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Abstract: Karrikins are active components of smoke that can promote seed germination and regulate
seedling morphogenesis. However, the role of karrikins as alleviators of abiotic stress remains largely
elusive. In this study, we examined whether exogenous application of karrikin1 (KAR1) might
improve drought tolerance in creeping bentgrass (Agrostis stolonifera cv. PennA4), and investigated
the underlying mechanism. We found that exogenous application of 100 nM KAR1 enhanced drought
tolerance in creeping bentgrass, as manifested by significant increases in leaf relative water content,
efficiency of photosystem II, leaf chlorophyll content, proline content, and membrane stability, as
well as significantly enhanced activities of antioxidant enzymes. RT–PCR analysis indicated that
improved drought stress tolerance by application of KAR1 might be related to upregulation expression
of karrikin-responsive genes (KAI2, MAX2 and AFL1), transcription factors (ABF3, bHLH148, MYB13
and DREB2A), antioxidant defense genes (Cu/Zn-SOD, APX2, CAT1, and POD2), and downregulation
expression of chlorophyll-degradation genes (PPH and Chl-PRX). These findings suggest that KAR1

may promote the drought tolerance of creeping bentgrass by activating karrikin-responsive genes
and transcription factors, enhancing proline accumulation and antioxidant capacity, and suppressing
leaf senescence under prolonged drought stress.

Keywords: karrikin; drought stress; antioxidant defense; transcription factors; reactive oxygen
species; creeping bentgrass (Agrostis stolonifera)

1. Introduction

Drought stress has become a primary abiotic stress limiting plant growth and develop-
ment, and the frequency and duration of drought is predicted to increase in the future [1].
Drought stress causes various types of damage to cellular, physiological, and biochemical
processes, which ultimately leads to the loss of plant functionality and productivity [2].

Drought directly affects the water uptake of plant roots, reduces the relative water
content of leaves, and causes chlorophyll degradation leading to stress-induced leaf senes-
cence [3,4]. Drought stress causes the production of reactive oxygen species (ROS), and ROS
result in photosynthesis inhibition, lipid peroxidation, and cellular function interruption,
which consequently lead to cell membrane electrolyte leakage (EL), lipid peroxidation,
and even to plant death [5]. However, plants adapt to drought stress by developing an
effective ROS scavenging system to suppress the production of ROS, such as antioxidant
metabolism [6]. Antioxidant enzymes, such as glutathione peroxidase (GPx), peroxidase
(POD), catalase (CAT), superoxide dismutase (SOD), and ascorbate peroxidase (APX), and
nonenzymatic antioxidants, such as proline and ascorbic acid, work coordinately to prevent
ROS accumulation so as to maintain cell water balance and stabilize the cell membrane [3,7].
SOD converts O2

.− to H2O2, then GPX, CAT, and APX detoxifies H2O2 to water, while
the conversion of H2O2 to H2O by APX and GPX needs ascorbate and glutathione as the
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electron donor [8]. It is manifested that the regulation of antioxidant enzymes activity and
gene expressions may be crucial to plant survival from drought stress. Therefore, with-
holding a high level of antioxidative enzyme activities is positively associated to drought
tolerance [9].

In addition, many transcription factors (TFs), especially stress-related TFs, are highly
activate under drought stress. TFs act as a molecular switchboard, which can either active or
repress the expression of the downstream genes whenever necessary. For example, WRKY
TFs (WRKY60, WRKY40 and WRKY18) were proven to interact with each other to regulate
ABA signaling during dehydration stress [10]. Similarly, the expression of MdMYB10
in apples (Malus domestica) was autoregulated to further regulate the accumulation of
anthocyanins [11]. The expression of some DREB TFs, such as ICE1, a TF from bHLH family,
is cross-regulated by binding to the promoter of DREB1C to activate its expression during
cold stress [12]. Furthermore, when the abiotic stresses withdraw, TFs may degrade via the
ubiquitin–proteasome system (UPS) to prevent useless energy consumption; for example,
the high expression of VuDEREBA2A in cowpea (Vigna unguiculata) upon desiccation may
stop by mediating the UPS to degrade the TF [13].

Karrikins (KARs) are small butenolides that are discovered in the smoke of burning
plant material. Six compounds (KAR1–KAR6) have been identified, of which KAR1 was
generally proven to be most abundant and most biologically active [14,15]. According
to previous studies, KARs can induce seed germination [15–17] and promote seedling
vigor in plants [18]. In Arabidopsis, KAR1 enhanced light-dependent germination and
seedling development [19], and induced the expression of numerous light-responsive genes,
resulting in an increased sensitivity to light [19]. Recent discoveries have shown that KARs
can also play a key role in defending against abiotic stresses. Under salt, osmoticum or
temperature stress conditions, KAR-treated (100 nM) seeds produced stronger seedlings
than water-treated seeds of tomato (Lycopersicon esculentum) [20]. Supplementation of
1 nM KAR1 in growth medium could significantly alleviate drought and salt stress in
Sapium sebiferum, as proven by increased seed germination, enhanced seedling biomass,
improved taproot length, and number of lateral roots under drought and salt stresses [18].
Under cadmium stress, KAR1-treated seedlings displayed higher stomatal conductivity and
intercellular carbon dioxide concentration in Brassica oleracea [21]. Previous studies of KARs
have mainly focused on the improvement of seed germination and seedling establishment,
however, the effects of KARs on regulating plant drought tolerance and how to regulate
plant performance under stress conditions remain largely unknown.

With the growth of human population, the demand for water is dramatically increas-
ing; therefore, how to save water resources has become a worldwide research topic [3].
Creeping bentgrass (Agrostis stolonifera) is a widely used cool-season perennial grass species
and is sensitive to drought stress [22]. Exogenous application of biostimulants to plants, in-
cluding chemicals and hormone mimetics, has been proven to be an efficient way to reduce
the adverse effects caused by abiotic stresses [2,23]. KAR1 has been proven to be a positive
regulator of seed germination and seedling establishment under abiotic stresses, thus, we
suppose that it may also function as an alleviator of prolonged drought stresses in grass
plants. The objective of this study was to investigate how KAR1 might be involved in mem-
brane stability, antioxidant enzymatic activity, and the expression level of stress-responsive
genes, including TFs, contributing to drought tolerance in creeping bentgrass.

2. Materials and Methods
2.1. Plant Materials and Growing Conditions

Creeping bentgrass (Agrostis stolonifera cv. PennA4) seeds were sown in PVC tubes
(diameter: 11 cm, height: 25 cm) filled with a mixture of potting media (Pindstrup Mose-
brug, Pindstrup, Denmark) and vermiculite (V:V, 3:1) in a research greenhouse at Nanjing
Agricultural University, China. Plants were fertilized twice a week by using Miracle-Gro
fertilizer (The Scotts Company LLC; Marysville, OH, USA) and trimmed every three days
to maintain a canopy height of 3–5 cm. After two months of establishment, plants were
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moved to a controlled growth chamber (XBQH-1, Xubang, Jinan, China) with the settings
of a day/night temperature of 23/18 ◦C, a 14-h photoperiod with photosynthetically active
radiation of 600 µmol m−2 s−1 and 70% relative humidity during the experimental period.
Prior to foliar application and drought treatment, plants were acclimated in the growth
chamber for 1 week.

2.2. KAR1 Preparation and Experimental Treatments and Design

KAR1 (3-methyl 2H-furo [2,3-c] pyran-2-one) was ordered from the Toronto Research
Chemicals (Toronto, ON, Canada). The KAR1 stock and working solution was prepared
according to Shah et al. [18]. Prior to the initiation of drought stress (once each day for
3 days) and every subsequent 5 days of drought, plants were treated with 20 mL of water
(untreated control) or 100 nM KAR1 solution by foliar-spraying the canopy. The concen-
tration for KAR1 was selected on the basis of a pre-experiment with five-concentration
gradients (1, 10, 50, 100, or 1000 nM KAR1), which showed that 100 nM KAR1 was the most
effective treatment for improving the drought stress tolerance of creeping bentgrass, as
demonstrated by less electrolyte leakage of leaves in 100 nM KAR1-treated plants under
drought stress (Figure S1). KAR1-treated plants and water-treated plants were exposed
either to control conditions (plants were irrigated every 2 d, soil relative water content
(RWC) was kept at approximately 90%) or drought stress (stopping irrigation for 30 d, soil
RWC decreased to 8.13%) (Figure S2). Leaf samples were collected at 20 d and 30 d of
drought stress treatment, and each treatment had three biological replicates. Plants were
randomly distributed and relocated in chambers every two days.

2.3. Measurements of Physiological Parameters

Plant physiological parameters were measured at 30 d of treatment. Leaf RWC was
measured and calculated by using the method described by Barrs and Weatherley [24].
Leaf cell membrane stability was tested by measuring electrolyte leakage (EL). Leaf EL was
detected and calculated according to the method described by Jespersen and Huang [25].
The leaf chlorophyll (Chl) content was measured and calculated according to the method
described by Barnes et al. [26] and Zhang et al. [27]. The variable to maximum fluorescence
ratio (Fv/Fm) is a general way to measure leaf photosystem II effectiveness. Leaves were
maintained in the dark for 30 min and Fv/Fm was measured with a fluorescence induction
monitor (OPTI-Sciences, Hudson, NY, USA).

2.4. Quantification of Antioxidant Enzyme Activity

Approximately 0.3 g of fresh leaf tissue was weighed, and then ground in liquid
nitrogen into fine powder. Leaf tissue was extracted with 6 mL of 50 mM phosphate buffer
(pH 7.8) and centrifuged at 15,000× g for 30 min at 4 ◦C. The supernatant was prepared to
measure antioxidant enzyme activities, proline content, and MDA content.

SOD, CAT, and POD activities were measured following the methods of Du et al. [28].
APX activity was detected following the procedure provided by Nakano and Asada [29],
by reading the absorbance at 290 nm on a spectrophotometer (GE Healthcare Life Sciences,
Cambridge, UK) at 30 s intervals for 5 min [30]. The MDA content was measured through
the thiobarbituric acid (TBA) reaction assay of Heath and Packer [31] and Dhindsa and
Matowe [32]. The MDA content was calculated by using the equation described by Heath
and Packer [31]. To measure proline content, a reaction mixture was prepared by making up
1 mL enzyme extract, 2 mL acetic acid, and 2 mL acid-ninhydrin solution. Acid-ninhydrin
solution was compounded by dissolving 2.5 g ninhydrin in 60 mL glacial acetic acid and
40 mL 6 M phosphoric acid. The reaction mixture was vortexed thoroughly and boiled
well for 30 min, and then cooled immediately in an ice-water bath. Four milliliters of
methylbenzene was added to each reaction tube and mixed fully to extract proline. The
absorbance at 520 nm of the upper organic phase was read using a spectrophotometer (GE
Healthcare Life Sciences, Cambridge, UK), and the calculation was based on a standard
curve with a known concentration of L-proline.
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2.5. RNA Isolation and qRT–PCR Analysis

Total RNA was isolated from leaf samples collected at 20 d. Total RNA extraction and
qRT–PCR were performed following the methods described by Zhang el al. [27]. AsACTIN
was selected as the reference gene in creeping bentgrass [33]. Each biological sample was
repeated two times, and the calculation of all genes was based on the formula: 2−∆∆Ct [34].
The full sequences of Agrostis stolonifera genes were obtained through blasting against the
local transcriptome database using amino acid sequences of Arabidopsis and rice as queries.
Primer Premier 6.0 software (Premier Biosoft International, Palo Alto, CA, USA) was used
to design the specific primers, which are listed in the Supplementary Table S1; the RT–PCR
melting curves of all genes are shown in the Supplementary Figure S3.

2.6. Statistical Analysis

SPSS 13.0 (SPSS, Chicago, IL) was used to analyze all data. ANOVA analysis was
used to determine differences among the water and KAR1 treatments under control and
drought conditions. Least significant difference (LSD) was used to examine the significance
of means (p < 0.05).

3. Results
3.1. Effects of KAR1 on Physiological Responses of Creeping Bentgrass

Drought stress inhibited shoot growth, caused leaf senescence and leaf abscission of
creeping bentgrass plants, while KAR1-treated plants maintained more vigorous growth
compared with water-treated plants (Figure S4). Drought stress caused significant declines
in leaf RWC, Fv/Fm and chlorophyll content (Figure 1). Under control conditions, no
significant differences were found in those physiological parameters between water- and
KAR1-treated plants. Under drought stress, KAR1-treated plants maintained significantly
higher leaf RWC, Fv/Fm, chlorophyll and proline content (increased by 43.19%, 7.55%,
29.34%, and 8.88%, respectively) than water-treated plants (Figure 1B–E). The EL and MDA
contents of creeping bentgrass leaves significantly increased due to drought stress, while
KAR1-treated plants had significantly lower EL and MDA contents (decreased by 24.75
and 34.53%, respectively) than water-treated plants under drought stress (Figure 1A,F).
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3.2. Effects of KAR1 on Antioxidant Enzyme Activities

Under drought stress, KAR1-treated plants had significantly higher activities of POD,
SOD, and APX (by 30.53%, 16.11%, and 221.1%, respectively) compared with the water-
treated plants, while the activity of CAT was not significantly affected by KAR1 application
under drought stress (Figure 2A–D). Under control conditions, KAR1 application resulted
in significantly higher POD and CAT activities, which were 49.51% and 44.85% higher than
those in the water-treated plants at 30 d, respectively (Figure 2A,C). The activity of SOD
was significantly lower in KAR1-treated plants than in the water-treated plants at 30 d of
control conditions (Figure 2B). No significant differences were observed in APX activity
between water- and KAR1-treated plants under the control conditions (Figure 2D). Overall,
these results suggested that exogenous application of KAR1 could enhance the antioxidant
capacity and scavenge the ROS, thus improving membrane stability and integrity under
drought stress.
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condition based on LSD values (p < 0.05).

3.3. Effects of KAR1 on the Expression Level of Genes Related to Karrikin-Responsive Signaling

The expression levels of MAX2, KAI2, and AFL1 were all significantly higher (6.9-,
6.9-, and 1.31-fold, respectively) in KAR1-treated plants than in water-treated plants at
20 d under drought stress, while the expression levels of DLK2, KUF1, and SMAX1 were
significantly lower in KAR1-treated plants than in water-treated plants at 20 d of drought
stress (Figure 3). Most of these karrikin-related signaling genes (except AFL1 and KUF1)
showed no significant differences between water- and KAR1-treated plants under control
conditions (Figure 3). Compared with water-treated plants, foliar application of KAR1
significantly induced transcription of AFL1 (4.05-fold) at 20 d under control condition
(Figure 3C). Moreover, the expression level of KUF1 was 38.34% lower in KAR1-treated
plants than in water-treated plants (Figure 3E). These results revealed that karrikins might
defend against abiotic stresses by regulating the specific karrikin signaling pathways.
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DLK2; (E): KUF1; (F): SMAX1. Small letters indicate significant differences between the water and
KAR1 treatment under a given condition based on LSD values (p < 0.05).

3.4. Effects of KAR1 on the Expression Level of Transcription Factors Related to Stress Tolerance

The transcript levels of ABF3, bHLH148, MYB13, and DREB2A in KAR1-treated plants
were 2.76-, 2.77-, 1.77-, and 2.14-fold, higher than those in water-treated plants at 20 d of
drought stress, respectively (Figure 4A–D). The expression levels of WRKY75 and WRKY28
in KAR1-treated plants was 40.53% and 41.55%, respectively, lower than those in the water-
treated plants at 20 d of drought stress (Figure 4E,F). Under control conditions, most of those
genes were not responsive to KAR1-treatment except WRKY28, which was downregulated
by KAR1-treatment (Figure 4).
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Figure 4. Effects of KAR1 on the expression level of transcription factors related to stress tolerance in
creeping bentgrass under control or drought stress for 20 d. (A): ABF3; (B): bHLH148; (C): MYB13;
(D): DREB2A; (E): WARKY75; (F): WARKY28. Small letters indicate significant differences between
the water and KAR1 treatments under control or drought conditions based on LSD values (p < 0.05).
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3.5. Effects of KAR1 on the Expression Level of Antioxidant Defense Genes

Under drought stress, exogenous application of KAR1 significantly upregulated the
transcript level of genes encoding antioxidant enzymes. The expression levels of Cu/Zn-
SOD, APX2, CAT1, and POD2 were significantly upregulated in KAR1-treated plants
(1.42-, 3.39-, 2.48-, and 2.6-fold, respectively) compared to the water-treated plants at 20 d of
drought stress, respectively (Figure 5). However, no significant differences in the expression
levels of those genes were found between water- and KAR1-treated plants under control
conditions (Figure 5).
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3.6. Effects of KAR1 on the Expression Level of Chlorophyll-Degradation Genes

The expression of two chlorophyll-degradation genes (Chl-PRX and PPH) was signifi-
cantly induced after 20 d of drought stress, while the application of KAR1 inhibited their
expression compared with the water-treated plants (Figure 6). Under control conditions,
the expression level of Chl-PRX was significantly higher in water-treated plants (5.78-fold)
than in KAR1-treated plants (Figure 6B). No significant difference was observed in the
expression level of PPH between water- and KAR1-treated plants under control conditions
(Figure 6A).

Agronomy 2023, 13, 675 8 of 14 
 

 

in the expression level of PPH between water- and KAR1-treated plants under control con-
ditions (Figure 6A). 

 
Figure 6. Effects of KAR1 on the expression level of chlorophyll-degradation genes in creeping bent-
grass under control or drought stress for 20 d. (A): PPH; (B): Chl-PRX. Small letters indicate signifi-
cant differences between the water and KAR1 treatment under a given condition based on LSD val-
ues (p < 0.05). 

4. Discussion 
Karrikins, discovered in smoke after fire, are bioactive components that stimulate the 

regrowth of many plants. Recently, karrikins have been found to be associated with the 
alleviation of abiotic stresses during seed germination and seedling establishment stages 

[35,36]. Nevertheless, the mechanism by which karrikins regulate plant stress adaptation 
remains largely elusive. Our results indicated that exogenous application of KAR1 signif-
icantly enhanced drought tolerance in creeping bentgrass, as manifested by the increased 
leaf RWC, photochemical efficiency, Chl content, and membrane stability (decreased EL 
and MDA content). The positive physiological effects of KAR1 were associated with the 
enhanced antioxidant-defense and transcriptional regulation of genes involved in chloro-
phyll catabolism, karrikin responsive signaling, and stress-related transcription factors, as 
discussed in detail below. 

Drought stress directly affects the water uptake of plants and causes a significant 
production of ROS, which can severely damage the proteins and DNA, resulting in pe-
roxidation of lipid membranes and interruption of cellular functions [5]. In the present 
study, EL and MDA content were significantly lower in KAR1-treated plants than in the 
water-treated plants under drought stress (Figure 1), indicating that foliar application of 
KAR1 had a positive effect in preserving membrane structure and integrity under drought 
stress. Plant tolerance to abiotic stress may be positively related to the accumulation of 
endogenous antioxidants, as stress-resistant plants may produce a higher amount of en-
zymatic antioxidants to eliminate the adverse effects caused by ROS [37,38]. Previous 
studies have shown that KAR1 can increase the antioxidant activity of SOD and CAT in 
embryos to eliminate the oxidative stress caused by ROS accumulation during the Avena 
fatua caryopses seed dormancy, and the increase of glutathione reductase (GR) and APX 
activities were essential for ROS scavenge to maintain optimal ratio of reduced and oxi-
dized forms of glutathione [39]. Shah et al. [18] found that supplementation of 1 nM KAR1 
in growth medium increased the level of enzymatic antioxidants in Sapium sebiferum un-
der osmotic and drought stresses. In accordance with these studies, results from the pre-
sent study showed that KAR1-treated plants had significantly higher levels of enzymatic 
antioxidants, including SOD, POD, and APX at 30 d of drought stress (Figure 2). In addi-
tion, it has to be noticed that the transcript levels of genes encoding antioxidant enzymes 
(Cu/Zn-SOD, APX2, CAT1, and POD2) were all significantly higher in KAR1-treated plants 
than in water-treated plants at 20 d of drought stress (Figure 5) and showed more dramatic 

Figure 6. Effects of KAR1 on the expression level of chlorophyll-degradation genes in creeping
bentgrass under control or drought stress for 20 d. (A): PPH; (B): Chl-PRX. Small letters indicate
significant differences between the water and KAR1 treatment under a given condition based on LSD
values (p < 0.05).

4. Discussion

Karrikins, discovered in smoke after fire, are bioactive components that stimulate
the regrowth of many plants. Recently, karrikins have been found to be associated with
the alleviation of abiotic stresses during seed germination and seedling establishment
stages [35,36]. Nevertheless, the mechanism by which karrikins regulate plant stress
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adaptation remains largely elusive. Our results indicated that exogenous application of
KAR1 significantly enhanced drought tolerance in creeping bentgrass, as manifested by
the increased leaf RWC, photochemical efficiency, Chl content, and membrane stability (de-
creased EL and MDA content). The positive physiological effects of KAR1 were associated
with the enhanced antioxidant-defense and transcriptional regulation of genes involved
in chlorophyll catabolism, karrikin responsive signaling, and stress-related transcription
factors, as discussed in detail below.

Drought stress directly affects the water uptake of plants and causes a significant
production of ROS, which can severely damage the proteins and DNA, resulting in per-
oxidation of lipid membranes and interruption of cellular functions [5]. In the present
study, EL and MDA content were significantly lower in KAR1-treated plants than in the
water-treated plants under drought stress (Figure 1), indicating that foliar application of
KAR1 had a positive effect in preserving membrane structure and integrity under drought
stress. Plant tolerance to abiotic stress may be positively related to the accumulation of
endogenous antioxidants, as stress-resistant plants may produce a higher amount of enzy-
matic antioxidants to eliminate the adverse effects caused by ROS [37,38]. Previous studies
have shown that KAR1 can increase the antioxidant activity of SOD and CAT in embryos to
eliminate the oxidative stress caused by ROS accumulation during the Avena fatua caryopses
seed dormancy, and the increase of glutathione reductase (GR) and APX activities were
essential for ROS scavenge to maintain optimal ratio of reduced and oxidized forms of
glutathione [39]. Shah et al. [18] found that supplementation of 1 nM KAR1 in growth
medium increased the level of enzymatic antioxidants in Sapium sebiferum under osmotic
and drought stresses. In accordance with these studies, results from the present study
showed that KAR1-treated plants had significantly higher levels of enzymatic antioxidants,
including SOD, POD, and APX at 30 d of drought stress (Figure 2). In addition, it has to
be noticed that the transcript levels of genes encoding antioxidant enzymes (Cu/Zn-SOD,
APX2, CAT1, and POD2) were all significantly higher in KAR1-treated plants than in water-
treated plants at 20 d of drought stress (Figure 5) and showed more dramatic rises than
antioxidant enzyme activities. The changes of transcript abundance could affect enzyme
activities through regulation of cellular potential to synthesize new proteins, and has been
considered to be more important for long-term adaptation of plants to stresses [40]. In
addition to ROS-scavenging enzymes, proline act as a ROS scavenger stabilizing the in-
tegrity of proteins and antioxidant enzymes [41], also accumulated more in KAR1 treated
plants under drought stress. Overall, the enhanced antioxidant system corresponded to
KAR1-reduced EL and MDA content under drought stress, indicating that foliar application
of KAR1 could activate the antioxidant defense system and alleviate lipid peroxidation of
creeping bentgrass under drought stress.

In addition to ROS accumulation, decreased chlorophyll content is also considered
as a symptom of oxidative stress, and a higher chlorophyll content is strongly associated
with enhanced drought tolerance [42]. Previous studies have indicated that drought
stress increases the activities of chlorophyll catabolic enzymes, which contribute to the
leaf senescence [43,44]. In the present study, the transcript level of genes encoding key
chlorophyll catabolic enzymes, Chl-PRX and PPH, was significantly induced by drought,
but KAR1 could significantly suppress the expression level of Chl-PRX and PPH under
drought condition, resulting in increased chlorophyll content (Figure 1D; Figure 6). These
results demonstrated that KAR1 could suppress drought-induced chlorophyll-degradation
and maintain higher chlorophyll levels in creeping bentgrass under drought stress.

Karrikin draws the attention of scientists and emerges as a plant biostimulator due to
its high similarity in chemical structure with an important phytohormone, strigolactone
(SL) [45]. Two genes, KARRIKIN INSENSITIVE2 (KAI2) and MORE AXILLARY GROWTH2
(MAX2), are required for karrikin responses in Arabidopsis thaliana [46]. KAI2 functions
in the initial step of karrikin signal transduction through the binding of karrikin and
plays a key role in drought stress adaptation, including stomatal closure, membrane
integrity, and cuticle formation [47,48]. MAX2 is also an important component of the SL
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signaling pathway, and participates in various biological processes, such as plant growth,
development and abiotic stress responses [49]. Accordingly, SUPPRESSOR of MAX2 1
(SMAX1) has been proven to be a negative regulator of karrikin and SL signaling for
drought resistance in Arabidopsis thaliana [50]. In this study, foliar application of KAR1
significantly upregulated the transcript levels of KAI2 and MAX2 and downregulated the
transcript level of SMAX1 in creeping bentgrass under drought stress (Figure 3). These
results indicate that KAR1 may trigger the expression of karrikin-responsive genes that
activate downstream pathways and enhance the tolerance of creeping bentgrass under
drought stress.

In response to drought stress, multiple TFs are induced or accumulated to impart plant
stress adaptation [51]. MYB and bHLH are two large TF families in plants and participate
in plant drought resistance by stimulating the antioxidant system and regulating plant
hormone signal transduction, including the ABA-mediated signaling pathway [52–56].
ABA-responsive element (ABRE)-binding factors (ABFs) have been proven to be master
TFs and are involved together with MYB and bHLHs in ABA-mediated drought stress toler-
ance, such as transpiration reduction and leaf senescence inhibition [57,58]. Overexpression
of Populus euphratica PeABF3 in Populus tomentosa maintained higher photosynthetic ac-
tivity and promoted cell membrane integrity, resulting in increased water-use efficiency
and enhanced drought tolerance compared with wild-type controls [59]. In addition,
FtMYB13 act as positive regulators of salt and drought response in transgenic Arabidopsis,
as manifested by the improved photosynthetic efficiency, higher transcript level of some
stress-related genes, and the lower of ROS and MDA in the transgenic lines [53]. In addition
to ABA-dependent signaling, ABA-independent signal transduction is also an important
pathway involved in drought stress tolerance [60]. DREB2A is a key transcription factor
of drought stress tolerance in many plants and induces the expression of many drought-
related genes [61]. WRKY TFs are a large family of plant-specific TFs and participate in
plant defense responses either as positive or negative regulators [62]. Previous studies have
shown that overexpression of OsWRKY28 in rice significantly decreased the transcript level
of peroxidase [62], and transcription factor PagWRKY75 may participate the accumulation
of H2O2 to negative regulate salt and osmotic tolerance by regulating various physiological
processes [56,63]. In this study, the application of KAR1 significantly upregulated the
expression levels of ABF3, bHLH148, MYB13, and DREB2A, and downregulated the expres-
sion levels of two negative regulators of stress adaptation, WRKY75 and WRKY28 [62,63],
in creeping bentgrass exposed to drought stress (Figure 4). These results suggest that
KAR1 may activate stress signal transduction pathways to improve drought tolerance in
creeping bentgrass.

5. Conclusions

Here, we concluded that exogenous application of 100 nM KAR1 significantly en-
hanced the drought tolerance of creeping bentgrass, which was manifested by a significant
increase in leaf RWC, efficiency of photosystem II, leaf Chl content, proline content, and
membrane stability, and significantly elevated activities of antioxidant enzymes, expression
of karrikin-responsive genes (KAI2, MAX2, and AFL1), transcription factors (MYB13, ABF3,
DREB2A, and bHLH148), and the antioxidant defense system (increased transcript level
and activities of antioxidant enzymes) (Figure 7). These results indicate that KAR1 may act
as an effective agent to improve turfgrass performance in water-limited environments by
activating stress signaling and antioxidant protection against drought stress.
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