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Abstract: Estimating the available potassium (AK) in soil can help improve field management and
crop production. Fourier-transform infrared (FTIR) spectroscopy is one of the most promising
techniques for the fast and real-time analysis of soil AK content. However, the successful estimation
of soil AK content by FTIR depends on the proper selection of appropriate spectral dimensionality
reduction techniques. To magnify the subtle spectral signals concerning AK content and improve the
understanding of the characteristic FTIR wavelengths of AK content, a total of 145 soil samples were
collected in an agricultural site located in the southwest part of Sichuan, China, and three typical
spectral dimensionality reduction methods—the successive projections algorithm (SPA), simulated
annealing algorithm (SA) and competitive adaptive reweighted sampling (CARS)—were adopted to
select the appropriate spectral variable. Then, partial least squares regression (PLSR) was utilized
to establish AK inversion models by incorporating the optimal set of spectral variables extracted
by different dimensionality reduction algorithms. The accuracy of each inversion model was tested
based on the coefficient of determination (R2), root mean square error (RMSE) and mean absolute
value error (MAE), and the contribution of the inversion model variables was explored. The results
show that: (1) The application of spectral dimensionality reduction is a useful technique for isolating
specific components of multicomponent spectra, and as such is a powerful tool to improve and
expand the predicted potential of the spectroscopy of soil AK content. Compared with the SA and
CARS algorithms, the SPA was more suitable for soil AK content inversion. (2) The inversion model
results showed that the characteristic wavelengths were mainly around 777 nm, 1315 nm, 1375 nm,
1635 nm, 1730 nm and 3568–3990 nm. (3) Comparing the performances of different inversion models,
the SPA–PLSR model (R2= 0.49, RMSE = 22.80, MAE = 16.82) was superior to the SA–PLSR and
CARS–PLSR models, which has certain guiding significance for the rapid detection of soil AK content.

Keywords: dimensionality reduction; soil available potassium; Fourier-transform infrared
spectroscopy; partial least squares regression

1. Introduction

Soil potassium is an essential nutrient for crops, playing a critical role in various
physiological processes and contributing to the overall health and yield of plants [1–3]. The
availability of potassium in soil greatly affects the growth and productivity of crops [4];
therefore, it is crucial to have an accurate understanding of soil available potassium (AK)
levels. This information can aid in making informed decisions regarding fertilization
practices and in maintaining a sustainable and productive agricultural system.

The estimation of soil AK content mainly relies on field soil sampling and laboratory
chemical analysis in traditional methods [5]. Although these methods can obtain high
accuracy soil AK content data, they require complex sample pretreatment or the use of
chemical extractants (high environmental risks), which is time-consuming, costly, inefficient
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and especially unable to meet the needs of large-scale soil nutrient monitoring in precision
agriculture. In recent years, with the technology improvement in instrument spectral
resolution and signal-to-noise ratio, the application of visible and near-infrared (Vis–NIR)
spectroscopy in soil nutrient monitoring has been rapidly developed owing to their ad-
vantages of being non-destructive and in real time [6–8]. Among these spectral methods,
Fourier-transform infrared (FTIR) spectroscopy has been a prevalent technique used in
soil nutrient content analysis since the introduction of FTIR spectrometers in the 1950s,
where the combination of a Michelson interferometer and Fourier transformation enabled
superior data quality and acquisition speed [9]. In addition, high accuracy and resolution
are provided by FITR’s cone advantage, and a high signal-to-noise ratio is provided by the
Jacquinot advantage [10,11]. FTIR spectroscopy is used for the chemical characterization of
material at the molecular level in order to study the interaction between electromagnetic
energy and matter. Regarding the main goal of determining soil component quantification
(i.e., organic matter, nitrate and mineralogical composition) by FITR spectroscopy, several
works can be observed [12–14]. In addition, some scholars have obtained considerable
progress by using FTIR to predict soil component content. For example, Zhe et al. [15]
applied FTIR attenuated total reflectance (ATR) and Raman spectroscopy to determine
the soil organic matter (SOM) content, with a reduction in the root mean square error
(RMSE) of independent validation sets reaching 4.35 g/kg. Jahn et al. [16] employed the
FTIR–ATR technique to determinate soil nitrate content, and the coefficient of determi-
nation (R2) was high as 0.99. The above studies indicated strong evidence regarding the
physical and chemical relationship with electromagnetic energy [17]. However, predicting
the content of some soil components, such as AK and available phosphorus (AP), has
proven to be a challenge. One issue is that the contents of these components do not have a
direct response to spectral wavelengths due to their presence in an ionic form in the soil
solution, and thus require indirect inversion. Another issue is that these components are
usually present at low concentrations, which makes inversion more difficult [18]. Previous
studies using Vis–NIR spectroscopy and the partial least squares regression (PLSR) method
have demonstrated inconsistent findings. Veum et al. [19] evaluated soil component con-
tents using this method, and while most components achieved relatively favorable results
(R2 ≥ 0.76, relative percentage difference (RPD) ≥ 2.0, ratio of performance to interquartile
distance (RPIQ) ≥ 3.2), the results for AK were not as promising (R2 = 0.18, RPD = 1.0,
RPIQ = 3.2). Xia et al. [20] used PLSR to develop predictive models for all soil components
using NIR spectra, with reliable results for SOC and Ca (RPD ≥ 2.0), but unsatisfactory
results for K, P, Fe, and soil pH (RPD < 1.4). Kinoshita et al. [21] also found similar re-
sults using Vis–NIR spectra (350–2500 nm) to analyze soil samples from western Kenya.
Most models successfully predicted soil components (R2 > 0.80, RPD > 2.00) such as
SOM, active carbon, Ca, and cation exchange capacity (CEC), but poorly predicted compo-
nents such as K, S, P, available water capacity, Zn, and penetration resistance (R2 < 0.50,
RPD < 1.40). These findings indicate that the model that provides accurate results for other
soil components may not be effective in predicting soil AK content.

The complexity of soils as mixtures of organic and mineralogical components entails
a high potential for spectral dimensionality reduction to improve FTIR in estimating soil
component content. To some extent, reducing the spectral dimensionality reduction is a
common method to further optimize the model because it can filter out some irrelevant,
unreliable, and noisy variables from the entirety of the spectral data [22]. Currently, some
studies are adopting FITR spectroscopy to predict the soil component content under field
and laboratory conditions using spectral dimensionality reduction with modeling analysis,
and some of these studies have also confirmed the superiority of the inversion results using
the dimensionality reduction over a raw spectrum [23,24]. Theoretical considerations [25]
have indicated that a careful selection of spectral regions for the inversion model can result
in a higher performance.

The spectral dimensionality reduction method has been used to improve spectral
characterization of soil samples since the mid-20th century [26]. Several approaches exist for
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spectral dimensionality reduction, for example, the successive projections algorithm (SPA),
competitive adaptive reweighted sampling (CARS), genetic algorithm (GA), principal
component analysis (PCA), uninformative variable elimination (UVE), and so on [27–30].
Guo et al. [18] noted that incorporating the SPA can enhance the detection of key soil
components (SOM, AK and AP), leading to improved accuracy in the inversion model.
Jia et al. [31] employed Monte Carlo–UVE to select characteristic wavelengths of Vis–NIR
soil spectra (resolution of 8 cm−1), and the model accuracy was improved (R2 = 0.73,
RPD = 2.0). Peng et al. [32] used the GA method to reduce the dimension of Vis–NIR
spectra and combined it with a back-propagation neural network (BPNN) to predict soil
AK content. The results showed that compared with the BPNN model, the GA–BPNN
model significantly improved the estimation accuracy of soil AK content, and its relative
root mean square error (RRMSE) value was reduced by 20.2%. The GA method was also
employed by Xu et al. [33] to predict soil AK content, but the model performance was
poor: R2 = 0.27 and RPIQ = 1.39. Previous research has shown varying results using
dimensionality reduction methods in soil AK prediction. The resolution of soil spectra
in these studies was mostly below 5 cm−1, but with advancements in technology, it is
important to determine if higher-resolution data from instruments using FTIR can be
effectively reduced. There is limited research that examines the simultaneous use of three-
dimensional reduction techniques (SPA, SA, and CARS) and PLSR regression in estimating
soil AK content, especially in the southwest China region. This study aimed to fill this
gap by applying SPA, SA, CARS, and PLSR to quantitatively analyze soil AK content in a
typical cropland in southwest China.

This research aimed to: (1) find the optimal spectral band dimension reduction method
by comparing different dimensionality reduction algorithms, (2) select the characteristic
wavelength of soil AK content, and (3) build the inversion model of soil AK content using
spectrum data. This study could provide a certain theoretical basis and technical support
for the development of precision agriculture.

2. Materials and Methods
2.1. Study Area

The study area (28◦30′3′′–28◦30′29′′ N, 102◦7′15′′–102◦7′41′′ E) was located in Mian-
ning County, Liangshan Yi Autonomous Prefecture, Sichuan Province, China. This area is
characterized by relatively high terrain with an elevation of 1820 m. The area has a subtrop-
ical monsoon climate with an annual mean temperature and precipitation of approximately
14.5 ◦C and 1095 mm, respectively. The climate here is characterized by abundant sunshine,
a high day–night temperature difference, and concentrated summer rainfall. The main soil
types in the region are loam and clay loam (as described in the American system of soil
texture classification) [34]. The region’s soil-forming parent material mainly consists of
the mixture of red clay and alluvial matter and silt in the upstream of the Anning River, a
tributary of Yalong River. The land use is cropland with corn, with buckwheat and flue-
cured tobacco as the main crops. In this study, the WGS_1984_Albers projection coordinate
system was used to produce the subset map (Figure 1).

2.2. Soil Sample Collection and Chemical Analysis

In October and November 2021, a total of 145 soil samples were collected at a 0–20 cm
depth at 50 m × 50 m grid sampling points (Figure 1b). The study area covered a total
area of approximately 35 ha, and the sampling points were distributed throughout the
geographic range of the study area. Prior to the collection of each soil sample, a clear soil
surface was selected with as little vegetation, grass and other disturbing substances as
possible. Each soil sample was obtained using a composite of samples collected from five
soil cores within a 5 m-radius circle at the square grid center. The geographic coordinates
of each sampling point were recorded by a handheld global positioning instrument (GPS,
59222-C10, STONEX, Guangzhou, China) with a positioning error less than 10 m. After
collection, rocks and plant residues in soil samples were removed, and the soil samples
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were taken to the laboratory, air-dried and sieved at 2 mm. Each sample was divided into
two parts. One part was designated for standard chemical laboratory analysis and the other
for spectrum data acquisition. The soil AK content was measured with the ammonium
acetate extraction–flame photometric detection method and the titration of the AK extracts
was performed with 1 mol L−1 NH4OAc with a 1:5 weight-to-volume ratio [35].
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2.3. FITR Spectral Information Acquisition

The soil spectral reflectance was measured using a Bruker vertex 70v FTIR spectrom-
eter (Bruker Corporation, Karlsruhe, Germany). The spectrometer’s data were digitized
with a two-channel 24-bit delta-sigma ADC, and special OPUS software was used to control
the spectrometer and record the Fourier transformation. The spectral data within the band
range of 4000 to 400 cm−1 were recorded. The pretreated soil samples (the part used to
reflect the spectrum) were ground, pulverized, and sieved through a 100-mesh screen to
achieve a uniform surface for measurement. The soil sample (1 mg) and potassium bromide
powder (99% purity, 200 mg) were ground in a 1:200 proportion using an agate mortar
and then pressed into a 13 mm diameter disk with 112 bars of pressure for 2 min using a
hydraulic press (L1272491, Perkin Elmer, Waltham, MA, USA). A blank KBr beam splitter
was used to adjust to the baseline level prior to measurement. The background scan time
and sample scan time were both 32 s, and the spectral resolution was 4 cm−1.

2.4. Dimension Reduction Algorithms
2.4.1. Successive Projections Algorithm (SPA)

The SPA is a positive characteristic variable selection method designed to find a
representative set of spectral variables with a minimum of collinearity [36,37]. The principle
of variable selection in the SPA is that among the remaining variables, the next variable
selected should have the highest projected value onto the orthogonal subspace created by
the previously selected variables. The maximum wavelength variable of the projection
vector was selected as the candidate subset of the multiple linear regression (MLR) model,
and the RMSE of the modeling dataset was obtained. Different RMSE values corresponded
to different candidate subsets. The selection strategy of the SPA is to select the smallest
RMSE [18,38]. In this study, the MinMaxScaler method was used to standardize the raw
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spectral data, and the ratio of the modeling set to the validation set was 3:1 during the
SPA process.

2.4.2. Simulated Annealing Algorithm (SA)

The SA algorithm is a stochastic optimization algorithm, which can effectively avoid
falling into a local minimum and eventually leads to a global optimum by giving the
search process a time-varying probability jump that eventually tends toward zero [39,40].
Starting from a high initial temperature, the SA algorithm randomly searches for the global
optimal solution of the objective function in the solution space with a certain probability
jump characteristic as the temperature parameter continues to decrease, that is, the local
optimal solution can jump out with probability and finally leads to the global optimum. The
“certain probability” is calculated in reference to the annealing process of metal smelting,
which is where the name of the simulated annealing algorithm comes from [41,42]. In this
study, the root mean square error in cross-validation (RMSECV) was defined as the cost
function and we sought to minimize it. The number of selected frequency bands and the
definition of potential variables were based on many trial-and-error experiments. A total of
1000 iterations were performed, and the number of selected wavelengths was defined as 40.

2.4.3. Competitive Adaptive Reweighted Sampling (CARS)

CARS is a feature variable selection method combining the Monte Carlo sampling
method and PLSR coefficient [43,44]. CARS is based on Darwin’s theory of evolution
and follows the principle of “survival of the fittest” [45]. The band with a large absolute
value of regression coefficients in the PLS model was selected by the adaptive reweighting
sampling technique, and the band with a small weight was removed. Then, the lowest
value of RMSECV was used to select the optimal variable subset and find the optimal
variable combination. In this study, the number of variables selected was determined by
10 cross-validations, and the Monte Carlo sampling runs were set to 50.

The PLSR analysis is often used as a method to extract the latent variables (LVs)
of the spectral data. These LVs can be utilized as a substitute for the original spectral
data to reduce dimensionality, simplify the data, and explain the relationship between
the spectral data and chemical constituents. Despite its potential benefits, PLSR has been
found to be less effective than the above dimensionality reduction methods, particularly
when working with high-dimensional FTIR data. In this paper, PLSR was adopted as the
modeling approach and is described in detail in the following section.

2.5. Dataset Partitioning

The 145 samples were divided into a calibration dataset (97 samples) and validation
dataset (48 samples) using the hold-out method. The statistical information (kernel density
estimation) of AK content in different datasets is shown in Figure 2.

The AK content in the whole dataset ranged from 55.00 mg/kg to 266.00 mg/kg, with
a mean and CV of 134.98 mg/kg and 32.78%, respectively. The variability in AK content
may be due to differences in soil conditions caused by diverse human cultivating practices
and soil-forming environments. The means of the validation dataset and the calibration
dataset were 135.48 mg/kg (SD = 45.15, CV = 31.97%) and 133.98 mg/kg (SD = 42.82,
CV = 33.32%), respectively. There was no significant difference among the mean values
of the whole dataset, calibration dataset and validation dataset (p > 0.05, T-test), and the
probability distributions of soil AK ranges in different datasets were basically consistent.
The calibration and validation datasets showed a skewed normal distribution as indicated
by the kernel density curve, with kurtosis values of 0.134 and 0.126, and skewness values
of 0.798 and 0.841, respectively, meeting the requirements of classical statistics [46].
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2.6. Statistical Modeling and Accuracy Assessment

The partial least squares regression (PLSR) is the most commonly used multivariate
statistical method, which is widely used in spectral data modeling and analysis [47]. The
remarkable feature of the PLSR algorithm is that it considers the changes in independent
variable space and dependent variable space simultaneously. By using finite factors to
explain the change in independent variable space and dependent variable space, it can
solve the serious autocorrelation problem between independent variables [48]. In this study,
PLSR was performed according to sklearn.cross_decomposition in Python (version 3.9.1). The
maximum number of principal components was set to 50, and then the optimal number
of independent principal components (PCs) obtained by leave-one-out cross-validation
(LOOCV) was used for variable selection. The PCs of RAW–PLSR, SPA–PLSR, SA–PLAR
and CARS–PLSR inversion model are 10, 16, and 14, respectively.

Three assessment indexes were used to evaluate the accuracy of the soil AK content
inversion model: coefficient of determination (R2), root mean square error (RMSE) and
mean absolute value error (MAE). The corresponding formulas are given below:

R2 = 1− ∑n
i=1(ŷi − y)2

∑n
i=1(yi − y)2 (1)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (2)

MAE =
1
n

n

∑
i=1
|ŷi − yi| (3)

where n is the number of soil samples and yi is the value of soil AK content detected by
laboratory chemistry test (observed value). ŷi is the predicted value based on the inversion
model. y is the mean value of the observed value. In general, a well-performing model
usually has a high R2 (close to 1) and a low RMSE and MAE (close to 0).
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2.7. Contribution Analysis of Model Variables

To further understand the degree of relative importance of the variables (selected
wavelength) in the inversion model, the contribution of the inversion model variables was
explored. In this study, the scale function in sklearn.preprocessing in Python (version 3.9.1)
was used to achieve data standardization and obtain the standardization coefficient of
the inversion model. Based on this, the relative importance of the predictors of the PLSR
model was calculated, which was used to further explain the relationship between soil
AK content and different input variables. The formula for calculating the importance of
variables (IV) is:

IVi = (βi × 100)/ ∑ βi(i = 1, 2, 3 . . . n) (4)

where βi is the normalization coefficient of the inversion model.

3. Results
3.1. Description of Soil AK Content and FITR Characteristics

Based on the nutrient abundance and deficiency index of the China second soil sur-
vey [49] and the distribution of soil AK content in the study area, the AK content of the
collected soil samples was divided into four different grade ranges: <100 mg/g (L1), [100, 150)
mg/g (L2), [150, 200) mg/g (L3), ≥200 mg/g (L4) (Figure 3a). A total of 91% of the soil
sample were under (≤) the soil AK content grade L3, and the number of soil samples of
different grades was in the order of L2 (n = 57) > L1 (n = 40) > L3 (n = 35) > L4 (n = 13). In
comparison to L4, the data distribution in L1, L2 and L3 was more centralized. Compared
to the mean soil AK content (112.76 mg/g) of cropland in Sichuan province, China, the
study area AK content was relatively high.
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The variation trend of the average spectral reflectance of soil AK in different grades
is shown in Figure 3b. Generally, with increasing soil AK content grade, the reflectance
curve was relatively progressively enhanced. The spectral curve was relatively flat in the
range of 1900 nm to 2800 nm. The main FTIR spectra reflectance peaks of the soil samples
occurred at 453 nm, 537 nm, 1034 nm, 1638 nm and 3426 nm. Compared with other grades,
the change trend of the mean spectral curve of all the soil samples was highly consistent
with the [100, 150) mg/g grade.
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3.2. Dimensionality Reduction of Soil Spectral Data

In order to reduce the number of wavelengths in FTIR and obtain a simpler and
more accurate inversion model, the SPA, SA and CARS were used to select the wave-
lengths related to AK content from the whole spectrum. The RMSE for the interactive
verification of the modeling dataset in the SPA process demonstrated a pattern of initial
decrease, followed by an increase, and finally stabilization (Figure 4a). When the number
of variables was 22, the RMSE value dropped to 27.25 mg/g. Therefore, 22 characteristic
wavelengths were selected as the dependent variables for the soil AK content inversion
model based on the SPA. The distribution of the 22 characteristic wavelengths is shown in
Figure 4b. The distribution is mainly concentrated in the ranges of 400–543 nm, 709–800 nm,
1230–1384 nm, 1558–1730 nm and 3330–3990 nm.
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During the process of SA, the maximum value of the RMSECV of the modeling dataset
is 41.53 mg/g; then is show gradually downward trend (Figure 4c). When the value of
RMSECV drops to the lowest value of 40.32 mg/g, a total of 40 characteristic wavelengths
were selected as the dependent variables to inversion model construction (Figure 4d). The
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distribution is denser in the ranges of 1359–1442 nm, 2158–2420 nm and 2864–3498 nm, and
sparse in the range of 449–876 nm, 3618–3982 nm.

Figure 4e shows the change in the number of selected variables in the CARS algorithm.
The number of selected variables decreased rapidly in the first 20 samples and then slowly,
mainly due to the effect of the exponential decline function. A total of 49 variables were
selected. Figure 4f shows the variation diagram of the RMSECV, which changed from high
to low and then to high. When the number of sampling times was 26, the RMSECV reached
the minimum value of 31.43 mg/g, which indicated that information variables unrelated to
AK content were eliminated during the variable selection operation of 1–26 times. When
the RMSECV rises beyond 26 times, key information variables related to the AK content
may be eliminated, leading to an increase in the RMSECV value and the deterioration of
the model effect. Figure 4g shows the distribution of the characteristic wavelengths. They
are mainly distributed at 715–873 nm, 1024–1263 nm, 1406–1629 nm, 3012–3334 nm and
3595–3732 nm.

3.3. The Results of Different Inversion Models
3.3.1. Model Performances of Different Dimensionality Reduction Methods

The characteristic wavelengths extracted by the SPA, SA and CARS algorithms and
the raw spectral data were combined with PLSR for soil AK inversion model construction.
The validation dataset was used to build the inversion model, and the calibration dataset
was used to inspect the robustness and accuracy of the model, then to choose the best
dimensionality reduction and PLSR combination.

The accuracy of the soil AK content inversion model for different combinations of
dimensionality reduction and PLSR is shown in (Figure 5) The orders of R2, RMSE and
MAE for different combinations are CARS–PLSR (0.62) > SA–PLSR (0.49) = SPA–PLSR
(0.49) > RAW–PLSR (0.39), RAW–PLSR (55.21) > CARS–PLSR (32.13) > SA–PLSR (34.2)
> SPA–PLSR (22.8) and RAW–PLSR (42.43) > SA–PLSR (27.38) > CARS–PLSR (25.18) >
SPA–PLSR (16.82), respectively. The results demonstrated that after spectral dimensionality
reduction, inversion-model-simplified spectral wavelengths showed better performance
with higher R2 and lower RMSE and MAE values than their corresponding raw-spectrum
inversion models for AK content estimation, which indicated that the variable selection
produced more effective models with a simplified model. Overall, the soil AK content
inversion model constructed by the SPA dimensional reduction had the best performance,
the SPA–PLSR model’s RMSE and MAE were the smallest, and the model’s R2 was the
second largest after CARS–PLSR.

3.3.2. Contribution of Variables Using Different Inversion Models

The variable relative importance derived from SPA–PLSR inversion models is dis-
played in Figure 6. This figure identifies which spectral variables are the most important
predictors in the spectral estimation of AK content. For RAW–PLSR, the FTIR data without
dimensionality reduction, a total of 1860 wavelengths were involved in the modeling,
and the contribution of each variable was low (<0.37%), which means that informational
wavelengths were not selected for the quantitative estimation of soil AK content when
directly using the full spectrum as an input variable. The SPA–PLSR model was the model
with the best inversion result (Figure 5). According to the calculation of the SPA, a total
of 22 characteristic wavelengths were selected as input variables of PLSR, and the top
10 characteristic wavelengths with the largest contributions were mainly distributed in the
near-infrared region: 1635 nm (11.96%) > 1315 nm (7.59%) > 777 nm (5.43%) > 1730 nm
(5.03%) > 1357 nm (5.01%) and the middle-infrared region: 3568 nm (8.8%) > 3855 nm
(8.03%) > 3990 nm (6.68%) > 3626 nm (5.70%) > 3712 nm (4.91%). For all the characteristic
wavelength selected by SPA, there was a significant correlation between the wavelength
and soil AK content (Pearson correlation, p < 0.01).
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4. Discussion
4.1. Comparison of Dimensionality Reduction Algorithms

The raw spectral information generally contains a large amount of redundant informa-
tion, and the accuracy of the model is not good when used to directly construct predictions
of soil properties, so feature extraction from a large number of spectra is crucial [50,51]. The
use of dimensionality reduction is a powerful tool to improve the potential of spectroscopy,
which can not only extract the effective information of the raw spectral curve, but also
effectively solve the multicollinearity problem between spectral wavelengths [52]. Figure 5
shows that in light of the inversion model of dimensionality reduction data as independent
variables, FTIR provided relatively satisfactory results for estimating AK content in the
study area. In order to further compare the differences between the three dimensionality
reduction methods, the variable initialization, evaluation indicators and selection strategies
of the three algorithms SPA, SA and CARS are summarized in Table 1.

Table 1. The three factors and characteristics of wavelength dimensionality reduction.

Algorithm Initialization of Variables Evaluation Metric Selection Strategy

SPA all variables maximum projection value on the
orthogonal subspaces, RMSE

extreme value search,
forward selection

SA random sampling Boltzman’s probability distribution,
RMSECV SA algorithm

CARS Monte Carlo sampling regression coefficient, RMSECV exponentially decreasing
function

In the process of the dimensionality reduction of spectral variables, each wavelength
is regarded as a unit (i.e., a variable). The selected variables are thus discrete. There are
two ways to initialize variables: all the variables and a part of the variable. The SPA
considers all variables to initialize, and then employs simple projection operations in
a vector space and the forward selection method to obtain subsets of variables with a
minimum collinearity [53]. Figure 5 shows that the SPA is an advantageous approach in
analyzing reflectance spectra, and the results of its inversion model were superior to the SA
algorithm and CARS algorithm. Vibhute et al. [54] reported that the SPA is a valuable tool
for estimating soil properties with diffuse reflectance in NIR spectroscopy. Shi et al. [55]
indicated that the SPA is simpler and more time-saving compared with the GA in selecting
the spectral characteristic wavelengths of SOM prediction. Our findings are consistent
with these above reports. Guo et al. [18] employed a combination of two variable selection
methods (CARS and SPA) in a regression algorithm to predict soil nutrients (N, P, K), and
their results showed that CARS was more effective than the SPA. This conclusion is contrary
to the conclusion of our study. The difference in results could be due to several factors.
Firstly, Guo et al. preprocessed the original spectral information (multiplicative scatter
correction (MSC) and standard normalized variate (SNV)) before applying the variable
selection methods, whereas this was not performed in our study. This preprocessing step
can affect the outcome of the variable selection. Secondly, the spectral data used in our
study were obtained using FTIR with a high resolution of 4 cm−1, resulting in 1860 spectral
variables, which can introduce noise and interference. The SPA may perform better in high-
dimensional data reduction as it prioritizes useful information, reduces variable covariance
and minimizes the linear relationship between variables [36–38]. Additionally, differences
in soil properties in different areas, including soil moisture content, soil texture, and soil
color, could also contribute to differences in research outcomes [56].

The SA and CARS algorithms adopt the random sampling and Monte Carlo sampling
methods, respectively, to select initial variables. That is, the SA and CARS algorithms use a
part of the variable as the initial variable. The characteristic of the SA algorithm is robust,
high computational efficiency, and it easily falls into local optimization [57]. In this study,
the performance of the SA algorithm was second only to the SPA. CARS uses the largest
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absolute regression coefficients as the evaluation metric and the exponentially decreasing
function (EDF) as a selection strategy to competitively select characteristic variables based
on adaptive reweighted sampling [58]. The poor performance of CARS in this study may
have been due to the collinearity of the selected characteristic wavelength. Some scholars
have shown that the characteristic wavelength selected by CARS usually contains collinear
variables [59–61], and other dimension reduction algorithms are needed to further extract
collinear variables to obtain the combination of minimum collinear wavelength variables.

4.2. Soil Available Potassium Characteristic Wavelengths

Soil spectral reflectance is affected by its physical properties, chemical composition,
and mineral composition [62]. At the microscopic level, the outer electrons of ions or the
chemical bands of different molecules vibrate at characteristic frequencies under the action
of electromagnetic energy [63]. In this process, there are steps of reflection, absorption, and
scattering of electromagnetic energy, which may have a direct correlation with the spectral
curve. Therefore, the interpretation of the spectra of soil samples can aid in understanding
the soil nutrient content information.

The results of the variable contribution analysis indicated that the significant wave-
lengths for soil AK content were located around 777 nm, 1315 nm, 1375 nm, 1635 nm,
1730 nm and 3568–3990 nm. These results are in agreement with previous research that
identified the key wavelengths related to the 2:1 clay mineral, which primarily fell around
1400 nm and 1900 nm [64,65]. The spectral response of cations (such as K+ and Mg2+) in
soil is similar to the sensitivity zone of clay minerals, such as kaolinite and montmoril-
lonite, which provide the CEC, as demonstrated by Dematte et al. [66] and supported by
Barré et al. [67] and Velde et al. [68]. However, it should be noted that the results of this
study were based on in situ soil sampling and may differ from studies conducted in dif-
ferent regions. For example, Guo et al. [18] found that the most common characteristic
wavelengths for AK in paddy soil were located around 400–483 nm, 728 nm, 967–1031 nm,
1271–1409 nm, 1643–1789 nm, 1975–2004 nm, 2109–2174 nm, and 2312–2449 nm. The
differences in soil AK characteristic wavelengths across different regions can be attributed
to factors such as soil heterogeneity, moisture content, texture, color, sample number,
sample and spectral data pretreatment, concentration range, and the model development
method [17,25,69].

4.3. Limitation and Uncertainty

Spectral dimensionality reductions are an integral component of the spectroscopist’s
toolbox, and in soil science there is a suite of applications that improve or enable the
characterization of soil components and processes. In this study, three dimensionality
reduction algorithms were used to explore the response of soil AK content to FTIR, and
an inversion model of soil AK content was established. Although different dimensionality
reduction and PLSR regression combinations were applied in this study, there are still
many limitations in the application of the algorithms presented in this paper. The default
parameters were used in all the adopted methods, and no parameters were chosen for
optimization. In addition, only the PLS algorithm was used in the modeling, without
comparing the various modeling methods, which generally leads to algorithmic uncertainty.
Another source of uncertainty may have arisen from the choice of soil sampling strategy.
In this study, only a limited area was selected for sampling. Although it could represent
the characteristics of local farmland, based on soil sampling data, it was not adequate to
build a universal inversion model of soil AK content. In addition, environmental factors are
commonly crucial to the inversion of soil AK content [21,69], and the relationships among
environmental factors, spectral data and inversion models were not thoroughly discussed
in this paper.

In future studies, the inversion model for estimating soil AK content can be improved
in several ways. First, a more consistent and standardized soil sampling strategy should
be implemented to reduce the uncertainty introduced by variations in topography and
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tillage methods. Second, a comparison of different machine-learning algorithms and their
performance in terms of feature extraction and the modeling of spectral data should be
conducted to improve the accuracy of the inversion model. Finally, the development of
portable and user-friendly field spectral equipment that can be easily integrated with
environmental data would enable the use of the inversion model on a larger scale.

5. Conclusions

This study measured the FTIR spectra of 145 soil sample sites in in Mianning County,
Liangshan Yi Autonomous Prefecture, Sichuan Province, China. To reveal the relationship
between the soil FTIR spectral information and soil AK content, the PLSR method combined
with three dimensionality reduction methods (SPA, SA and CARS) was used to estimate
the soil AK content. The results illustrate that the inversion model performance could be
significantly improved by applying proper spectral dimensionality reduction methods, and
the details for this are as follows:

(1) The application of the dimensionality reduction method can effectively limit the
correlation between adjacent frequency bands, reduce data redundancy, and improve
inversion modeling accuracy to a certain extent. Compared with the SA and CARS
algorithms, the SPA was more suitable for spectral dimension reduction of soil AK
content prediction.

(2) The results show that the characteristic wavelengths were mainly around 777 nm,
1315 nm, 1375 nm, 1635 nm, 1730 nm and 3568–3990 nm.

(3) Compared the performance of different soil AK inversion models, the SPA–PLSR
model (R2 = 0.49, RMSE = 22.80, MAE = 16.82) was superior to the SA–PLSR and
CARS–PLSR models, which has certain guiding significance for the rapid detection of
soil AK content.
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