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Abstract: Natural reserves play a leading role in safeguarding national ecological security. Remote
sensing change detection (CD) technology can identify the dynamic changes of land use and warn
of ecological risks in natural reserves in a timely manner, which can provide technical support for
the management of natural reserves. We propose a CD method (CA-BIT) based on the improved
bitemporal image transformer (BIT) model to realize the change detection of remote sensing data of
Anhui Natural Reserves in 2018 and 2021. Resnet34-CA is constructed through the combination of
Resnet34 and a coordinate attention mechanism to effectively extract high-level semantic features.
The BIT module is also used to efficiently enhance the original semantic features. Compared with the
overall accuracy of the existing deep learning-based CD methods, that of CA-BIT is 98.34% on the
natural protected area CD datasets and 99.05% on LEVIR_CD. Our method can effectively satisfy the
need of CD of different land categories such as construction land, farmland, and forest land.

Keywords: natural reserves; remote sensing; change detection; deep learning; residual attention
network; bitemporal image transformer

1. Introduction

Natural reserves are the core carrier of ecological construction and occupy the primary
position in safeguarding national ecological security. Anhui Province has implemented
the Guidance on Establishing a Natural Reserves System with National Parks as the
Mainstay [1] to build a natural reserves system with a reasonable layout, complete types,
and perfect functions [2]. The rapid development of industrialization and urbanization
has made the contradiction between ecological protection and economic development
increasingly prominent. The fragmentation of environmental patches caused by human
activities has greatly threatened biodiversity, which seriously affects the management,
protection effect, and healthy development of natural reserves in Anhui Province. A
large number of natural reserves with large area, wide distribution, complex geographical
environment, complicated construction projects, and few supervision staff are present in
Anhui Province. Timely detection and supervising of various illegal human activities in the
natural reserves are difficult by traditional ground investigation means.

Remote sensing image change detection (CD) identifies changes in the Earth’s surface
by analyzing satellite images acquired at different times over the same geographical area [3].
Remote sensing image CD technology has always been widely utilized to record and
monitor changes and maintain the sustainable development of the earth environment. At
present, remote sensing image CD is widely used in many fields, such as urbanization
detection [4], environmental monitoring [5–7], disaster assessment [8], and other fields.

The increasing popularity of high-resolution remote sensing images has expanded
the potential applications of CD in high-resolution bitemporal images. At present, a
deep convolutional neural network (DCNN) is successfully applied to high-resolution
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remote sensing image analysis and CD tasks due to its strong advanced feature extraction
capability [9]. The high-level semantic features of each temporal image are extracted on
a CNN-based structure [10–12], and the final change map is generated by clustering or
a threshold-based classification method. Obtaining contextual content over space and
time is critical to identifying associated changes in multi-time high-resolution images.
Thus, the latest CD models have been focused on increasing the receptive field, which is
defined as the size of the area in the input where the feature is generated. Therefore, a CD
model with stacked convolution layers [13,14] and the application of extended convolution
and attention mechanism [15] is proposed. Currently, squeeze and excitation (SE) [16],
the bottleneck attention module (BAM) [17], and convolutional block attention module
(CBAM) [18] are mainly used on the mobile network design. However, SE only considers
internal access information and ignores the importance of the spatial structure of the
target in vision. BAM and CBAM attempt to introduce positional information through
global pooling on the channels. However, this way can only capture local information
rather than obtaining long-range dependent information. By contrast, the coordinate
attention mechanism (CA) mechanism captures not only cross-channel information but
also orientation perception and position-sensitive information [19]. The attention-based
approach is effective in global information modeling but has difficulty relating remote
spatiotemporal details.

The recent success of transformers (i.e., nonlocal self-attention) in natural language
processing (NLP) has led researchers to apply transformers to various computer vision
tasks. Chen Hao et al. [20] used the bitemporal image transformer (BIT) module, which can
model the context information in token-based space–time, to enhance the original features.
However, they failed to efficiently extract high-level semantic features. Bandara et al. [21]
applied a layered transformer encoder (TE) with a lightweight MLP decoder to the CD task.
The multi-level differential features can be effectively combined, but the spatiotemporal
details cannot be efficiently linked.

In summary, we propose a CA-BIT model that combines the residual attention net-
work (ResNet34-CA) and BIT for land use CD in natural reserves. Unlike BIT, our CA-BIT
adds the CA to ResNet34 to improve image feature extraction and obtain better change
recognition results. The model can provide automatic CD technical support for the daily su-
pervision and environmental supervision of natural reserves. It is also important regarding
the timely warning of ecological risks of natural reserves in Anhui Province.

The remainder of the paper is organized as follows. In Section 2, the architectural
details of the proposed network are introduced. The study area, data, and experimental
environment configuration are presented in Section 3. In Section 4, the proposed method
is compared with other different deep learning models, and the CD results are analyzed.
Some conclusions are presented in Section 5.

2. Network Model
2.1. CA-BIT Model Overview

The overall framework of the CA-BIT model is shown in Figure 1. First, the images T1
and T2 are input into the residual attention network (ResNet34-CA), and the feature map
Xi ∈ RH×W×C(i ∈ 1, 2) is obtained for each image, where H, W, and C denote the height,
width, and channel size of the feature map, respectively. Next, the resulting feature map Xi

is fed into the BIT module to generate enhanced features Xi
T . Then, fusing the feature map

Xi yields the feature map Xi
new. The resulting feature map Xi

new is fed to the prediction part
to produce pixel-level predictions.



Agronomy 2023, 13, 635 3 of 13
Agronomy 2023, 13, x FOR PEER REVIEW 3 of 13 
 

 

 
Figure 1. Framework of the CA-BIT model. We first use the image features extracted by the 
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features. Finally, our prediction part produces pixel-level predictions by feeding the computed the 
feature difference images into a shallow CNN. 

2.2. Residual Attention Network 
The backbone part of this network is to extract the bitemporal image feature maps 

through a ResNet34 network [22] combined with a CA residual module (Figure 2). We use 
CA to build the CA residual module, which adds CA after two layers of 3 × 3 convolution 
in the residual block structure. Then, we apply it to the ResNet34 network and construct 
it as ResNet34-CA to better extract the high-level semantic feature maps. 

 
Figure 2. CA residual module. The CA is inserted into the residual block. Note: “X Avg Pool” and 
“Y Avg Pool” refer to 1D horizontal global pooling and 1D vertical global pooling, respectively. 

2.3. Bitemporal Image Transformer 
We refer to the BIT model [20], and feature fusion is added to the original BIT module. 

The overall block diagram is shown in Figure 3. The high-level concept of change objects 
of interest can be expressed in terms of several visual words, that is, semantic tokens. For 
this purpose, we represent bitemporal images as several tokens and use a transformer 
encoder (TE) [23] to model the context in a compact token-based space–time. We then 
refine the original features through a transformer decoder (TD) and fuse the original 

Figure 1. Framework of the CA-BIT model. We first use the image features extracted by the ResNet34-
CA backbone. Then, we enhance the image features by the BIT module and fuse the features. Finally,
our prediction part produces pixel-level predictions by feeding the computed the feature difference
images into a shallow CNN.

2.2. Residual Attention Network

The backbone part of this network is to extract the bitemporal image feature maps
through a ResNet34 network [22] combined with a CA residual module (Figure 2). We use
CA to build the CA residual module, which adds CA after two layers of 3 × 3 convolution
in the residual block structure. Then, we apply it to the ResNet34 network and construct it
as ResNet34-CA to better extract the high-level semantic feature maps.
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2.3. Bitemporal Image Transformer

We refer to the BIT model [20], and feature fusion is added to the original BIT module.
The overall block diagram is shown in Figure 3. The high-level concept of change objects of
interest can be expressed in terms of several visual words, that is, semantic tokens. For this
purpose, we represent bitemporal images as several tokens and use a transformer encoder
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(TE) [23] to model the context in a compact token-based space–time. We then refine the
original features through a transformer decoder (TD) and fuse the original features through
a jump connection, where the learned context-rich markers are fed back into the pixel space.
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Figure 3. Bitemporal image transformer module and feature fusion.

The BIT learns a set of spatial attention (SA) maps by concentrating the feature map-
ping space into a set of features to obtain compact semantic tokens. Let X1, X2 ∈ RHW×C

be the bitemporal feature graph of the input. Let T1, T2 ∈ RL×C be two groups of tokens,
where L (L << HW) is the size of the set of vocabularies for the token.

For each pixel on the feature map X1, X2, we utilize a point-wise convolution to obtain
L semantic groups, and each group represents one semantic concept. Then, the Softmax
(Sof) function is used on the HW dimension of each semantic group to calculate the SA map.
The weighted average sum of the pixels in X1, X2 is calculated using the attention mapping
to obtain a compact set of vocabularies of size L, that is, semantic tokens T1, T2 ∈ RL×C.
The formula is as follows:

T1 = (A1)
T

X1 = (σ(φ(X1; W)))
T

X1 (1)

T2 = (A2)
T

X2 = (σ(φ(X2; W)))
T

X2 (2)

where φ(·) indicates the point-wise convolution with the learnable kernel W ∈ RC×L, and
σ(·) is the Sof function that normalizes each semantic group to obtain the attention map
A1, A2 ∈ RHW×L. T1, T2 is calculated from the multiplication of A1, A2 and X1, X2.
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2.3.1. Transformer Encoder

After concatenating the two semantic token sets T1, T2 into one token set T ∈ R2L×C,
we then model the context between these tokens with the TE part. The TE part can utilize
the global semantic relationships in token-based space–time to generate context-rich token
representations for each time. As shown on the left side of Figure 3, the token T is fed into
the TE part to obtain a new token set Tnew ∈ R2L×C.

The TE part consists of multi-head self-attention (MSA) and multi-layer perceptron
(MLP) blocks. Different from the original transformer that uses the post-norm residual unit,
we use the validated ViT [24] pre-norm residual unit, that is, the normalized layer is added
before the MSA/MLP.

In each layer l, the self-attentive input is a triple (query Q, key K, and value V) that is
calculated from the input T(l−1) ∈ R2L×C as follows:

Q = T(l−1)Wq (3)

K = T(l−1)Wk (4)

V = T(l−1)Wv (5)

where W l−1
q , W l−1

k , W l−1
v ∈ RC×d are the three learnable parameters of the linear projection

layers, and d is the channel dimension of the three layers. An attention head is expressed as

Att(Q, K, V) = σ(
QKT
√

d
)V (6)

where σ(·) represents the Sof function running on the channel dimension.
The MSA block of the TE part executes multiple stand-alone attention heads in parallel,

and it connects the output and then projects it to obtain the final value. The formula is

MSA
(

T(l−1)
)

= Concat(head1, · · ·, headh)WO

where headj = Att
(

T(l−1)Wq
j , T(l−1)Wk

j , T(l−1)Wv
j

) (7)

where head is the number of attention heads, and Wq
j , Wk

j , Wv
j ∈ RC×d,WO ∈ Rhd×C repre-

sent the linear projection matrix.
The MLP block of the TE part is composed of two linear transformation layers, with

an activation of Gaussian error linear unit [25] in the middle. The dimension of input and
output is C, and the inner layer is 2C. The formula is

MLP
(

T(l−1)
)
= GELU

(
T(l−1)W1

)
W2 (8)

where W1 ∈ RC×2C, W2 ∈ R2C×C represent the linear projection matrix.

2.3.2. Transformer Decoder

A new token set Tnew ∈ R2L×C is obtained from the TE part, split into two sets of
context-rich tokens T1

new, T2
new ∈ RL×C, and input into the TD part composed of multi-head

cross-attention (MA) and MLP. The changes in interest are well revealed by the fact that
these context-rich markers contain compact high-level semantic information. Then, we
need to project the representation of the concept back into pixel space to obtain pixel-level
features. Given a series of features Xi(i = 1,2), the TD part utilizes the relationship between
each pixel and the set of tokens Ti

new to obtain the refined features Xi
T .
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In MA, the keys and values are from the token set Ti
new, and the queries are from the

image feature Xi. In each layer l, the MA is formally defined as

MA
(

Xi,(l−1), Ti
new

)
= Concat(head1, · · ·, headh)WO,

where headj = Att
(

Xi,(l−1)Wq
j , Ti

newWk
j , Ti

newWv
j

) (9)

where Wq
j , Wk

j , Wv
j ∈ RC×d, WO ∈ Rhd×C represent the linear projection matrix, and head is

the number of attention heads.
The feature map Xi (i = 1,2) and refined features Xi

T obtained from the TD part are
fused to obtain the feature map Xi

new.

Xi
new = FeatureXi + Xi

T (10)

2.4. Prediction Part

The CA-BIT model extracts the resulting high-level semantic feature Xi
new, which uses

a very shallow FCN for change recognition. The predictor head generates the predicted
change probability map P ∈ RH0×W0×2 (H0 and W0 are the height and width of the original
image, respectively) according to the feature map X1

new, X2
new, which is given by

P = σ(g(up(D))) = σ
(

g
(

up
(∣∣∣X1

new − X2
new

∣∣∣))) (11)

where D ∈ RH×W×C is the element absolute subtraction value of two feature maps. Up-
sampling is conducted for up : RH×W×C → RH0×W0×C , and the classifier is changed to
g : RH0×W0×C → RH0×W0×2 . σ(·) represents the Sof function.

2.5. Loss Function

In the training phase, the network parameters are optimized by minimizing the cross-
entropy loss. The loss function is formally defined as

L =
1

H0 ×W0

H,W

∑
h=1,w=1

l(Phw, Yhw) (12)

where l(Phw, y) = − log(Phwy) is the cross-entropy loss, and Phw is the label of the pixel at
the position (h,w).

3. Data and Experiments
3.1. Study Area and Data Sources
3.1.1. Overview of the Study Area

Anhui is a provincial administrative region of the People’s Republic of China, which is
located in the Yangtze River Delta region of East China (114◦54′—119◦37′, 29◦41′—34◦38′),
with a total area of 140,100 km2. The province has established more than 300 protected
nature areas at various levels, including nature reserves, geological parks, scenic spots,
forest parks, and wetland parks. These areas play an important role in the conservation
of biodiversity and protection of natural heritage, which improve ecological environment
quality and maintain ecological security.

3.1.2. Experimental Data

The experimental data come from the satellite remote sensing detection project of
human activities in natural reserves in Anhui Province, including the high-resolution
remote sensing images and the human activity vector database of natural reserves in
Anhui Province. The data comprise the high-resolution remote sensing image of Beijing
No. 2 acquired in 2018 with a spatial resolution of 1 m and the high-resolution remote
sensing image of Gaojing No. 1 acquired in 2021 with a spatial resolution of 0.5 m. Owing
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to the huge amount of data, the study sample area is reasonably selected according to
the distribution of the change type, and the data contain 685,703,168 pixels. The map of
Wanfoshan–Longhekou Reservoir (Wanfo Lake) in Shucheng County, Lu’an City, Anhui
Province is synthesized using high-resolution data and made by ArcGIS10.4 software. It is
shown in Figure 4, and the red box is the sample area (Figure 5).
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The reference basis of land use types in natural reserves in Anhui Province is the
Technical Specification for Remote Sensing Monitoring of Human Activities in natural
reserves (HJ1156-2021). Considering the actual needs of the Anhui natural satellite remote
sensing detection project, 10 different classes are distinguished (mineral resources devel-
opment, industrial development, energy development, tourism development, transport
development, aquaculture development, agricultural development, settlements and other
activities, forest management, and engineering construction). Then, by adjusting the change
map spot of natural reserves, two types of label data for the change/no change in natural
reserves are made, in which the numbers of changed and unchanged pixels are 26,316,288
and 659,386,879, respectively. The remote sensing images and label data are trimmed to
a size of 256 pixels × 256 pixels with no overlap, and they are randomly divided into the
training set, test set, and validation set in a ratio of 7:2:1, with 7322, 2092, and 1046 pairs of
data blocks, respectively.

We also conduct experiments on another public CD dataset. The LEarning, VIsion and
Remote sensing CD (LEVIR_CD) is a large-scale public building CD dataset. It contains
637 ultra-high-resolution (VHR, 0.5 m/pixel) Google Earth image patches on a size of
1024 pixels × 1024 pixels. Owing to GPU memory capacity limitations, we cut the image
into small blocks of a size of 256 pixels × 256 pixels with no overlap and randomly divide
the dataset (train, test, and validation). Therefore, we obtain 7120, 2048, and 1024 pairs of
blocks for train, test, and validation, respectively.

3.2. Experimental Environment Configuration and Evaluation Indicators
3.2.1. Experimental Environment Configuration

Our proposed model uses PyTorch as a deep learning framework and uses JetBrains
PyCharm 2020 as the development platform; the development language is Python3.8, and
all models are trained and tested on computers configured as Intel Core (TM) i7-10700K
CPU and NVIDIA GeForce GTX 3080 Ti graphics cards. The same experimental parameters
are utilized in the experiments, including momentum (0.99), weight decay (0.0005), batch
size (8), running epochs (200), and initial learning (0.01). The gradient descent optimization
method used for the optimization model is stochastic gradient descent [26]. The data
enhancement strategy includes random flipping, rotating, and Gaussian blur while loading
the image pairs. For simplicity, the best model validated after each training phase is used
to evaluate the test set.

3.2.2. Evaluating Indicator

We use the accuracy of the evaluation index precision, recall, harmonized mean of
precision and recall (F1), intersection ratio (IoU), and overall accuracy (OA) to evaluate the
accuracy for quantifying the effect of the evaluation model. The calculation formula of the
evaluation index is

precision =
TP

TP + FP
(13)

recall =
TP

TP + FN
(14)

F1 =
2

recall−1 + precision−1 (15)

IoU =
TP

TP + FN + FP
(16)

OA =
TP + TN

TP + TN + FN + FP
(17)

where TP, TN, FP, and FN express the number of true positive, true negative, false-positive,
and false-negative, respectively.
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4. Experimental Results and Analysis

Six models, namely, full convolutional Siamese difference (FC-Siam-Di), full convolu-
tional Siamese connection (FC-Siam-Conc), dual-task constrained deep Siamese convolution
network (DTCDSCN), ResNet34_CA network, BIT, and transformer-based Siam network
(ChangeFormer), are selected for comparison to verify the confidence of our CD model.
We use our natural reserve CD dataset and the LEVIR_CD to verify the above-mentioned
CD network.

The results of the accuracy evaluation of the various methods are shown in Table 1.
The sample area is analyzed qualitatively to show the results of the CD task more intuitively.
Figure 6 illustrates the CD results of the sample areas of the natural reserves. Figure 6a
shows the results of visual interpretation of reference changes based on high-resolution
remote sensing imagery. Figure 7 illustrates the CD results of the public building CD
dataset LEVIR_CD.

Table 1. Evaluation of CD accuracy under different methods.

Method
Natural Reserve CD LEVIR_CD

Precision Recall F1 IoU OA Precision Recall F1 IoU OA

FC-Siam-
Conc 37.25 64.76 47.3 30.98 96.02 91.99 76.77 83.69 71.96 98.49

FC-Siam-Di 39.18 50.8 44.24 28.41 96.47 89.53 83.31 86.31 75.92 98.67
ResNet34-CA 43.55 44.68 44.11 28.29 96.87 86.13 80.63 83.29 71.36 98.35

BIT 69.37 41.55 51.97 35.11 97.20 89.24 89.37 89.31 80.68 98.92
DTCDSCN 52.30 73.3 61.04 43.93 97.42 88.53 86.83 87.67 78.05 98.77

ChangeFormer 68.55 53.89 60.34 43.21 98.04 92.05 88.80 90.40 82.48 99.04
CA-BIT 74.61 60.32 66.71 50.05 98.34 92.30 88.72 90.48 82.61 99.05

Note: All values are reported as a percentage (%). Black in bold indicates the best, and blue in bold is the second.
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As observed from the comparison effect of Figure 6 and Table 1 in the natural reserves
CD dataset, the early full convolution of Siamese (difference and connection) network
changes has the lowest detection accuracy. The results of the change identification can
only roughly extract the approximate extent of the change, but it is difficult to obtain
detailed results of the change of real geographical entities. The ResNet34-CA network with
attention mechanism added to the residual network increases the receiving domain but
fails to effectively connect the dual time characteristics, which results in low accuracy, and
large blocks of change areas are under-judged in change recognition. The BIT network
adds a multi-layer transformer after the CNN, and it models the context information in
token-based space–time to enhance the original semantic features. However, it ignores the
effective extraction of high-level semantic features of the image. Obtaining good boundaries
is difficult due to the dramatically changing areas (Figure 6e); the F1 is 0.5197 and the IoU
is 0.3511. DTCDSCN uses a multi-scale feature connectivity approach to increase channel
attention and SA in the deep Siamese FCN, which results in more distinguished features
and higher CD accuracy. There is a clear edge profile and also some misjudgements in
the change recognition. The transformer-based Siamese network ChangeFormer uses a
hierarchical TE and a simple MLP decoder to effectively utilize the dual-temporal image
multi-level differential features to achieve high overall accuracy, delicately extract areas of
change, and obtain good boundaries. The CD accuracy of the CA-BIT algorithm is the best
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overall with an OA of 0.9834, an F1 of 0.6671, and an IoU of 0.5005, and obtains detailed,
realistic results of changes in geographical entities.

Table 1 shows that the present model still achieves better CD accuracy in the
LEVIR_CD public datasets than the latest ChangeFormer networks. As shown in
Figure 7, compared with the detailed performance in the red box, the present model can
better express the small ground material changes, which further proves its effectiveness
and feasibility.

In conclusion, the CA-BIT method can be used in nature reserve CD datasets. This
model can effectively exert the advantages of high-resolution data to enrich spatial in-
formation. It can also obtain good CD results by extracting the semantic features and
enhancing bitemporal features. The proposed model has achieved a relatively good CD
effect compared with other methods. However, it also needs to be improved in the actual
application of human activity detection in natural reserves.

5. Conclusions

Natural reserves have many change categories, and the number of change samples
is much smaller than unchanged samples. To address these problems, we propose a
remote sensing image CD model CA-BIT that combines ResNet34-CA and BIT. The CA-BIT
model not only effectively extracts the global semantic features but also models the context
information in token-based space–time to enhance the original semantic features. As a
result, it reveals the changes in interest in the presence of dual-temporal images. In the
natural conservation area CD datasets, the CA-BIT model works better than other recent
deep learning-based models. The CA-BIT model still has better applicability and robustness
in the public CD dataset LEVIR_CD.
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