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Abstract: Insolation and precipitation instability associated with climate change affects plant de-
velopment patterns and water demand. The potato root system and soil properties lead to water
vulnerability, impacting crop yield. Regarding potato physiology, plants stop growing when the
root depth stabilizes, and then the tuberization period begins. Since this moment, water supply
is required. Consequently, an approach based on plant physiology may enable farmers to detect
the beginning of the irrigation period precisely. Remote sensing is a fast and precise method for
obtaining surface information using non-invasive data collection. The database comprises root
depth (RD) and plant height (H) data collected during 2019, 2020, and 2021. This research aims to
develop a dynamic approach based on remote sensing and crop physiology to accurately determine
the beginning of the tuberization period, called here the irrigation critical point (ICP). The results
indicate a high correlation between RD and H (>0.85) which is independent of in-field soil and relief
variations > 0.95). Further, plant growth rate corroborates the correlation results with decreasing
patterns in time (R2 > 0.80), independent of environmental variations. In short, it was possible to
determine the ICP based on the crop growth dynamics, independently of climate variations, field
placement, or irrigation system.

Keywords: potato physiology; remote sensing; smart farming; UAV; water supply

1. Introduction

Irrigated crop fields are responsible for almost 40% of global food production, account-
ing for about 20% of all crop fields worldwide [1,2]. Furthermore, agriculture is responsible
for 80% of all water consumption on a planetary scale, most of which (2/3) is used for
irrigating fields [1,3]. Climate change is a critical issue for agriculture, not only because
of resource depletion (water and land growing demands) or pollution (chemical lixivia-
tion), but also regarding plant development pattern adjustments and water demand across
growing seasons [1,4]. Climate change increases the frequency of extreme meteorological
events, and it modifies the pattern of precipitation and insolation [1,5–9]. Similarly, we
have noticed through observations in the field that crop growth dynamics are changing as a
natural accommodation to new weather patterns [8,10–12]. Moreover, the seed/plantation
schedule is not a reliable tool anymore for determining when farmers may start irrigation,
because biological standards are undoubtedly changing [10].

According to the Food and Agriculture Organization of the United Nations (FAO), the
potato is one of the most important crop globally, and its consumption has been increasing
by almost 5% per year since 1998, especially in developing countries [13]. Using fully
adequate practices, which may include nutrients and irrigation when necessary, potato
crop fields can produce 25 to 35 tons/ha after a 120-day growing season in temperate
climates [14–16]. For every cubic meter of water, potatoes can provide 5600 kcal of dietary
energy, 150 g of protein, and many micronutrients [14,17]. Additionally, the proportion of
chronically undernourished people is growing worldwide [17].

Agronomy 2023, 13, 492. https://doi.org/10.3390/agronomy13020492 https://www.mdpi.com/journal/agronomy

https://doi.org/10.3390/agronomy13020492
https://doi.org/10.3390/agronomy13020492
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com
https://orcid.org/0000-0003-0808-3085
https://orcid.org/0000-0001-5092-1711
https://orcid.org/0000-0003-0018-0761
https://doi.org/10.3390/agronomy13020492
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com/article/10.3390/agronomy13020492?type=check_update&version=1


Agronomy 2023, 13, 492 2 of 14

Despite the potato’s high yield rates and nutritional characteristics, it is considered the
“food of the future”, because this crop, unlike grain foods, is not marketed as a commod-
ity [17]. Some advantages related to potato cultivation are: (i) the crop field is relatively
easy to manage; (ii) it is a relatively low-cost implementation culture; and (iii) the potato is
a high-nutrition plant in comparison with other tubers or cereals [14–17]. These characteris-
tics place potatoes in the FAO’s list of recommended crops to ensure food security with
highly nutritional crops protecting natural resources [14,16,17].

Within mild climates, potato is considered a crop with high water demand because of
soil characteristics and plant physiology. Generally, potato is cultivated in well-drained
soils, like sandy soil, to avoid diseases and to reduce soil resistance, benefiting tuber
development [18]. According to many authors [14,15,19], the primary characteristics of
potato physiology are: (i) tuber maturity and quality depend on water and nutrients; (ii)
potatoes have a shallow root system; (iii) plants stop growing when the root achieves its
maximum root depth, and then plant energy is consecrated to tuber development—the
beginning of the tuberization period [14,15,19–22].

The first characteristic indicates the environmental factors for a healthy crop
field [10,14,15,23]. The second is a major physiological constraint to the irrigation schedule
because it makes this crop vulnerable to water stress [5,6,15]. The last one can be used to
reduce the vulnerability of potato to water supply [11,12,20,21,24,25]. As this study has
is in the application framework of irrigation vulnerability, we are focusing mainly on the
last characteristic.

According to many authors [14,20–22,24,26], the photosynthesis product (dry matter)
is the basis of the relationship between plant growth, root depth development and the
beginning of tuberization. In short, the dry matter distribution changes over potato plant
phenological phases, from the foliage at the beginning of the plant growth cycle to the tubers
as soon as the tuberization phase begins, favorizing tuber development instead of plant
height [14,20,21]. Additionally, potato plants have circadian genes affecting the expression
of clock-regulating specific genes [20–22,24,27]. These genes are active in photoperiod-
dependent tuber formation, indicating that environmental factors greatly affect tuberization
triggers and growth hormone inhibitors [20–22,24,27]. Both meteorological conditions and
the tuberization phase may be considered for crop yield improvement [20–22,24,27].

In situ data are often associated with punctual and invasive sampling (e.g., plant
extraction or taking soil samples). In contrast, remote sensing is a non-destructive approach
for massive data acquisition with accurate spatial reference [28]. As they are acquired
directly from the surface, in processing remotely sensed data generalization methods
commonly associated with punctual data collection should be avoided [2,28–30]. In the
same way, it is possible to reduce the costs related to staff, time consumption, and laboratory
analysis by using remote sensing platforms for data acquisition [28].

Remote sensing data can be acquired by different sensors such as satellites, aircraft,
and drones, also known as Unmanned Aerial Vehicles (UAVs) [28,31]. The latter are the
most flexible because it is possible to change the on-board captor without changing the UAV
unit [3,29,31–33]. This means that drones allow us to play with data parameters such as im-
age resolution, specifically spatial, spectral, temporal, and radiometric resolutions [31–36].
It is possible to apply photogrammetry techniques to drone images to produce a field
surface Digital Elevation Model—DEM [37,38]. Such data are suitable for accessing plant
height evolution over time.

Since well-adapted spatial resolution can accurately detect crop height increase and
temporal resolution can be conveniently set according to plant growth dynamics, remote
sensing and photogrammetry should be useful in obtaining the growth curve of potato
crops throughout the growing season. By tracking plant height (H), it may be possible
to detect the beginning of the tuberization period through the relationship between the
stabilization moment of plant height and root depth [14,37–39].

In this context, the challenge regarding this research is to accurately establish the
beginning of the tuberization period despite the influence of climate variations on potato
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crop growth development. This moment is here called the irrigation critical point (ICP)
because the water supply is a concern for the farmer from the beginning of the tuber
development phase. The ICP should be interpreted as the checking point in the irrigation
schedule since plants still need to be observed during the growing season. In addition,
to better supply the crop fields, other techniques such as soil sampling are available to
determine the retention curve and better estimate irrigation amounts.

Therefore, knowing precisely when the water supply is needed should prevent yield
damages related to irrigation schedule errors (early or late irrigation [10–12,15,26,27]. In
this way, using the crop growth dynamics acquired by photogrammetry to establish when
the tuberization period starts may decrease costs (staff and laboratory), and improve the
time-consuming analysis step. Similarly, this method provides surface information without
invasive sampling or generalizations [28].

As a hypothesis, the ICP can be used as an indicator of the beginning of the tuberization
period, depending on plant height or root depth. Since the ICP is delivered by plant growth
dynamics, it can be determined by remotely sensed photogrammetry without using in situ
punctual data or even generalization methods.

Based on this challenge, this study aims to develop an approach based exclusively
on the potato crop development dynamics to determine the ICP. The innovation pre-
sented here is to replace the irrigation decision based on empirical/visual determination
or the seeding/planting calendar with an approach exclusively based on the dynamics of
plant development itself. The goal of using plant growth dynamics is related to the fact
that plants are adapting their growth development because of climate change [8,27,40].
This means that the ICP may vary over time and field placement, as was observed in
this study.

This plant-based approach has an important impact on both economics and crop
science. The former refers to improving crop yield, since irrigating at the right moment
may reduce the risks related to irrigating early or late, as mentioned. Further, the costs
associated with irrigation structure and water consumption may decrease [27]. Secondly,
this represents an innovative, flexible, and dynamic manner for dealing with irrigation,
which may be an inspiring approach for either other tuber plants or different crops.

It is important to highlight that this project is a part of a major ongoing project.
Therefore, the approach to deliver the ICP, as it is proposed here, will be used as a trigger
for start an automated application based on artificial intelligence to determine irrigation
schedules based on plant evapotranspiration rates as well as meteorological information,
in real-time.

2. Materials and Methods
2.1. Field Characterization

Data collection proceeded in three potato crop fields during three growing sea-
sons, namely Champ 41 (2019—4 hectares), Champ Réal (2020—6 hectares), and Champ
Doris (2021—5 hectares) all located in the Sainte-Catherine-de-la-Jacques-Cartier, an area
renowned for its potato production (46◦51′ N, 71◦37′ W), near Québec City, QC, Canada.
These crop fields had different irrigation methods and schedules, namely center (2019 and
2021) and rain-fed irrigation (2020). The potato cultivar grown in all of them was Russet
Burbank. Moreover, all fields have a similar soil type and were classified as Haplorthod,
well-drained sandy soil [40]; Figure 1.

The Quebec agricultural region lies in a humid and cold continental climate charac-
terized by an annual average temperature of 2 ◦C and an average summer temperature
over 17 ◦C [41]. As for precipitation standards, this region has an amount of 1000 mm per
year (solid and liquid) and a liquid precipitation average of up to 100 mm in summer [41].
According to the official models for this region [9], the future climate scenarios are charac-
terized by temperature augmentation, increased occurrence of extreme events, incensement
of liquid precipitation volume, and rain occurrence becoming concentrated over the sea-
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sons. Additionally, this study strongly recommends farmer adaptation regarding irrigation
methods [9].
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Figure 1. The placement of the growing season fields and the distribution of sample points and
MZ configuration.

2.2. Data Collection and Processing

The database is composed of in situ data, as well as remote sensing photogrammetry
data (Figure 2).

1. Root depth: 2019 and 2020 growing seasons. Sample points were georeferenced at the
field for taking direct measures using a precise measure tape. One plant per sample
point was measured. The same plant was not measured twice over the growing season
to avoid bias due to eventual damage in roots and soil manipulation.

2. Plant height: 2021 and 2021 growing seasons. Plant height was obtained using a Mi-
caSens RedEdge (DJI—China) camera boarded on a Matrix-M200 drone (DJI—China).
The acquisition frequency and period are summarized in Table 1. Image processing to
have by-week MDEs was performed using Drone Deploy (Drone Deploy—USA) and
Pix4D (Pix4D—Swiss) software.

3. Meteorological data: An in situ weather station (Hobo—USA) was installed in a
corner of each field to measure the parameters that directly affect plant growth dy-
namics. The meteorological parameters used were temperature (maximum—Tmax,
minimum—Tmin, and average—Tave), solar radiation (SRmax), and liquid precipita-
tion (maximum—Pmax, quantity—Pq, and cumulated—Pc).
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Table 1. Data collection characteristics per field.

Field Plantation Data Collection Period Sample Points Management Zones Frequency

Champ 41 2019/05/09 2019/07 to 2019/09 14 2 weekly
Champ Réal 2020/05/20 2020/07 to 2020/09 11 3 weekly
Champ Doris 2021/05/04 2021/05 to 2021/09 12 3 weekly

Each field was divided into management zones (MZ), with the aim of understanding
differences in crop development related to in-field variability [42,43]. MZs are handy for
verifying if soil properties or relief play an essential role in tuberization beginning and if
they impact RD or H development.

Two main criteria determined MZ definition: relief and soil properties (physical and
chemical). The former deals with water displacement into the soil profile because of slope
and elevation control, namely infiltration and runoff [19,44]. The latter deals with apparent
soil electrical conductivity, which is stable in time, reflecting a soil’s inherent soil properties,
such as texture and drainage [19,44].

MZs were determined before planting, using an MSP3 (VERIS—USA) between 0—30 cm
deep to acquire measurements of apparent soil electrical conductivity, and data process-
ing was performed with the clustering method using the ISODATA function of ArcGIS
(ESRI—USA). Topography data were taken by drone and compared to the 3 m resolution
MDT provided by the Canadian government (available at https://www.donneesquebec.
ca/recherche/fr/dataset/produits-derives-de-base-du-lidar, accessed on 27 January 2023).
The MZ classes were defined relatively to the in-field characteristics, where MZ01 cor-
responds to the smallest relief slope and the lowest values of apparent soil electrical
conductivity. The other classes, MZ02 and MZ03 (2020 and 2021 growth seasons), rep-
resent a statistically significant improvement in both characteristics, justifying a new
class nomination.

Regarding the 2019 growing season, sample points were randomly distributed in the
field using ArcMap 10 (ESRI—USA). The distribution of the 2020 and 2021 sample points
was coordinated with another project, because of the COVID-19 protocols. At that time, the
sample point placement rules were: (i) no less than 3 points per MZ; and (ii) every field
corner should have a sample point.

https://www.donneesquebec.ca/recherche/fr/dataset/produits-derives-de-base-du-lidar
https://www.donneesquebec.ca/recherche/fr/dataset/produits-derives-de-base-du-lidar
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Briefly, a Digital Elevation Model (DEM) provides the elevation surface above the soil
delivered by photogrammetric techniques applied to remote sensing data [28,37,39]. The
resolution of the resulting model is directly related to the sensor used in data acquisition and
the resulting precision [28,39,45]. For this study, the flight altitude (60 m) was maintained
in all data collection periods to ensure equal spatial resolution for all images (5 cm) and
the time series analyses, if needed. Additionally, the manufacturer indicates 3 cm as the
altitude (z-axis) precision for the camera used.

For instance, drone flights were deployed during clear-sky days (avoiding cloud
influences in images), and the ideal acquisition period between 10 h and 14 h was re-
spected [28,45]. Plant H was acquired directly from weekly DEM at the sample points. The
in situ data processing and statistics were conducted in Spyder 5.1.2 (Spyder IDE—Open
Source) software using the Python programming language and freely available libraries,
namely Pandas, Seaborn, Numpy, Matplotlib, OS, and Scipy.

3. Results
3.1. Root Depth—2019 and 2020 Growing Seasons

Although roots stopped deepening in late July (07/25) and early August (08/01) in the
2019 and 2020 growing seasons, respectively, it took 24 days until root depth stabilized in
both cases; see Figure 3. This could have happened because the weather patterns changed
over the seasons, but the dynamics of plant development remained the same [8,10]. In
addition, the average RD values per MZ do not indicate a significant difference, as they are
mostly close to 30 cm for both years.
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Figure 3. Average of root depth evolution (in cm) by MZ obtained in 2019 (a) and 2020 (b) growing seasons.

3.2. Plant Height and Growth Curve—2020 and 2021 Growing Seasons

The growth curve and the respective H growth rate for both the 2020 and the 2021
growing seasons are presented in Figures 4 and 5. Regarding the H graphs, the growth
curve shapes are similar, and stabilization took place in late July (2020) and early August
(2021). Plants got higher in the 2020 growing season, and this is the season with the highest
difference among H curves. In the 2021 growing season, all MZ had almost the same H
values, probably because of the similarity in MZ properties. Further, all 2021 H values are
comparable to those for MZ01 in 2020.
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Figure 4. Evolution of plant height (H) over the 2020 growing season until H stabilization: Growth
curve ((a)—cm vs date) and growth rate over management zones MZ01 (b), MZ02 (c), and MZ03 (d).

The H growth rate was obtained by derivation of H over time using a gradient-
fitted power curve. In both cases, the H growth rate fits with the plant growth curve
once the higher value is placed in the early season and the downslope is placed between
days 1 and 15 (2020/07/22) or between days 1 and 60 (2021/07/10) of the 2020 and 2021
data collection periods, respectively. In both cases, the slope is well-placed in the plant
height spread. Comparing the H curve shape and its related growth rate, it is possible to
verify that when H stabilizes, the H rate is close to 0 (~0.05). The R2 of the gradient-fitted
curve was 0.99 for all 2020 MZs and above 0.98 for the 2021 MZs (MZ01 = 0.98; MZ02 = 0.99;
MZ03 = 0.99).

Note that the days mentioned refer to the beginning of the season’s data collection
period, which means that the 15th day of the 2020 growing season occurred at the same
time of the year as the 60th day of the 2021 growing season. This may have happened
because the 2020 data collection started on 2020/07/09, and the 2021 data collection started
on 2021/05/10. In addition, the planting day differ by 10 days from 2020 and 2021 growth
seasons, the exility days are: 2020/05/15 and 2021/05/04.

3.3. Root Depth and Plant Height Correlation—2020 Growing Season

Plant height varied across MZ and seasons, with a range of H maximum values
between 155.5 and 157.5 cm for 2020. Despite the infield variations of H values, the RD
average per MZ did not vary, and the growth curve stabilization took place when the
maximum values for RD were reached. Furthermore, the 2020 growing season results
demonstrate that RD and H stabilized at the same time, notably 24 days before root depth
stabilization (Figures 3 and 4)
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The investigation of Pearson correlations promoted a better understanding of the
relationship between plant in-soil and out-soil behavior. Figure 6 presents the cross-
correlation matrix between the average values of RD and H per MZ. The matrix shows a
high correlation among both parameters, independent of the placement of sample points,
with values up to 0.96.
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The correlation test of statistical significance helps to better understand the relation-
ship between the correlated variables and their nature, while taking sample size into
account [45–47]. Due to the small sample size, the t-statistic was used alongside the p-value
with alpha = 0.05 (Table 2). Regarding the magnitude of the t-statistic values, it can be
inferred that the correlation results are reliable and statistically significant, which is cor-
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roborated by a p-value < 0.05. Moreover, the null hypothesis is rejected since the t-statistic
(4–5) is above the critical value (~2). Together, the t-statistic and p-value support the high
correlation between H and RD, ruling out the hypothesis that the correlation between the
variables was a random error.

Table 2. Result of the statistical significance tests of the correlation between the average of RD and H
per MZ over the 2020 growing season.

Results Test MZ01 Test MZ02 Test MZ03

Var01 HMZ01 HMZ02 HMZ03
Var02 RDMZ01 RDMZ02 RDMZ03

Pearson Correlation 0.976 0.996 0.996
t-Statistic 4.134 4.876 5.051
p-value one-tail 0.007 0.004 0.004
t Critical one-tail 2.132 2.132 2.132

This statistical significance test was proceeded using alpha = 0.05.

3.4. Meteorological Variation during Plant Development

The meteorological data used in this section cover the period between the planting day
and either the RD stabilization for the 2019 growth season, or growth curve stabilization
for 2020 and 2021 growth seasons, both representing the tuberization period beginning,
named here the ICP for each growth season.

The crop development period until the RD maximum value was reached (2019) or
growth curve stabilization (2020 and 2021) was variable according to growing seasons. The
2019 and 2020 growing seasons had almost 80 days, and the 2021 growing season had
98 days until stabilization. The difference in the number of days until H max is probably
related to meteorological constraints and the day of planting.

Table 3 and Figure 7 present the meteorological data for the three growing seasons
until the ICP achievement. The 2019 and 2020 growing seasons had almost the same
features and distribution of liquid precipitation. Even though 2019 had less rain occurrence
(Pq) than 2020, the 2019 rain events lasted longer than in 2020, with nearly identical values
of cumulated precipitation (Pc) for both: 275.21 mm in 2019 and 250.21 mm in 2020. The
2021 growing season had higher Pc despite the small amount of liquid precipitation per
rain (<5 mm), probably because of the additional 18 days included, which encompassed
32 rain events across the 2021 growing season.

Table 3. Growing season meteorological standards from plantation to ICP.

Growing
Season

Days until ICP Pmax Pc Pq Tmax Tmin Tave SRmax

(Days) (mm) (mm) (Events) (◦C) (◦C) (◦C) (W/m2)

2019 80 22.81 275.21 31 30.77 −1.10 15.27 1276.90
2020 80 23.21 250.21 22 34.33 4.10 20.31 1276.90
2021 98 4.80 405.00 32 32.64 −1.18 17.58 1279.00

Unlike the liquid precipitation behavior, the temperature patterns were similar for
the 2019 and 2021 growing seasons in the form of Tmax, Tmin, and Tave (Tave < 18 ◦C).
The 2020 growing season had the highest Tmax (34.33 ◦C) and the lowest temperature
range. Regarding solar radiation, all growing seasons had an SRmax near 1280 W/m2.
The difference between them is the number of times the daily SR obtained values close to
SRmax. This happened more often during the 2020 growing season. These data help to
explain why this season was the warmest, having T ≥ 30 ◦C more often than the 2019 and
2021 growing seasons.
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Figure 7. Meteorological critical data for all growing seasons, specifically precipitation, solar radiation,
and temperature. The graphics concern the period until the achievement of growth curve stabilization,
which means that the period covered is variable according to the growing season. 2019 growing
season: 2019/05/09–2019/07/25 (a) liquid precipitation (mm) and (b) solar radiation (W/m2) and
temperature (◦C); 2020 growing season: 2020/05/15–2020/07/31 (c) liquid precipitation (mm), and
(d) solar radiation (W/m2) and temperature (◦C); and 2021 growing season: 2021/05/18–2021/08/21,
(e) liquid precipitation (mm) and (f) solar radiation (W/m2) and temperature (◦C).

4. Discussion

The results indicate that RD values are almost invariable over the field and even
among growing seasons. This result is not surprising, since root development is a physio-
logical issue [14,15,24,25,27]. Although RD does not seem sensitive to meteorological and
infield variations, the stabilization momentum should still vary across growing seasons
due to plant-physiological development. This behavior is compatible with the results
of some studies that indicate the influence of water on root density and potato plant
development [11,12,23,25–27].

In contrast to RD results, H data demonstrate that plant height is sensitive to spatial
variations, either in-field (MZs) or field placement (growing season), and to meteorological
variation. This result is compatible with other research stating that these factors are
important constraints on plant development [10,14,15,20–23,26]. Owing to meteorological
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standards and spatial variation, the H stabilization momentum and average values vary
over growing seasons when results are compared.

The inter-MZ absolute values for H and the H growth curve stabilization momentum
should vary over growing seasons. Together, meteorological data and H indicate that
the magnitude of these variations is related to weather patterns and local or regional
characteristics. Nevertheless, the heterogeneity of plant H values across seasons does not
affect the shape of the growth curve and its related H rate, indicating its independence
from environmental fluctuations. Thus, the maximum H value should be reached at the
same time for all crop plants, independent of in-field variations, but the period until the
ICP is reached will vary across growing seasons. Furthermore, no standard values of plant
height were identified as key values to predict the momentum of H stabilization, probably
because they are related to the physiological constraints of the crop.

Regarding results, it is possible to affirm that, whatever the fluctuation observed
in H values, the growth curve pattern may be replicable. Thus, the H growth rate was
appropriate for describing plant growth dynamics, since it relates to the changing intensity
in H increase over time, independently from the magnitude or the range of values reached.
Using the H growth rate instead of the H value itself improved the method’s performance
and applicability as the gradient normalizes the data.

Corroborating what some authors found [20,22,24,26,48], a strong correlation between
H and RD growth dynamics was detected. Moreover, the results indicate that it is inde-
pendent of placement, irrigation method, or weather variations. The RD values are almost
homogeneous, while the H values are variable according to the field MZs. This behavior is
expected as the atmosphere is a less stable environment than the soil [15,26]. Probably, the
growth dynamics of the plants change according to the environmental variations to supply
for in-soil development [15,20–22,24,25,27].

As for the regional weather pattern of the Quebec agriculture region, temperature,
precipitation, and solar radiation were improved mid-season (October) [9,41,49]. Similarly,
the length of the growing season can change according to these conditions [8–10]. For
example, during the 2021 growing season, plants needed more days until stabilization,
probably because of the amount and distribution of net liquid precipitation. Despite the
strong influences of climate on the growth of plants, especially on the H value, the growth
curve stabilization occurs when RD reaches its maximum value. This behavior is probably
the natural response of the crop for ensuring its physiological pattern, as already described
in the literature [8–10,20–22].

In general, the results also indicate that variations in meteorological standards should
impact crop yield because plant development patterns may shift in time, and the duration
of the growing season varies. Instead, the plant growing dynamic is not reshaped, but the
length of phenological stages change relatively to plants growth patterns as it is described
in the literature [8–10,20–22,27,50]. This plant adaptation to meteorological pattern changes
may cause crop yield constraints.

Because the H growth rate is independent of spatial and meteorological variations, it
succeeds in delivering both the H and the RD stabilization momentum (H rate ≈ 0). The
results prove that it was possible to determine the ICP for all growing seasons studied,
independent of meteorological or spatial variations. Thus, the H pattern is a key to accessing
the crop development dynamics via remote sensing data. Similarly, the stability of the
obtained results leads us to consider that, at an operational level, using the H growth rate
instead of real H values should improve the applicability of this methodology since, no
matter the range of H values, the growth rate may indicate the beginning of tuberization.

Even though this approach has performed well for Russet Burbank cultivated in the
fields studied, we consider that more data from other regions and potato types may increase
the reach and application of this technical approach.
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5. Conclusions

Meteorological and infield variations have a critical impact on plant height (H) but
not on root depth (RD) development, which is almost invariable across the field. However,
H growth rate demonstrated its potential for describing plant development dynamics and,
consequently, root stabilization momentum. Likewise, the plant growth rate is the key
to identifying the beginning of the tuberization period, and therefore the ICP in potato
crop fields.

Regardless, the changes in meteorological standards over the seasons highly impact
the plant development dynamics. Hence, the plant development phases can shift in time,
and the growing season duration should vary. Instead, the plant growing dynamic is not
reshaped, which impacts crop yield. For example, in an extreme situation, depending on
the weather, immature tubers can be harvested at the end of the growing season.

This research has proven that this critical momentum for potato crop fields, the ICP,
can be detected via the proposed remote-sensing approach without any punctual invasive
sampling. Moreover, this approach is based exclusively on plant development dynamics
and does not consider predefined values, coefficients, or dates. In the same way, it allows
for spatial and temporal flexibility. These characteristics ensure the ability to apply this
approach regardless of field placement, irrigation method, or soil characteristics.

Knowing the ICP with precision may have several positive effects on all production
processes, as it is crucial in tuber development. Since the proposed approach should
accurately determine when to start irrigation, it may avoid damages caused by early
irrigation and reduce water consumption. In addition, it is possible to use this approach to
benefit other practices in precision agriculture and smart farming.

To our knowledge, this is the first study aiming to develop an approach exclusively
based on the plant growth dynamics and directly using plant height measurements from
UAV MDEs. More data from different fields areas and from different potato types to
increase the reach of this technical approach are currently being acquired.
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