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Abstract: The ripeness phases of jujube fruits are one factor mitigating against fruit detection, in
addition to uneven environmental conditions such as illumination variation, leaf occlusion, overlap-
ping fruits, colors or brightness, similar plant appearance to the background, and so on. Therefore, a
method called YOLO-Jujube was proposed to solve these problems. With the incorporation of the
networks of Stem, RCC, Maxpool, CBS, SPPF, C3, PANet, and CIoU loss, YOLO-Jujube was able to
detect jujube fruit automatically for ripeness inspection. Having recorded params of 5.2 m, GFLOPs
of 11.7, AP of 88.8%, and a speed of 245 fps for detection performance, including the sorting and
counting process combined, YOLO-Jujube outperformed the network of YOLOv3-tiny, YOLOv4-tiny,
YOLOv5s, and YOLOv7-tiny. YOLO-Jujube is robust and applicable to meet the goal of a computer
vision-based understanding of images and videos.

Keywords: YOLO-jujube; fruit detection; ripeness inspection; sorting and counting

1. Introduction

Jujube (Ziziphus jujuba) is a fruit native to China, which is referred to as Chinese date
or red date in a dried state. It is high in vitamins and minerals, and low in calories. The
shape of jujube fruit ranges from round to pear-shaped with a thin, edible skin and whitish
flesh. The fruit turns from green to yellow-green with red-brown spots when ripe, and later
wrinkles, softens, and becomes fully red. The redder the fruit, the sweeter the fruit is. At
the same time, the mature phases of the fruit can be divided into white, crisp, and fully
ripe using color, flesh firmness, and composition (starch, sugar, acid, water). White mature
is close to full size and shape, which changes from green to greenish white with less juice
and sugar and more starch; at this stage, the fruit is picked for candying. Crisp mature is
half to fully red in color; the fruit becomes crisp, juicy, and sweet, and is harvested for fresh
consumption and a prolonged shelf-life. Fully mature fruit changes to full dark red and
becomes wrinkled with an increased sugar and decreased water content; at this stage, it is
mainly used for dried state fruit. For these reasons, the ripeness inspection of the fruit for
sorting becomes a difficult task, and hand-picking of the mature fruit is tedious and time
consuming. Consequently, it is necessary to develop an automatic jujube fruit detection
method for ripeness inspection. This is to replace the traditional hand-picking method of
fruit monitoring for quick and accurate sorting and counting.

Fruit detection using deep learning is a computer vision method used to localize and
classify targets in an image or video. It has been widely utilized for ripeness recognition,
yield prediction [1], harvesting/picking robot applications [2–4], fruit-quality detection [5],
fruit estimation, fruit counting [6], etc. Notwithstanding, the complex and changeable natu-
ral environment can be challenging for fruit detection. Leaf occlusion, overlapping fruits,
variation of illumination, colors or brightness, similar plant appearance as the background,
and nonstructural fields [7], among others, are some of these factors generally experienced
in fruits detection. Additionally, the intelligent perception and dataset acquisition of jujube
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fruits for sorting and counting due to their ripeness stages, clusters growth, and complex
background of leaves, branches, and stems becomes one of the most difficult tasks for the
fruit detection. Interestingly, the fruit detection model is a vital aspect of an automatic
recognition system, which contains a computer vision and computational platform; in other
words, the success of the detection, sorting, and counting of target fruit in an image or
video depends on the robustness of the fruit detection model.

You Only Look Once (YOLO) is a single-stage object detector that has shown remark-
able performance for fruit detection. The quest for speed, low computational cost, and
applicability to low power computing devices lead to the introduction of the tiny YOLO
structure. Baes on the YOLOv3-tiny [8], a fast and accurate kiwifruit detection method
developed by Fuet al. [9] reported an average precision (AP) of 90.05% and inference time
of 29.4 frames per second (fps). However, the model weight-size is still large with a slower
detection speed. The FL-YOLOv3-tiny proposed by Tan et al. [10] for underwater object
detection noted an AP of 10.9% and a 29% fps improvement on YOLOv3-tiny. Neverthe-
less, the robustness of the proposed model for generalization is still questionable. Gai
et al. [11] reported an AP of 95.56% and a speed of 35.5 fps, which was an improvement
on YOLOv3-tiny; however, it was not tested on fruits with complex background and it
has a large weight-size with a slower detection speed. Bochkovskiy et al. [12] upgraded
the YOLOv3 to YOLOv4. Similarly, Lawal [2] and Liu et al. [13] demonstrated that varia-
tion of illumination and occlusion factors of fruit detection is solvable using an improved
YOLOv3 model. The YOLO-Oleifera model proposed by Tang et al. [14], based on modified
YOLOv4-tiny, achieved an AP of 92.07% and had a weight-size of 29 MB and average
detection time of 32.3 fps to detect each fruit image. However, the detection time is still
slower with a large weight-size. A robust real-time pear fruit counter for mobile applica-
tions using YOLOv4-tiny by Parico et al. [15] recorded a speed of more than 50 fps and
an AP of 94.19%; however, it had an associated weight-size of 22.97 MB, which defines a
high computational cost. The GCS-YOLOv4-tiny [16] model for multi-stage fruit detec-
tion achieved an AP of 93.42%, with a model weight-size of 20.70 MB. Nevertheless, the
model was not tested for real-time detection, missed the detection in dense small images,
and the weight-size remained large. YOLOv5 [17], which has an excellent fast detection
speed relative to YOLOv4, was presented. The apple target detection model based on
the modified YOLOv5 developed by Yan et al. [18] reported an accuracy of 86.75% and
a detection time of 66.7 fps; however, it still needs further detection time improvement.
Owing to the version of YOLOv5s, Zhang et al. [19] introduced a ghost (Han et al. [20])
module and SCYLLA-IoU (SIoU) loss function into the network for improvement in the
detection of dragon fruit in the natural environment, which had an AP of 97.4% with
a weight-size of 11.5 MB. However, in this case, the target is obviously different from
the background; therefore, the generalization of the model is yet to be ascertained on
different fruit datasets with complex backgrounds, particularly for jujube fruits, and the
weight-size remains large. The YOLOv5s-cherry, proposed by Gai et al. [21] for cherry
detection, had a F1 of 0.08 and 0.03, which were higher than the YOLOv4 and YOLOv5s,
respectively, but also needs to be improved. A counting method of red jujube based on
the modified YOLOv5s proposed by Qiao et al. [22] recorded an AP of 94% and a speed of
35.5 fps using a ShuffleNetv2 [23] backbone. Nevertheless, the robustness of the model is
not certain because it was tested for only fully mature red jujube fruits and its detection
speed is slower. Recently, the YOLOv7, introduced by Wang et al. [24], was reported to
have surpassed other known object detectors, including YOLOv4 and YOLOv5, achieving
the highest accuracy of 56.8% and detection speed in the range from 5 to 160 fps on the
MS coco dataset. The extended efficient layer aggregate networks (E-ELAN) utilized by
YOLOv7 primarily focus on the parameters and computational density of the model for
performance improvement. Apart from Zhang et al. [19], who experimented on YOLOv7
and YOLOv7-tiny for dragon fruit detection and Chen et al. [25] with modified YOLOv7 for
citrus detection, the investigation on jujube fruit detection using YOLOv7-tiny is seldom.
A large weight-size and the parameters common to all mentioned YOLO variants are a
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big challenge to realize a faster detection speed and deployment in low-power computing
devices. More so, these methods were aimed at relatively sparse fruits to justify their high
AP and cannot solve the detection problem of small and dense fruits having a similar image
background. Therefore, it is necessary to address the factors of the fruit detection model,
including large weight-size and parameters, low detection speed, and accuracy, and to
investigate the seldom architecture using a jujube fruit dataset of small and dense images.

This study designed a detection network based on YOLOv5 to reduce the size of the
model and improve the speed and accuracy, which was used for real-time detection, sorting,
and counting of jujube fruit in complex scenes. The main contributions of this paper are
as follows:

(1) To produce a robust jujube fruit image dataset including both white and crisp mature
levels of ripeness with associated complex and changeable natural environments.

(2) Introduce the stem network for feature expression capability and the RCC network
for increased precision learning in the YOLO-Jujube network.

(3) Develop a YOLO-Jujube method that is fast, accurate, smaller in parameters, and
robust for generalization.

(4) Compare the performance of the proposed YOLO-Jujube with YOLOv3-tiny, YOLOv4-
tiny, YOLOv5s, and YOLOv7-tiny methods.

2. Materials and Methods
2.1. Dataset Information

The jujube fruit images were collected from the fruit planting base in Gaolang Red
Date Picking Garden, Linxian County, Luliang, Shanxi Province. Intelligent mobile phones
(Huawei mate30pro and mate40pro) were used to collect the images of jujube fruits. At
the white and crisp mature stages, the images were obtained in the morning, mid-day, and
afternoon with a constantly changing shooting angle and distance. The captured images
include complex and changeable conditions, such as varying maturity, leaf occlusion, fruit
overlap occlusion, superimposed fruit, dense target fruit, branch occlusion, back light,
front light, side light, and other fruit scenes. Figure 1 shows some of the obtained images
and Table 1 provides the image dataset information under different conditions. A total of
1959 images were collected using a resolution of 1904 × 4096 and 2736 × 3648 pixels in
JPG format, and recorded videos of jujube fruit in mp4 format (246.27 MB, 199.2 MB and
20.79 MB) were obtained to investigate the robustness and real-time detection speed. The
images were randomly divided into the training set (80%), validation set (15%), and the test
set (5%) for network training paradigms. The ground truth bounding boxes of each target
in an image were manually hand labeled into two-classes: 80R (Crisp mature) and 70R
(White mature) using the LabelImg graphical annotation tool. The assumed shape of the
target fruit was drawn without considering the complicated condition of the image, and the
annotation files were saved in the YOLO text format. The YOLO text format includes target
class, coordinates, height, and width. Finally, a total of 10912, 1921, and 637 bounding
boxes were generated from 1569 training set images, 292 validation set images, and 98 test
set images,. Table 2 describes the annotation details of the images, but the videos were not
annotated as unseen data to enable open counting of detection targets.

Table 1. Image dataset information under different conditions.

Time of Day Occlusions Dense Fruits Close Fruits Light Variation Others

Morning 280 95 131 105 39
Midday 268 99 150 110 33

Afternoon 270 85 166 92 36
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Figure 1. The conditions of images in the dataset under (a) similar background; (b) clusters; (c) occlu-
sion; (d) front light; (e) dense target.

Table 2. Annotation count (AC) details.

Division Images 80R 70R Boxes

Train 1569 8460 2452 10,912
Valid 292 1487 434 1921
Test 98 494 143 637

Total 1959 10,441 3029 13,470

2.2. YOLO-Jujube

As a build on the YOLOv5 [17], the proposed YOLO-Jujube method has a 1.0 depth
and 1.0 width multiple, and consists of a backbone, neck, and head network, as shown
in Figure 2. Figure 3 depicts all the components of the network. The backbone, termed
the JujubeNet, integrates the Stem, RCC, Maxpool, CBS, and SPPF network modules for
feature extraction. Stem is the first spatial down-sampling network used on the input
image; it increases the generalization capability and reduces the computation complexity of
the method. The incorporated RCC network combines ResNet [26] and CBS; both networks
were directly concatenated for information sharing, where the complementary features
of low-layer in CBS concatenates a high-layer in ResNet, as indicated in Equation (1),
where X ∈ RH×W×C1 is the low-layer features in CBS, C1 is the number of channels, and
W and H is the width and height, respectively. Y ∈ RH×W×C2 is the high-level features in
ResNet. O ∈ RH×W× (C1 +C2) is the concatenated features. The idea of the RCC is to enhance
the capacity of the network to learn more diverse features by expanding the number
of channels. The ResNet in RCC network is adopted to solve drops off from saturated
accuracy for deeper neural network and is also responsible for reducing parameters and
complexity. Meanwhile, the CBS is a convolution layer activated with SiLU [27] after
the batch normalization (BN) layer, and Maxpool is basically for down-sampling. The
added SPPF is a feature enhancement module that helps to reduce missed target detection.
According to Jocher et al. [17], SPPF is faster than spatial pyramid pooling (SPP) [28].

O = [X, Y] (1)

The neck part of YOLO-Jujube uses a path aggregation network (PANet) [29] for
multi-scale feature fusion. The three feature layers of different scales obtained in the
backbone continue to extract features in the neck network. PANet is used to promote a
well-generalized model and to maintain a balance between accuracy and speed. With all
things being the same as YOLOv5 for the neck, the number of C3 networks in Figure 2 was
pruned to one to reduce the model size and foster the detection speed. The head network
consumes map features from the neck to output the small, medium, and large scale of fruit
detection. It uses bounding boxes (anchors) on these features for the purpose of producing
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the fruit target class, score, and position. Similarly, non-maximum suppression (NMS)
was applied to select the appropriate fruit target and remove redundant information, and
complete intersection-over-union (CIoU) loss [30] function utilized for convergence speed
and localization accuracy. CIoU loss considered overlapping areas, the center distance, and
the aspect ratio of boxes to improve fruit detection accuracy.
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2.3. Experiment

The training and testing sets of this experiment were deployed on an Intel Core i7-
12700 CPU @ 64-bit 4.90 GHz, 32 GB RAM, NVIDIA GeForce RTX 3060 GPU, python
3.19.13, and torch-1.11.0 + cu113 with Ubuntu22.04LTS operating system. The proposed
YOLO-Jujube, including other compared methods as indicated in Table 3, takes an input of
640 × 640 pixels, 16 batch size, 0.937 momentum, 0.0005 weight decay, 0.2 IoU, 0.015 hue,
0.7 saturation, 0.4 lightness, 1.0 mosaic, and 120 epochs for training. The random ini-
tialization technique was adopted to initialize the weights for training all the methods
from scratch.

Table 3. List of trained models.

Methods Backbone Neck Loss

YOLOv3-tiny DarkNet FPN CIoU
YOLOv4-tiny CSPDarkNet PANet CIoU

YOLOv5s C3-CSPNet PANet CIoU
YOLOv7-tiny E-ELAN PANet-FPN CIoU
YOLO-Jujube JujubeNet PANet CIoU
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2.4. Evaluation

The evaluation metrics used for the jujube fruit detection performance were precision
(P), recall (R), F1, average precision (AP), speed, layers, number of parameters (Params),
giga floating point operations per second (GFLOPs), and weight size. The P, R, F1, AP, and
speed can be measured using Equations (2)–(6), respectively. TP is the true positive (correct
detections), FN is the false negative (missed detections), FP is the false positive (incorrect
detections), and P(R) is P is a function of R. F1 is the trade-off between P and R, and AP is
the overall detection performance. The network tends to perform better with an increase in
AP. Speed is measured in frames per second (fps). Params is used to measure the network
complexity. The layer is a network topology. GFLOPs is the speed of the network. Size is
used to measure the network weight.

P =
TP

TP + FP
(2)

R =
TP

TP + FN
(3)

F1 =
2× R× P

R + P
(4)

AP =
∫ 1

0
P(R)dR (5)

Speed =1/Inference (6)

The percentage difference (d%) in Equation (7) is basically used when the direction
of change is not known. It is measured as the absolute difference between two numbers:
|dC—AC| divided by the average of those two numbers, where dC is the detection count
while AC is the annotation count.

d% =
|dC −AC|
(dC+AC)/2

× 100 (7)

3. Results and Discussion
3.1. Accuracy and Speed

The presented validation loss of box in Figure 4a is used to predict the performance of
the methods by showing the consistent decreasing pattern. It measures the real location
of the target fruit in an image. Owing to the level of a deeper neural network, the box
validation loss of the YOLO-Jujube method is lower than other compared methods. This
phenomenon confirms that when methods learn, performance improves. This means that a
decreasing loss of the validation box is an increase in the AP, as shown in Figure 4. The
results obtained on the valid-set in Figure 4b verifies that the AP level seen in YOLO-Jujube
is higher than in YOLOv5s, YOLOv7-tiny, YOLOv4-tiny, and YOLOv3-tiny. At the same
time, the tested detection speed shows that YOLOv3-tiny at 435 fps is more than YOLOv4-
tiny at 313 fps, followed by YOLO-Jujube at 306 fps, YOLOv7-tiny at 303 fps, and YOLOv5s
at 238 fps in that order. However, the superiority of YOLO-Jujube over other methods is
attributed to its AP performance.

To justify the superiority of YOLO-Jujube, the methods were tested on a test set and
the result are displayed in Figure 5. Excluding YOLO-Jujube without missing detection in
the blue color circle or false detection in the yellow circle color, one-blue and one-yellow
is found in YOLOv3-tiny, one-blue is noted in YOLOv4-tiny, and two-yellow is observed
in both YOLOv5s and YOLOv7-tiny. Similarly, the general performance of the methods is
tabulated in Table 4. Except for the number of layers, the Params obtained from YOLO-
Jujube are 8% higher than YOLOv4-tiny, and 50.4%, 29.5%, 14.3%, respectively, lower
than YOLOv3-tiny, YOLOv5s, and YOLOv7-tiny. In the case of GFLOPs, YOLO-Jujube
is 9.8%, 24.7%, 29.8%, and 10.5% less than YOLOv3-tiny, YOLOv4-tiny, YOLOv5s, and
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YOLOv7-tiny, respectively. This is to justify the training speed of the methods. Meanwhile,
the obtained F1 score of YOLO-Jujube, at 84.2%, is 4.4%, 1.1%, 0.1%, and 2.0% greater than
YOLOv3-tiny, YOLOv4-tiny, YOLOv5s, and YOLOv7-tiny, respectively. To demonstrate
the outstanding performance among the methods, AP is used because it measures the
overall relationship of P−R, making it more accurate than the F1-score. Table 4 shows
that the AP performance of YOLO-Jujube is outstanding as it is 5.9%, 1.4%, 0.3%, and
3% higher than YOLOv3-tiny, YOLOv4-tiny, YOLOv5s, and YOLOv7-tiny, respectively.
Owing to the number of layers, the average detection speed of YOLOv3-tiny at 435 fps is
faster than YOLOv4-tiny at 323 fps, YOLO-Jujube at 245 fps, YOLOv7-tiny at 238 fps, and
YOLOv5s at 204 fps. The results revealed that the number of layers is a perfect indicator
for detection speed correlation compared to Params, which requires further investigation.
To establish that the performance of methods is dependent on the conditions of the dataset,
our finding using the jujube fruit dataset reveals that regarding the AP and weight-size,
respectively, YOLO-Jujube is 8.7% more than and 7.2% less than the proposed method
by Zhang et al. [19] for dragon fruit detection. Furthermore, the weight-size is reduced
and the detection speed is faster compared to other mainstream YOLO variants such as
YOLO-Banana [31], YOLO-Oleifera [14], GCS-YOLOv4-tiny [16], and so on. Considering
the performance of all methods, YOLO-Jujube is robust against the complex environment,
accurate, fast, and applicable to meet the goal of a computer vision-based understanding of
images with ripeness stages.
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is found in YOLOv3-tiny, one-blue is noted in YOLOv4-tiny, and two-yellow is observed 
in both YOLOv5s and YOLOv7-tiny. Similarly, the general performance of the methods is 
tabulated in Table 4. Except for the number of layers, the Params obtained from YOLO-
Jujube are 8% higher than YOLOv4-tiny, and 50.4%, 29.5%, 14.3%, respectively, lower than 
YOLOv3-tiny, YOLOv5s, and YOLOv7-tiny. In the case of GFLOPs, YOLO-Jujube is 9.8%, 
24.7%, 29.8%, and 10.5% less than YOLOv3-tiny, YOLOv4-tiny, YOLOv5s, and YOLOv7-
tiny, respectively. This is to justify the training speed of the methods. Meanwhile, the ob-
tained F1 score of YOLO-Jujube, at 84.2%, is 4.4%, 1.1%, 0.1%, and 2.0% greater than 
YOLOv3-tiny, YOLOv4-tiny, YOLOv5s, and YOLOv7-tiny, respectively. To demonstrate 
the outstanding performance among the methods, AP is used because it measures the 
overall relationship of P−R, making it more accurate than the F1-score. Table 4 shows that 
the AP performance of YOLO-Jujube is outstanding as it is 5.9%, 1.4%, 0.3%, and 3% 
higher than YOLOv3-tiny, YOLOv4-tiny, YOLOv5s, and YOLOv7-tiny, respectively. Ow-
ing to the number of layers, the average detection speed of YOLOv3-tiny at 435 fps is 
faster than YOLOv4-tiny at 323 fps, YOLO-Jujube at 245 fps, YOLOv7-tiny at 238 fps, and 
YOLOv5s at 204 fps. The results revealed that the number of layers is a perfect indicator 
for detection speed correlation compared to Params, which requires further investigation. 
To establish that the performance of methods is dependent on the conditions of the da-
taset, our finding using the jujube fruit dataset reveals that regarding the AP and weight-
size, respectively, YOLO-Jujube is 8.7% more than and 7.2% less than the proposed 
method by Zhang et al. [19] for dragon fruit detection. Furthermore, the weight-size is 
reduced and the detection speed is faster compared to other mainstream YOLO variants 
such as YOLO-Banana [31], YOLO-Oleifera [14], GCS-YOLOv4-tiny [16], and so on. Con-
sidering the performance of all methods, YOLO-Jujube is robust against the complex en-
vironment, accurate, fast, and applicable to meet the goal of a computer vision-based un-
derstanding of images with ripeness stages. 
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Table 4. Performance of the methods on the test set.

Methods Layers Param(m) GFLOPs P% R% F1% AP% Avg_fps

YOLOv3-tiny 38 8.7 12.9 83.8 77.2 80.3 82.9 435
YOLOv4-tiny 89 4.8 15.0 90.0 78.1 83.6 87.4 323

YOLOv5s 157 7.0 15.8 87.8 81.6 84.6 88.5 204
YOLOv7-tiny 146 6.0 13.0 85.4 80.2 82.7 85.8 238
YOLO-Jujube 134 5.2 11.7 87.9 81.7 84.7 88.8 245
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3.2. Sorting and Counting

The methods were subjected to sorting and counting of target fruits using the test
set and videos recorded to examine the level of robustness. The sorting involves the
tracking of each ripeness class followed by counting. Under the influence of occlusions
and a similar background image, including other complex conditions, the methods could
detect a number of target fruits, as displayed in Figures 6 and 7, with their detection
speed. YOLO-Jujube, as shown in Figure 6e, is excellent regarding the sorting and counting
two targets of 80R with a higher confidence score compared to YOLOv4-tiny (Figure 6b),
YOLOv5s (Figure 6c), and YOLOv7-tiny (Figure 6d) with a similar detection. Meanwhile,
YOLOv3-tiny (Figure 6a) was observed to have detected four targets, including incorrect
detections, showing less robustness. Just like Figure 6, Figure 7 was set for 70R target
fruits tracking. YOLO-Jujube, as shown in Figure 7e, sorted and counted seven targets
of 70R in the image, with a confidence score higher than YOLOv5s (Figure 7c) with the
same detection condition. YOLOv4-tiny (Figure 7b) and YOLOv7-tiny (Figure 7d) sorted
and counted eight targets of 70R with incorrect detections, while YOLOv3-tiny (Figure 7a)
sorted and counted six targets of 70R with missed detection. This proves that YOLO-Jujube
is more robust for sorting and counting compared to other methods, making it the best
candidate for fruit ripeness inspection.
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Table 5 shows the sorting and counting summary of target fruits detected in the test
set, including their average speed. Meanwhile, the subscript of L, C, and d% represent
label, count, and percentage difference, respectively. At an average speed of 357 fps, 286 fps,
227 fps, 256 fps, and 259 fps, respectively, for YOLOv3-tiny, YOLOv4-tiny, YOLOv5s,
YOLOv7-tiny, and YOLO-Jujube, the number of sorted and counted targets under 80RC in
YOLOv3-tiny is equal to YOLOv4-tiny > YOLOv5s > YOLOv7-tiny > YOLO-Jujube, and
the targets under 70RC in YOLOv7-tiny > YOLOv3-tiny > YOLOv4-tiny > YOLO-Jujube >
YOLOv5s. Comparing the value obtained from Tables 2–5, an increase in the number of
target fruits sorted and counted is indicated by false positive detections. Using Equation (7),
the number of false positive detections calculated from 80RCd% demonstrates that the
10.72% obtained with YOLO-Jujube is less than 12.35% with YOLOv7-tiny, 14.28% with
YOLOv5s, 15.67% with YOLOv4-tiny, and 15.67% with YOLOv3-tiny. In addition, for
70RCd%, 8.70% with YOLOv5s is less than 9.97% with YOLO-Jujube, 10.60% with YOLOv4-
tiny, 17.25% with YOLOv3-tiny, and 27.19% with YOLOv7-tiny. The overall outcome
reveals that the number of false positives detected on YOLO-Jujube is lower, confirming
the robustness compared to other methods.
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Table 5. Summary of sorting and counting on images in the test set.

Methods Avg_fps 80RL 80RC 70RL 70RC 80RCd% 70RCd%

YOLOv3-tiny 357 97 578 53 170 15.67 17.25
YOLOv4-tiny 286 96 578 54 159 15.67 10.60

YOLOv5s 227 96 570 52 156 14.29 8.70
YOLOv7-tiny 256 96 559 56 188 12.35 27.19
YOLO-Jujube 259 96 550 53 158 10.72 9.97

Having observed a similarity in the results on tested videos, real-time detection tested
on a video of 199.2 MB confirmed that the obtained average speed is similar in trend to the
outcome from Tables 4 and 5. Table 6 indicates the average detection speed of the compared
methods, including the total detected targets counted from the total number of frames in
the video. The number of sorted and counted for 80RC is the same for all methods, but
with different variations in 70RC, whereas the number of fruits target detections noted
in YOLO-Jujube has 256 more than the other method with the most detections, which is
YOLOv3-tiny. The re-write video of each method remains the aspect of a future study
because the number of detected fruits targeted do not correlate with obtained weight of
the video for both 80RCVS and 70RCVS. For YOLO-Jujube, having the re-write video of
585.8 MB under 80RCVS is higher than other methods, but becomes the least at 521.6 MB
under 70RCVS. Nonetheless, as 80RC and 70RC are created from 80RL and 70RL respectively,
the number of labels generated under YOLO-Jujube from 80RL and 70RL is, respectively,
2303 and 1511, which is more than other methods.

Table 6. Re-write video: Sorting and counting on 199.2MB video.

Methods Avg_fps 80RL 80RC 70RL 70RC 80RCVS (MB) 70RCVS (MB)

YOLOv3-tiny 370 2271 9998 1405 3841 585.2 526.7
YOLOv4-tiny 303 2279 9998 1479 3246 576.5 526.3

YOLOv5s 244 2272 9998 1503 3600 576.7 524.2
YOLOv7-tiny 270 2312 9998 1308 3199 578.8 527.0
YOLO-Jujube 276 2303 9998 1511 4097 585.8 521.6

4. Conclusions

The ability to detect the ripeness stages of jujube fruits is essential for inspection of
an automatic picking method. However, fruit detection is confronted with the challenges
of a complex and changing environment, including the phases of jujube ripeness. For this
reason, a YOLO-Jujube method was proposed in this paper based on YOLOv5 architecture
and validated using a new jujube fruits image dataset. The YOLO-Jujube incorporated
a network of Stem, RCC, Maxpool, CBS, SPPF, C3, PANet, and CIoU loss to improve
the fruit detection performance. The performance demonstrated that the Params from
YOLO-Jujube are 8% higher than YOLOv4-tiny, and 50.4%, 29.5%, and 14.3%, respectively,
lower than YOLOv3-tiny, YOLOv5s, and YOLOv7-tiny. For GFLOPs, to justify the training
speed, YOLO-Jujube is 9.8%, 24.7%, 29.8%, and 10.5% less than YOLOv3-tiny, YOLOv4-tiny,
YOLOv5s, and YOLOv7-tiny, respectively. In the case of AP, YOLO-Jujube is outstanding
as it is 5.9%, 1.4%, 0.3%, and 3% higher than YOLOv3-tiny, YOLOv4-tiny, YOLOv5s, and
YOLOv7-tiny, respectively. At the same time, the detection speed, which is dependent
on layers, is measured as follows: YOLOv3-tiny 435 fps, YOLOv4-tiny 323 fps, YOLO-
Jujube 245 fps, YOLOv7-tiny 238 fps, and YOLOv5s 204 fps. The calculated number of
false positives detected during the sorting and counting process found in YOLO-Jujube
is less than YOLOv3-tiny, YOLOv4-tiny, YOLOv5s, and YOLOv7-tiny. In all, YOLO-
Jujube is robust and applicable for ripeness inspection. Future work will further improve
the detection performance of the proposed method in terms of accuracy and a smaller
number of network parameters, and to make it extendable to other agricultural products
for investigation.
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