L. Combined effects of ventilation and irrigation on

temperature, humidity, tomato yield, and quality in the greenhouse. HortScience 2021, 56, 1080–1088. [CrossRef]
62. Menzal, A.; Fabian, P. Growing season extended in Europe. Nature 1999, 397, 659–663. [CrossRef]

http://doi.org/10.54386/jam.v16i2.1521
http://doi.org/10.1198/0003130032341
http://doi.org/10.1080/10485259808832735
http://doi.org/10.1093/biomet/52.3-4.591
http://doi.org/10.18637/jss.v028.i05
http://doi.org/10.1016/0378-4290(91)90040-3
http://doi.org/10.3390/agronomy12092035
http://doi.org/10.3390/app12073407
http://doi.org/10.3390/w13121664
http://doi.org/10.54386/jam.v14i2.1420
http://doi.org/10.1007/s00217-019-03369-y
http://doi.org/10.1007/s00484-018-1583-6
http://doi.org/10.1111/gcb.13065
http://doi.org/10.2134/agronj2017.01.0052
http://doi.org/10.1016/j.agrformet.2011.04.009
http://doi.org/10.2166/wcc.2015.044
http://doi.org/10.1626/pps.10.57
http://doi.org/10.1007/s12571-015-0497-y
http://doi.org/10.1016/j.agsy.2018.03.001
http://doi.org/10.1016/j.agsy.2017.12.007
http://doi.org/10.1016/j.scitotenv.2016.11.183
http://doi.org/10.1088/1748-9326/aa678e
http://doi.org/10.1002/2016EF000525
http://www.ncbi.nlm.nih.gov/pubmed/30377624
http://doi.org/10.2134/jpa1999.0607
http://doi.org/10.21273/HORTSCI16044-21
http://doi.org/10.1038/17709


Agronomy 2023, 13, 704 20 of 20

63. Traore, S.; Zhang, L.; Guven, A.; Fipps, G. Rice yield response forecasting tool (YIELDCAST) for supporting climate change
adaptation decision in Sahel. Agric. Water Manag. 2020, 239, 106242. [CrossRef]

64. Rafi, Z.; Rehan, A. Wheat crop model based on water balance for Agrometeorological crop monitoring. Pak. J. Meteorol. 2005, 2,
23–33.

65. Sridhara, S.; Ramesh, N.; Gopakkali, P.; Das, B.; Venkatappa, S.D.; Sanjivaiah, S.H.; Kumar Singh, K.; Singh, P.; El-Ansary, D.O.;
Mahmoud, E.A.; et al. Weather-Based Neural Network, Stepwise Linear and Sparse Regression Approach for Rabi Sorghum
Yield Forecasting of Karnataka, India. Agronomy 2020, 10, 1645. [CrossRef]

66. López-García, P.; Intrigliolo, D.; Moreno, M.A.; Martínez-Moreno, A.; Ortega, J.F.; Pérez-Álvarez, E.P.; Ballesteros, R. Machine
Learning-Based Processing of Multispectral and RGB UAV Imagery for the Multitemporal Monitoring of Vineyard Water Status.
Agronomy 2022, 12, 2122. [CrossRef]

67. Haghverdi, A.; Washington-Allen, R.A.; Leib, B.G. Prediction of cotton lint yield from phenology of crop indices using artificial
neural networks. Comput. Electron. Agric. 2018, 152, 186–197. [CrossRef]

68. Abrouguia, K.; Gabsib, K.; Mercatorisc, B.; Khemisa, C.; Amamia, R.; Chehaibia, S. Prediction of organic potato yield using tillage
systems and soil properties by artificial neural network (ANN) and multiple linear regressions (MLR). Soil Tillage Res. 2019, 190,
202–208. [CrossRef]

69. Ji, B.; Sun, Y.; Yang, S.; Wan, J. Artificial neural network for rice yield prediction in mountainous re gions. J. Agric. Sci. 2007, 145,
249–261. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.agwat.2020.106242
http://doi.org/10.3390/agronomy10111645
http://doi.org/10.3390/agronomy12092122
http://doi.org/10.1016/j.compag.2018.07.021
http://doi.org/10.1016/j.still.2019.01.011
http://doi.org/10.1017/S0021859606006691

	Introduction 
	Materials and Methods 
	Study Area 
	Dataset 
	Methodologies Used for Yield Forecast 
	Generation of Weather Indices 
	Simple Multiple Linear Regression (SMLR) 
	Artificial Neural Networks (ANN) 

	Tests of Model Performance 

	Results 
	Observed Variability in Rainfall in the Study Districts 
	Description of Rice Yield Variability in the Study Districts 
	Rice Yield Forecasting Models 
	Stepwise Multiple Linear Regression Model 
	Artificial Neural Network Model 

	Effect of Weather Variables on Rice Yield 
	Comparison of SMLR and ANN for the Predictability of Regional Rice Yield 

	Discussion 
	Conclusions 
	References

