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Abstract: Coffea canephora has high but inadequately exploited genetic diversity. This diversity, if
well exploited, can sustain coffee productivity amidst climate change effects. Drought and heat
stress are major global threats to coffee productivity, quality, and tradable volumes. It is not well
understood if there is a selectable variation for drought stress tolerance in Robusta coffee half-sibs
as a result of watering deficit pre-exposure at the germination stage. Half-sib seeds from selected
commercial clones (KR5, KR6, KR7) and a pipeline clone X1 were primed with deficit watering at
two growth stages followed by recovery and later evaluated for tolerance to watering deficit stress in
three different temperature environments by estimation of plant growth and wilt parameters. Overall,
the KR7 family performed the best in terms of the number of individuals excelling for tolerance to
deficit watering. In order of decreasing tolerance, the 10 most promising individuals for drought and
heat tolerance were identified as: 14.KR7.2, 25.X1.1, 35.KR5.5, 36.KR5.6, 41.KR7.5, 46.KR6.4, 47.KR6.5,
291.X1.3, 318.X1.3, and 15.KR7.3. This is the first prospect into the potential of C. canephora half-sibs’
diversity as an unbound source of genetic variation for abiotic stress tolerance breeding.

Keywords: climate change adaptation; Coffea canephora; drought tolerance; drought stress recovery;
heat stress adaptation; priming by deficit watering

1. Introduction

Robusta coffee (Coffea canephora Pierre ex A. Froehner) and Arabica coffee are the
most globally traded coffee species. C. canephora constitutes about 40% of the world’s total
coffee exports of 117.1 million bags [1]. There are other coffee species gaining attention,
such as C. liberica var. excelsa [2], C. stenophylla, and C. eugnoides, especially amidst climate
change effects [3] and the emergence of specialty markets [4,5]. In the outcrossing diploid
(2n = 2x = 22) C. canephora, the currently underutilized species may vitally be responsible
for the crop’s diversity and landscape adaptation [6] because of ‘unabated’ interspecific
fertilization among all known coffee species. Of the most commercial species, C. canephora is
believed to embody high genetic diversity partly attributed to wide geographic adaption [7]
and at the plot level, because of the crop’s outcrossing behavior [8,9]. Similarly, in some
other crops, it is understood that pollination biology has a strong bearing on gene flow and
subsequent genetic diversity, e.g., in clonal Bromelia hieronymi Mez [10], Musa acuminata
Colla [11], and coffee-analogous tree species, Frangula alnus Mill. [12]. Kiwuka et al. [13]
also alluded to similarities in gene pools among C. canephora populations in wild, feral,
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and cultivated landscapes. In fact, some genotypes of C. canephora in Uganda possess
morphological architecture (e.g., tree vigor, plant height, leaf color, size, and texture) like
that of C. liberica as trait similarities enabled by outcrossing (G. Sseremba, pers. comm.).
Eight distinct genetic groups of Robusta coffee are known to exist [6,9,10,13–19], including
a Ugandan group [13,18].

To further demonstrate the high genetic diversity in C. canephora, [13] reported distinct
subgroups in Uganda; namely the southcentral (SC) and northwest (NW) clusters. These
clusters are quite explained by temperature and drought gradients along the sampled
locations [6,13]. In this case, the NW cluster is suggested to have a relatively higher
tolerance to drought and high temperature than the SC cluster, whereas geographical
location accounts for the wide genetic diversity of C. canephora is generally elucidated
and planned for utilization [20,21], outcrossing behavior though appreciated [9], is not
exploited. Outcrossing or exclusive cross-pollination of the C. canephora provides for the
random constitution of offspring known as half-sibs of unknown pollen donors but known
maternal parentage. In contrast, C. arabica withstands inbreeding, thereby supporting pure
line selection and reproductively produced commercial seed. There is a need to develop
innovative breeding approaches for Robusta coffee with a view to relieving farmers from
long reproductive cycles and slow clonal growth progress before access to a commercial
variety of guaranteed descriptor composition.

The exploitation of natural half-sibs may be among the most important strategies
to shorten a variety’s turn-around time in pursuit of meeting market demands arising
from climate change effects and rapid changes in customer preferences. Drought and
temperature [22,23] stresses among major global coffee productivity and sustainability
constraints were selected for piloting the exploration of half-sibs-based genetic diversity
in Robusta coffee. According to predictions by [22], an excess in minimum/maximum
temperature of 1 ◦C away from an average of 20.5 ◦C (16.2–24 ◦C optimal range) results in at
least 14% yield loss of Robusta coffee. Relatedly, drought stress, commonly mimicked under
controlled conditions by deficit watering, causes loss of plant turgor, growth retardation,
wilting, and ultimate plant death if the stress is unalleviated. Under extreme drought and
temperature, yield and bean quality can be impacted to an excess of 80% loss [23].

As demonstrated by [2,13], geographically associated genetic variation exists in rela-
tion to the response of C. canephora accessions to drought stress. At a variety level, more
than one C. canephora clone is required to be grown on a farm to maximize clonal diversity,
thereby increasing chances of inter-clone pollinations and subsequent fertilization, seed
set, and berry development [24]. In addition, studies in other crops have suggested the
potential of seed and/or seedling priming in either remodeling the genetic architecture (e.g.,
through DNA damage repair and new mitochondrial formation) of plants or activating
immunity (say, through enzyme activation and protein synthesis) against field constraints
so that future stresses would be tolerated or resisted [25–29]. As such, we hypothesized
that genetic diversity due to outcrossing behavior might be genotype- and trait-specific
depending on the crop seeds’ responsiveness to stress adaptation when primed. Plants
can respond to drought stress through any or several of the four mechanisms: escape,
avoidance, tolerance, and recovery [30–33], but there is no information relating to the
impact of deficit watering priming on drought tolerance of Robusta coffee.

This study explores the ability of C. canephora to utilize priming effects in half-sib
families for protection against future drought and heat stress effects. Through exploration
of both drought tolerance and recovery mechanisms under high-temperature environments,
we specifically aimed to: (i) ascertain if priming influences tolerance to watering deficit
stress; (ii) identify half-sib families that excel under watering deficit stress; and (iii) identify
potentially drought tolerant individuals among half-sib families. The intention is to inform
on the potential of utilizing genetic diversity created by the outcrossing nature of Robusta
coffee in breeding for resilience to drought and high temperature and desired market traits.



Agronomy 2023, 13, 674 3 of 14

2. Materials and Methods
2.1. Study Site

The study was carried out at the National Coffee Research Institute (NaCORI), Kituza,
Mukono, in central Uganda. Kituza is located (latitude −1.406, longitude 34.453) 37 km
east of Kampala and 15 km off Kampala-Jinja Road towards the Katosi landing site of
Lake Victoria. Mukono district experiences a tropical climate and lies in an agroecological
zone of the L. Victoria crescent, characterized by nearly continuous rainfall with two
peaks punctuated by moderate dry spells in February and July. Mukono is among low-
medium altitude areas at about 1200 m.a.s,l, experiences an ambient temperature range
of 16.7–27.8 ◦C, and is suitable for Robusta coffee production. The overlap in seasonal
patterns of the area leads to unreliable flowering patterns, though with peaks (usually
in February/March and July/August). Main and fly crop harvest seasons usually occur
in November and May, respectively (https://nordicapproach.no/coffee-calendar-2022/
accessed on 14 February 2023). An experiment was set up in controlled conditions of a
greenhouse consisting of two contrasting temperature regimes and a rainout shelter. This
study was implemented from February 2020 to May 2022. Within Kituza, three temperature-
based environments were created and used at test locations, namely general green house
(GHG), greenhouse chamber (GHC), and open rainout shelter (ORS) (Scheme 1).
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Scheme 1. Some of the study coffee half-sib plants under temperature environments of general
greenhouse (GHG), greenhouse chamber (GHC), and open rainout shelter (ORS).

The three varying temperature environments included (i) GHG composed of a side
metallic chain-link netting and UV-treated carbon polyethene sheet roofing to constitute
the mid-day moderate temperature environment of 26–35 ◦C, (ii) GHC erected inside the
GHG to constitute the mid-day high-temperature environment of 32–43 ◦C, and (iii) ORS
which was an open field ‘roof-only’ rainout shelter without side netting and transparent
iron sheets to constitute normal field temperature environment at Kituza for mid-day
of 22–27 ◦C.

2.2. Plant Materials

Fully ripe cherry bearing half-sib seed was harvested from three commercial clones
of the National Agricultural Research Organisation (NARO) Kituza Robusta (KR) series,
namely KR5, KR6, and KR7, and the fourth promising clone coded X1; all of which are
known for their resistance to coffee wilt disease, high yield and good physical and cup
qualities [34,35]. The cherry seed was then de-pulped to obtain parchment from the
coffee cherry. Based on slight modifications of standard protocols by Uganda Coffee
Development Authority (UCDA) [36] and World Coffee Research (WCR) [37], freshly
de-pulped parchment was sown directly into a substrate consisting of topsoil, sand, and
manure in a ratio of 5:2:1 and placed in wooden boxes (Scheme 2). After the deficit watering
(priming) treatment at either germination or 4-leaf (seedling) stages, individual plants were
transferred to 50-liter high-density (HD) polythene pots for full recovery from priming

https://nordicapproach.no/coffee-calendar-2022/
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stress before re-imposition of deficit watering for experimental pots. Control plants were
kept well-watered throughout the experimental period in all the temperature environments.
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2.3. Experimental Set Up
2.3.1. Design

A nested ‘within temperature regime’ experimental set up was arranged. Three
watering deficit pre-exposure treatments were applied on separate sets (one set for each
pre-exposure treatment) of four half-sibs of commercial clones (NARO KR5, NARO KR6,
NARO KR7, and a candidate commercial clone X1) of Robusta coffee in each of three
temperature environments. Each family was represented by six to 12 plants per irrigation
treatment per environment.

2.3.2. Application of Deficit Watering as Priming Method

One of the half-sibs’ sets was treated with deficit watering at the germination stage.
Similarly, the second set of primed plants was raised under well-watering until the 4-leaf
(seedling or early vegetative) stage, at which the deficit watering stress was imposed. The
seedlings (1st and 2nd set) under water deficit stress priming (25% field capacity) were
later relieved of the stress at nine months of age by well-watering, and this period of
well-watering lasted four months, at which age the seedlings had fully recovered. After
complete recovery, the primed seedlings were then exposed to watering deficit stress for
observation of morphological response on a weekly basis.

A third (control) set of the half-sibs was maintained under well-watering treatment
throughout the experimental period. Field capacity (FC) of a growth substrate of 5 topsoil:
2 sand: 1 manure was estimated by volume using a procedure described in [38–40]. At the
start of the experiment, twenty-five percent (25%) of FC was used for the priming treatment
and 75% for the well-watering treatment, followed by demand-driven adjustments, i.e.,
based on the age of plants, daily temperature, and relative humidity. During the experiment,
we observed that watering at 100% FC was quite excessive, i.e., it brought about flooding
conditions in growth pots) and so, 75% was observed to be suited for the controls (well-
watered plants).

Adjustments were always based on routine visual observation for wilting symptoms
and soil moisture content (SMC) to prevent extreme stress exposure and possible plant
death. The SMC was monitored using a digital soil moisture meter (Model MO750 Extech®

Instruments Corporation, Waltham, MA, USA) [38]. Other management practices such
as weeding, fertilizer application, and pest/disease control were blanketly implemented
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throughout the experimental boxes and pots depending on need as per standard recom-
mendations for coffee nurseries and greenhouse practices [36,37].

2.4. Data Collection

Data were collected on a fortnightly basis starting from 28 February 2022 to 11 April
2022, every Monday of the week. Ten morphological growth and drought or water deficit
response variables were measured following a standard descriptor manual for coffee [41]
and applied by [42] with modifications as described in Table 1.

Table 1. Description of variables measured on study individuals from different clonal coffee families.

Variable Abbr. Variable Name Unit of Measure Measurement Procedure

ILP Internode length on
primary branch centimeters (cm) Obtained by dividing length of longest/sampled primary

by the number of nodes on the primary

ILS Internode length on stem cm Obtained by dividing plant height by the number of nodes
on stem

LBL Leaf blade length cm
Leaf blade length was measured from base to apex of a
sampled leaf on the first most fully open leaf pair from the
primary’s growing tip

LBW Leaf blade width cm Measured at broadest part of the leaf measured for
leaf length

LPP Number of leaves count Counted the number of green leaves per plant

LLP Length of primary branch cm
Measured length of a visually longest primary from its
node (point of attachment to the stem) to the farthest lateral
growth tip away from the stem.

PLH Plant height cm Tape measure was used to record plant height from the
collar region to the apical tip of the coffee stem

STG Stem girth cm
Measured girth of the stem at collar region of the plant
using digital vernier calliper at collar region of the potted
coffee plant

NOP Number of primaries count Counted the number of healthy primary branches on a plant
WL Proportion of wilted leaves percentage (%) (No. of wilted leaves/No. of leaves on a plant) ∗ 100

WP Proportion of primary
branches with wilted leaves % (No. of primaries with at least one wilted leaf/No.

primaries on a plant) ∗ 100

WS Wilting Score 0+5− score of 0–5

wilting score at scale 0–5 (adaptation of Banik et al., 2016:
0 = no leaf is wilted, 1 = 1–25% of leaves are wilted,
2 = 26–50% of leaves are wilted, 3 = 51–75% of leaves are
wilted, 4 = 76–100% of leaves are wilted, and 5 = 100% leaf
plus stem wilting)

2.5. Statistical Analysis
2.5.1. Priming Effect on Drought Tolerance and Recovery

For drought tolerance study, F-test in GenStat 12th edition for a general linear model
providing for nesting of replications (R) within temperature environments (E/R), as well as
an interaction of growth stage (weeks, W), environment (E), priming stage (P), and family
(F), was used as follows:

Yijkl = µ + E/Ri +Wj + Pk + Fl + EWij + EPik + WPjk + EFik + WFjl + PFkl + EWPijk + EWFijl + EPFikl
+WPFjkl + EWPFijkl + εijkl

(1)

where µ is the grand mean, Yijkl stands for the measured response at the ith replication
nested within the environment, jth growth stage, kth priming stage, lth family and all
interactions, while ε is the overall random error term. The decision for discriminability
value of a morphological character among families, other factors such as environment and
any level of interactions were made at α = 0.05.

For analysis of the priming effect on recovery from deficit watering stress, F-test at
5% error margin was also used: in this case, considering temperature environment (E),
replication within the environment (E/R), priming (P), and family (F) treatments. The same
levels for each of the study factors as in the drought tolerance analysis were applied for
the recovery analysis. In both cases, mean squares for the different sources of variation
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and mean values of measured variables per family for control and experimental plants for
demonstrating the impact of stress memory are reported.

2.5.2. Identification of Potentially Drought-Tolerant Plants

For both drought tolerance and recovery assessments, the K-means cluster analysis
method based on R packages tidyverse for data manipulation [43], cluster for clustering
algorithms [44,45], and factoextra for clustering algorithms and visualization (https://
cran.r-project.org/web/packages/factoextra/ accessed on 23 December 2022). K-means
cluster analysis is appropriate for continuous data [46,47], and it is the case for this study.
In general, clustering algorithms are tailored to minimize intra-cluster and maximize inter-
cluster variations [45,46]. Of several options for determining the optimum number of
clusters based on the location of a bend along a ‘total within-cluster sums of squares and
the number of clusters (k)’ function, the elbow method [45,47] was applied in this study.
While analyzing cluster membership, the focus was put on resilience to both water deficit
stress (wilting score, WS) and high temperature (growth environment of either GHC or
GHG), excluding the ORS at this stage being a relatively low-temperature environment.

3. Results
3.1. Deficit Watering Effect on Growth and Wilting Response
3.1.1. Family-Level Response

The temperature environment had a significant (p < 0.05) effect on all 10 measured
variables (Table S1). Plants in open rainout shelter (ORS) had the longest internodes length
on primary branches (ILP) at 13.14 cm followed by greenhouse chamber (GHC) at 10.62 cm
and general greenhouse (GHG) at 10.22 cm. Priming stage significantly (p < 0.05) affected
eight of the 10 measured variables, with non-significant ones being the length of internodes
on primary branches (ILP) and plant height (PLH). Significant P × F interactions were
exhibited for seven of the measured variables except for ILP, the proportion of wilted
primaries (WP), and wilting score (WS). The proportion of wilted leaves (WL) for KR5 was
lower for priming at germination (14.4%) than at the 4-leaf stage (18.1%) (Table 2). The
WL of KR6 and KR7 was also lower for priming at the germination stage than at the 4-leaf
stage. It is notable that the KR7 family had the lowest values across priming stages than
the rest of the families. These observed trends also hold for WP of KR5 and KR7. However,
a reverse trend (compared to that for KR5, KR6, and KR7) for the X1 family was obtained
for WL, WP, and WS in that priming at the 4-leaf stage was observed with lower values of
wilting than at the germination stage.

Table 2. Mean values for growth and wilting traits measured on four different half-sib families of
Robusta coffee.

Variable Priming Stage KR5 KR6 KR7 X1 s.e.d l.s.d c.v.

ILP (cm)
Control 11.004 10.987 10.738 11.105

0.3952 0.7754 30.3Germination 11.401 10.354 11.246 11.601
4-leaf stage 11.041 10.924 10.550 11.638

ILS (cm)
Control 5.662 5.586 5.97 5.691

0.1328 0.2605 19.0Germination 6.399 6.093 5.976 6.099
4-leaf stage 5.886 5.379 6.173 6.174

LBL (cm)
Control 20.994 21.735 20.74 19.807

0.4530 0.8887 18.1Germination 21.685 22.125 20.151 21.542
4-leaf stage 21.809 21.038 20.848 22.664

Leaf blade
width (cm)

Control 9.707 10.253 9.374 8.766
0.2180 0.4276 19.1Germination 10.07 10.307 8.927 9.817

4-leaf stage 9.777 9.795 9.140 10.243

https://cran.r-project.org/web/packages/factoextra/
https://cran.r-project.org/web/packages/factoextra/
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Table 2. Cont.

Variable Priming Stage KR5 KR6 KR7 X1 s.e.d l.s.d c.v.

LLP (cm)
Control 23.59 20.00 25.55 24.07

1.330 2.609 49.2Germination 24.82 20.30 29.81 19.17
4-leaf stage 17.58 21.14 26.64 22.30

PLH (cm)
Control 73.36 73.46 76.85 73.43

1.590 3.120 18.3Germination 74.77 73.39 73.53 70.80
4-leaf stage 74.07 71.16 73.00 76.25

STG (cm)
Control 1.2028 1.134 1.2015 1.1578

0.0225 0.0441 16.9Germination 1.1268 1.0929 1.1839 1.0456
4-leaf stage 1.0617 1.1215 1.124 1.1059

WL (%)
Control 0.01 −0.09 −0.03 −0.01

2.127 4.173 -Germination 14.35 13.48 11.30 18.99
4-leaf stage 18.11 18.51 14.13 13.74

WP (%)
Control 0.02 0.50 0.27 0.43

2.273 4.459 84.6Germination 32.62 33.40 31.62 35.34
4-leaf stage 35.98 32.88 36.56 34.00

WS (0+5−)
Control 0.004 0.009 0.005 −0.004

0.0979 0.1920 98.5Germination 1.344 1.214 1.141 1.399
4-leaf stage 1.255 1.339 1.122 1.287

s.e.d., standard error of differences of means for priming stage by family (P × F); l.s.d., least significant differences
of means for P × F at α = 0.05; c.v., percentage coefficient of variation; ILP, internode length on primary; ILS,
internode length on stem; LBL, leaf blade length; LBW, leaf blade width; LLP, length of primary branch; PLH,
plant height; STG, stem girth; WL, proportion of wilted leaves; proportion of primary branches with wilted leaves;
WS, wilting score.

3.1.2. Identity of Tolerant Half-Sibs

Either four or eight clusters (Figure 1) were observed to be feasible based on the visible
bends in the figure. Subsequent analyses were based on eight clusters (Figure 2). Cluster 7
of size 19 (Table S2) is composed of plants having a relatively low WS of 1.5 and 74% of
the individuals located under GHG. The majority (42%) of the cluster 7 members belong
to the KR7 family, 26% KR5, while KR6 and XI families are each represented at 16% only.
The cluster 7 members include 9.KR6.3, 14.KR7.2, 15.KR7.3, 18.KR7.6, 207.KR5.3, 209.KR5.5,
210.KR5.6, 291.X1.3, 296.KR7.2, 318.X1.3, 320.KR7.2, 25.X1.1, 35.KR5.5, 36.KR5.6, 41.KR7.5,
46.KR6.4, 47.KR6.5, 185.KR7.5, and 243.KR7.3.
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half-sibs studied for tolerance to deficit watering.

3.2. Recovery from Watering Deficit Stress
3.2.1. Family-Level Response

Temperature environment significantly (p < 0.001) affected all 10 measured variables
(Table S3), including length of primary (LLP), number of primaries (NOP), and WS. Plants
of the longest primary branches were observed under GHC (45.3 cm), followed by GHG
(41.2 cm) and ORS (21.3 cm). The highest NOP was recorded under GHC (~7), followed
by GHG (~4) and ORS (~3). Aside from the internode length on the stem (ILS), priming
significantly affected all measured variables, including LLP, NOP, and WS. There were
significant (p < 0.05) priming × family (P × F) interactions for internode length on the
stem (ILS), leaf blade width (LBW), number of leaves per plant (LPP), PLH, stem girth
(STG), and WS. KR6 and KR7 families’ values of most of the variables (e.g., LBW, LPP, NOP,
PLH, and STG) were higher for plants primed at the germination stage than those at the
4-leaf stage (Table 3). Notably, WS for the K7 family was also lower under priming at the
germination stage than at the 4-leaf stage. Overall, however, the lowest WS was obtained
with the KR5 family when primed at the 4-leaf stage.

Table 3. Mean values for recovery traits measured on four different half-sib families of Robusta coffee.

Variable Priming Stage KR5 KR6 KR7 X1 s.e.d l.s.d c.v.

ILP (cm)
Control 9.9 10.01 9.85 9.52

0.499 0.983 23.0Seedling 9.01 8.27 9.29 9.01
Vegetative 8.93 8.84 8.82 9.1

ILS (cm)
Control 6.236 6.237 6.752 6.459

0.2997 0.5901 19.9Seedling 6.911 6.665 6.395 6.245
Vegetative 6.25 5.767 6.28 6.563

LBL (cm)
Control 20.9 19.58 19.9 21.59

0.956 1.882 27.7Seedling 17.75 17.63 15.44 15.81
Vegetative 17.81 15.56 15.33 17.43

LBW (cm)
Control 8.752 8.617 8.268 8.662

0.4132 0.8135 23.2Seedling 7.443 8.012 6.488 6.492
Vegetative 7.417 6.487 6.356 7.728
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Table 3. Cont.

Variable Priming Stage KR5 KR6 KR7 X1 s.e.d l.s.d c.v.

LLP (cm)
Control 27.74 23.77 28.43 26.7

3.028 5.962 59.4Seedling 20.12 21.56 19 17.71
Vegetative 19.36 16.95 19.36 18.7

LPP
Control 53.6 48.3 53.6 54.2

5.76 11.35 65.7Seedling 20.5 41.9 34.2 31.1
Vegetative 29.6 22.8 27.7 29

NOP
Control 7.27 5.97 7.8 6.61

0.885 1.742 83.2Seedling 2.48 3.48 3.89 3.39
Vegetative 3.45 2.64 3.67 3.5

PLH (cm)
Control 84.89 85.2 88.98 86.76

3.544 3.489 18.3Seedling 78.54 83.26 81.87 75.67
Vegetative 82.52 76.68 76.25 84.09

STG (cm)
Control 10.594 10.501 10.935 10.387

0.411 0.810 17.0Seedling 9.973 10.222 10.644 9.844
Vegetative 10.064 9.691 9.339 10.734

WS (0+5−)
Control 0.006 0.054 0.034 −0.046

0.310 0.611 65.5Seedling 3.727 2.81 2.929 3.426
Vegetative 2.212 2.957 2.573 3.446

s.e.d., standard error of differences of means for priming stage by family (P × F); l.s.d., least significant differences
of means for P × F at α = 0.05; c.v., percentage coefficient of variation; ILP, internode length on primary; ILS,
internode length on stem; LBL, leaf blade length; LBW, leaf blade width; LLP, length of primary branch; LPP,
number of leaves per plant; NOP, number of primaries; PLH, plant height; STG, stem girth; WS, wilting score.

3.2.2. Identity of Half-Sibs Recovering

Four optimum clusters (Figures 3 and 4) were obtained. Cluster 3, having the lowest
WS of 0.9 and size 36 (Table S4), is composed of 72% of its members located under GHG,
while the rest (28%) are located under GHC. The majority (33%) of cluster 3 members
belong to the KR7 family, followed by 25% X1, 22% KR6, and 19% belong to the KR5
family. The cluster 3 members include 4.X1.4, 8.KR6.2, 12.KR6.6, 13.KR7.1, 14.KR7.2,
15.KR7.3, 16.KR7.4, 18.KR7.6, 25.X1.1, 31.KR5.1, 32.KR5.2, 33.KR5.3, 35.KR5.5, 36.KR5.6,
37.KR7.1, 38.KR7.2, 41.KR7.5, 44.KR6.2, 45.KR6.3, 46.KR6.4, 47.KR6.5, 48.KR6.6, 111.KR7.3,
169.X1.1, 185.KR7.5, 192.KR5.6, 243.KR7.3, 252.X1.3, 276.X1.3, 289.X1.1, 291.X1.3, 292.KR6.1,
297.KR7.3, 309.KR5.3, 312.X1.3, and 318.X1.3.
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Figure 4. Cluster plot for the first two principal components of variation among Robusta coffee
half-sibs studied for recovery from watering deficit stress.

Specific examination of data sets on WS for both tolerance and recovery reveals
10 genotypes that appear in both sets and possess between 0 (no leaf is wilted) and 2
(only 26–50% of leaves are wilted), as wilting scores include 14.KR7.2, 25.X1.1, 35.KR5.5,
36.KR5.6, 41.KR7.5, 46.KR6.4, 47.KR6.5, 291.X1.3, 318.X1.3, and 15.KR7.3. The 10 best
genotypes were made from high temperature (291.X1.3 and 318.X1.3) and moderately
high-temperature environments.

4. Discussion

The significance of difference in tolerance to watering deficit stress with stress-primed
plants exhibiting better tolerance and recovery than controls suggest a potential of breeding
for resilience to drought stress in C. canephora using the half-sib selection approach. This
study’s findings indicate that C. canephora populations differ in their ability to acquire
tolerance to drought and high temperatures. Individuals, namely 14.KR7.2, 15.KR7.3,
41.KR7.5, and 243.KR7.3, belonging to the KR7 family, posed a relatively greater potential
in tolerating simulated drought/water deficit and high temperature than the other families.
Similarly, the greatest potential for recovery from drought stress was exhibited by individual
plants of the KR7 family, i.e., 14.KR7.2, 15.KR7.3, 41.KR7.5, 185.KR7.5, and 243.KR7.3. For
both tolerance and recovery, potential genotypes for drought tolerance are indicated as
14.KR7.2, 25.X1.1, 35.KR5.5, 36.KR5.6, 41.KR7.5, 46.KR6.4, 47.KR6.5, 291.X1.3, 318.X1.3, and
15.KR7.3. Although at the family average level, KR7 responded better to drought tolerance
and recovery, indicating a possible role of maternal genetic factors [33,48]; the 10 best
individual plants (genotypes) are a representation of each family studied. Of the best 10,
three come from KR7 (14.KR7.2, 41.KR7.5 and 15.KR7.3), three from X1 (25.X1.1, 291.X1.3
and 318.X1.3), two from KR5 (35.KR5.5 and 36.KR5.6), and two from KR6 (46.KR6.4 and
47.KR6.5). Our view is that the observed distribution of best genotypes is a result of (i) the
genetic background of mother clone KR7 being more drought tolerant than that of the rest
of the studied materials, but (ii) there is also a random pollen grain movement due to an
exclusive cross pollination tendency in Robusta coffee thereby increasing geneflow among
the study half-sib offspring.

The random mating facilitated by self-incompatibility of C. canephora [24,49] and
pollination agents [24,50] creates unlimited genetic diversity that suites the crop to recur-
ring climate change effects (biotic and abiotic) [2,22,23], including the studied watering
deficit tolerance and recovery from the stress. Thus, some of the recombinant genetic
compositions from outcrossing tendency could have occurred and conditioned differential
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stress memory abilities, especially when exposure occurred at the germination stage. This
resilience development technique is popularly known as priming, and positive results
have been realized in other crops [25,28,29]. The ability of crop plants to adapt to abiotic
stresses is often influenced by a combination of genetic and environmental factors. The
significance of any of these factors, in turn, determines the heritability and durability of
desired attributes in a genotype. Genetically, a plant may possess active tolerance factors
outright; otherwise, activity has to be initiated early in the development stage by way of the
plant’s innate immunity activation or enforcement of adaptation through artificial means
such as crossbreeding and backcrossing, mutation breeding, and genetic engineering. The
coffee sector is not yet ready for genetic engineering. Thus, an option of stimulation of
remodeling in genetic architecture by stress pre-exposure is imminent, especially in the case
of Robusta coffee breeding that is constrained by unpredictable flowering time, making
synchronization for parents difficult [24,50], long reproductive cycles, and slow clonal
propagation [51,52]. During artificial immunity activation or induction, a plant’s response
may manifest and qualify as either being an escapee, avoidant, tolerant, or recoveree. The
ability and level of response, as well as the acquired mechanism of drought tolerance, is
understood to be both genotype and environment dependent [7,14,23,31].

Our findings generally indicate better watering deficit stress tolerance and recovery
for plants primed at germination than at the 4-leaf stage. The views held based on the
findings are subject to a follow-up validation study. The validation involving both mother
clones and the promising half-sibs needs to be undertaken beyond the controlled conditions
of the greenhouse. This can demonstrate the use of half-sibs’ unlimited genetic constitution
and diversity for selecting varieties amenable to the increasing effects of climate change
that risk on-farm sustainability.

5. Conclusions

Watering deficit pre-exposure improves subsequent tolerance to the stress in Robusta
coffee half-sibs; maternal origin or family of the half-sib influenced the response to priming
stress. KR7 family was better than others in tolerance to deficit watering stress. Selections
recommended for onward use in breeding for drought and high-temperature tolerance
include 14.KR7.2, 25.X1.1, 35.KR5.5, 36.KR5.6, 41.KR7.5, 46.KR6.4, 47.KR6.5, 291.X1.3,
318.X1.3, and 15.KR7.3. Four of the selections (14.KR7.2, 291.X1.3, 318.X1.3, and 15.KR7.3)
are products of stress pre-exposure at the germination stage. We observed that genetic
diversity due to outcrossing behavior is genotype- and trait-specific depending on the crop
seeds’ ability to respond to priming at early development stages.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agronomy13030674/s1, Table S1: Mean squares (MS) and sig-
nificance levels (p) for rejecting a hypothesis of no difference in morphological response among
priming stages and Robusta coffee families; Table S2: Cluster vector and attributes of Robusta coffee
half-sibs under deficit watering conditions; Table S3: Mean squares (MS) and significance levels (p)
for rejecting a hypothesis of no difference in recovery response among priming stages and Robusta
coffee families; Table S4: Cluster vector and attributes of Robusta coffee half-sibs based on recovery
from deficit watering stress.
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