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Abstract: One of the most important food crops is rice. For this reason, the accurate identification
of rice pests is a critical foundation for rice pest control. In this study, we propose an algorithm for
automatic rice pest identification and classification based on fully convolutional networks (FCNs)
and select 10 rice pests for experiments. First, we introduce a new encoder–decoder in the FCN and a
series of sub-networks connected by jump paths that combine long jumps and shortcut connections
for accurate and fine-grained insect boundary detection. Secondly, the network also integrates a
conditional random field (CRF) module for insect contour refinement and boundary localization, and
finally, a novel DenseNet framework that introduces an attention mechanism (ECA) is proposed to
focus on extracting insect edge features for effective rice pest classification. The proposed model was
tested on the data set collected in this paper, and the final recognition accuracy was 98.28%. Compared
with the other four models in the paper, the proposed model in this paper is more accurate, faster, and
has good robustness; meanwhile, it can be demonstrated from our results that effective segmentation
of insect images before classification can improve the detection performance of deep-learning-based
classification systems.

Keywords: pest identification; FCN; DenseNet; attention mechanism

1. Introduction

Climate, ecology, natural catastrophes, and many other factors have profound impacts
on the production of grains, with insect damage being one of the major factors affecting
crop productivity. Numerous crops, including wheat, maize, and rice, have lower yields as
a result of agricultural pests. Hence, to effectively control pests, it is necessary to predict the
occurrence trend, quantity, population dynamics, and potential damage of pests, while real-
time and accurate forecasting is very important. The correct identification and classification
of rice pests is a prerequisite for the prevention and management of rice pests. Insect experts
or insect taxonomists typically carry out traditional insect classification and identification
work based on specialized expertise, research experience, or reference maps. However, a
lot of time and effort are required by this method, which has generally low work efficiency
and extremely unstable accuracy [1]. The development of an automatic identification and
classification system of pests will remarkably reduce the labor intensity of plant protection
personnel and improve the accuracy of forecasting, thereby reducing the loss of rice yield.

With the continuous development of Internet technology, the use of computer vision
technology for pest identification has gradually been widely studied. Many works in the
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literature have applied the traditional machine vision technique to pest identification [2,3].
However, this method not only has difficulty in meeting actual needs, but also the general-
ization ability and robustness of the model are relatively poor. In the past few years, with
the continuous development and updating of artificial intelligence technologies, such as
deep learning technology and big data technology, more possibilities have emerged for
examining the pest identification problem [4]. Rice is considered one of the most important
food crops, and its yield directly affects many issues, such as food security. Rice will in-
evitably be affected by different pests during the growth process. Thus, controlling the scale
of pests and diseases at an appropriate time can reduce the amount of pesticide spraying
and avoid a large reduction in rice production. Therefore, the accurate identification of
pests has become an important basis for pest control, which renders the investigation of the
rice pest identification technology particularly important.

Currently, the scientific community has more options to create increasingly automated
systems that can accurately recognize objects of any kind thanks to the astonishing progress
of picture classification [5]. Yang et al. [6] used the shape of the insect image, extracted
the features with color, and then utilized the radial basis neural network to classify it with
an accuracy rate of 96%. Zhang et al. [7] proposed a faster R-CNN framework that was
composed of automatic recognition algorithms for two types of insects. The recognition
accuracy rate of this model reached 90.7%. Chen et al. [8] reported the combination of
machine learning and convolutional neural networks to identify five kinds of corn pests in
the northeast cold region. Cheng et al. [9] introduced a deep convolutional neural network.
After the feature extraction was performed with color, the accuracy rate for classification
using a radial basis neural network was 97.6%. Based on the standard convolutional neural
network, Sun et al. [10] introduced the attention mechanism and created a convolutional
neural network model based on the attention mechanism to recognize soybean aphids.
However, the above methods still have defects, such as insufficient sample size of data,
complex data preprocessing, insufficient feature extraction, large fluctuation of model
fitting degree, similar target features, etc. Moreover, the features vary greatly among
different insects and there are many types of rice pests, the above methods do not have
relevant parameter adjustment and optimization for rice pests, and the models do not have
good generalization, so they are not applicable to the classification of rice pests.

Segmentation is the basic stage of recognition and classification. The main purpose is
to filter the image noise that is generated when the image is collected, remove the redun-
dant background information of the target image, and extract the target object in a targeted
manner to extract accurate, concise, and expressive feature information in the follow-up
work. Before the advent of fully convolutional networks (FCN) [11], there were also some
traditional methods for semantic segmentation, such as normalized cut [12], structured ran-
dom forests [13], and SVM [14]. FCN is the first network that delves semantic segmentation
to the pixel level, because FCN avoids the problem of repeated storage and computational
convolution due to the use of pixel blocks; therefore, FCN is more efficient than traditional
networks based on conventional convolutional neural networks (CNNs) [15] for segmenta-
tion, and there is no limit on the input image size. DenseNet proposes a more radical dense
connection mechanism: interconnecting all layers. Specifically, each layer accepts all the
previous layers as its additional input. Due to the dense connection approach, DenseNet
improves the back propagation of gradients, making the network easier to train and with
smaller and more computationally efficient parameters. To better solve the pest classifica-
tion problem, we proposed a simple and efficient full convolutional network based on FCN
and introduced an encoder–decoder CRF network, long-hop and short-hop connection
mechanisms to solve the problems of the poorly segmented and detail insensitive FCN, and
an efficient channel attention (ECA) mechanism [16] of the DenseNet network to further
enhance the performance of the network. While strengthening the extraction of insect
features, the extraction of invalid background features is inhibited, so as to improve the
identification accuracy and generalization ability of the network and ensure the efficient
and accurate identification of insect pests.
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2. Materials and Methods
2.1. Experimental Data Set

The source of the data stems from the intelligent insect forecasting lamp, and the
location is multiple rice fields in Shuangyang District and Jiutai District, Changchun City,
Jilin Province, from July to September 2021. The intelligent insect forecasting lamp was
automatically turned on after sunset every day, and the trapped insects were heated and
inactivated by the electric heating plate to make it easier to shoot. Finally, the white
conveyor belt was used to tile the insect corpses. The rolling time can be set according to
the period of a high incidence of the insect pests and the conveyor belt can be manually
and remotely controlled to ensure that the data are not repeated and are not unreliable. The
industrial camera was used for vertical shooting, and the shooting was synchronized with
the rolling of the transmission belt. The model of the industrial camera was MV-CE120-
10UM/UC 1/1.7′CMOS MV-CE120-10UC with 12 million pixels, while the manufacturer
was HIKROBOT. It can also be shot manually and remotely at any time. The resolution was
4024 × 3036, the unit was px, and 4236 original pictures were obtained. The captured insect
images were automatically uploaded to the cloud database for subsequent processing. Part
of the original images are depicted in Figure 1.
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Due to the impact of the wild biodiversity, collection locations, and other factors,
most of the insect populations are relatively small. In order to ensure the reliability of
the experiment and the accuracy of the classification, according to the data collection of
the actual local insect species, the classification was carried out with reference to the 2022
version of the “Catalogue of Biological Species in China”. The relevant experts from the
Animal Science and Technology College of Jilin Agricultural University also provided
valuable help. The most harmful insect pests are Chilo suppressalis (Lepidoptera:Pyralidae),
Naranga aenescens (Lepidoptera:Noctuidae), Cnaphalocrocis medinalis (Lepidoptera:Pyralidae),
Nilaparvata lugens (Homoptera:Delphacidae), Agrotis ypsilon (Lepidoptera:Noctuidae), Gryl-
lotalpa sp. (Orthoptera:Grylloidea), Mythimna separata (Lepidoptera:Noctuidae), Helicoverpa
armigera (Lepidoptera:Noctuidae), Gryllidae (Orthoptera:Gryllidae), and Holotrichia diomphalia
(Coleoptera:Melolonthidae) as the target insects. Since the traps are based on the phototaxis
of insects, the identification studies in this work are for adults. The insects in the original
image have great uncertainty, while the repeated and wrong images were removed through
manual screening. In order to facilitate the display of the pest images, the target insects
in the acquired data were marked and classified. The tagging work was completed by
using the software Visual Object TaggingTool(VoTT)v2.2.0 developed by Microsoft Cor-
poration, and the storage format was PascalVOC. The experimental data set had a total
of 2225 pictures. Among them, there are 422 pictures of C. suppressalis, 356 pictures of
N. aenescens, 335 pictures of C. medinalis, 256 pictures of N. lugens, 239 pictures of A. ypsilon,
123 pictures of G. sp, 366 pictures of M. separata, 189 pictures of H. armigera, 125 pictures of
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Gryllidae, and 128 pictures of H. diomphalia. Partial images of some rice pests selected from
the test set are shown in Figure 2.
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2.2. Data Augmentation

In deep learning, for the training of convolutional neural networks, a large amount
of data sets is often required. Otherwise, various phenomena such as overfitting and low
recognition accuracy will take place. However, under the existing conditions, due to the
difficulty in collecting rice pest data sets, and the lack of existing rice pest data, some
data expansion methods were used here to achieve the purpose of increasing the data set.
Particularly, shift, scale, rotation, flip, noise, brightness, and other data expansion methods
were utilized to expand the original data set by 10 times, which corresponds to 4220 pictures
of C. suppressalis, 3560 pictures of N. aenescens, 3350 pictures of C. medinalis, 2560 pictures
of N. lugens, 2390 pictures of A. ypsilon, 1230 pictures of G. sp, 3660 pictures of M. separata,
1890 pictures of H. armigera, 1250 pictures of Gryllidae, and 1280 pictures of H. diomphalia.
According to the ratio of 6:2:2, these were divided into training data, verification data, and
test data.

3. Model Refinement

By using the FCN algorithm as the basic framework, the DenseNet as the feature
extraction network of the FCN algorithm, and introducing the channel attention mechanism,
a rice pest recognition algorithm was proposed. We named the proposed model in this paper
FCN-ECAD for ease of presentation and use. In Figure 3, the methodological framework of
this study is described and illustrated and in the follow-up is thoroughly discussed.
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3.1. Feature Extraction Based on Encoder–Decoder Network

Figure 4 depicts the network’s encoder and decoder parts, each of which has five
different successive phases. Each stage consists of a cascaded layer, a ReLU activation
layer, a convolutional layer with a 3 × 3 kernel size, and a series of skip routes. In the
final step, there are 1024 convolutional filters instead of the initial 64. Moreover, instead of
using the typical short jump connections, a sequence of jump pathways with both long and
short jump connections was created. Nonlinearities were also added by using the ReLU
activation module, which might hasten the network’s training.
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Additionally, the downsampling function was carried out by the encoder component
using a max pooling module. As indicated in the equation, the decoder portion passes the
pooled index to the appropriate upsampling layer after a feature vector has been retrieved
from the input picture by employing a convolutional layer and downsampling by half
using a max pooling module (1).

Yi = U(F(I : r) : d) (1)

where the final output, F denotes the downsampling feature map, r represents the RELU ac-
tivation function, d stands for the downsampling module, and U is the upsampling module.

The decoder then applied an upsampling layer and multiplied the sample size by a
factor of 2 to the feature vector from the preceding layer. In order to offer rich information,
prevent gradients from dissipating, and restore the lost feature information, the matching
output feature maps of the matched encoder component were next concatenated with these
feature vectors. With a convolutional layer that has a 1 × 1 kernel and a softmax module,
the decoder component was finished. The projected split was discovered to correspond to
the class with the highest probability for each pixel by using a softmax classifier and the
probability output from the N-channel image, as demonstrated by Equation (2).
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P(y = i| x) = exTwi

∑
n=1

exTwn
(2)

where x is the feature map, w refers to the kernel operator, and n represents the number
of classes.

3.2. Long-Hop and Short-Hop Connections

Figure 4 depicts the usage of the skip route of both long-hop and short-hop connections.
As a reinforcement learning strategy for effective feature extraction, the system used
short-hop connections to create very deep FCNs. Shortcut connections were also used
to accelerate feature extraction and learning by using 2 × 2 convolutional layers. The
method utilized a variety of skip pathways to hierarchically integrate downsampled and
upsampled features and bring the encoder feature map’s semantic level closer to that of the
decoder. The spatial information that was lost during downsampling was replaced in the
long-hop connections utilized for the upsampling step by the extracted features.

3.3. CRF

The CRF algorithm [17] is a standard algorithm that is widely used in edge detection.
The CRF algorithm was introduced to ensure contour refinement and insect boundary
localization to improve classification performance.

3.4. Feature Extraction Network DenseNet

In this work, DenseNet was adopted for insect feature extraction because the best
performance based on the ImageNet classification task is provided. The TOP-1 of those
popular pretrained models is summarized in Ref. [18] and the comparison results are
displayed in Figure 5. As can be observed, DenseNet outperformed other pretrained
models. Therefore, DenseNet was chosen as the feature extraction model in this work.
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Figure 5. Comparison of the pretrained models.

A deeper network with dense connections was created via DenseNet. The dense block
layer, which aimed to maximize information flow between network layers, is considered
the most crucial component of the architecture [19]. Each layer in this architecture receives
input from all layers before it and passes the feature mappings to all layers after it. The
efficient transmission of the earlier features to the later ones for automatic feature reuse
is made possible by these brief connections between the layers near the input and output.
As a result, this network topology may be trained more precisely and effectively, and
it can be utilized to extract more general and significant properties. Some works in the
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literature have merged the features that were previously derived from each layer and then
reprocessed the features [20–22]. This technique, which is just a basic concatenation of
various feature maps, was not meant to promote feature reuse between layers. As a result,
as illustrated in Figure 6, all prior levels were taken into consideration as input layers rather
than integrating all feature maps.
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Therefore, unlike some traditional network structures, there are l(l + 1)/2 connections
instead of only l connections in the l layer. In this way, the input feature map of layer l can
be calculated based on the previous layers.

xl = Tl([x0, x1, ..., xl−1]) (3)

where [x0, x1, . . . xl−1] represents the concatenation of layer 0, layer 1, and layer l−1
feature maps, respectively. In addition, the feature maps were concatenated dimension-
ally rather than using the pointwise sum as a reference. In the nonlinear transformation,
(1) convolution, pooling [23], and rectified linear units [24], among other processes, can
be found in Tl(·). For concatenated operations, each dense block consists of several sets
of 1 × 1 and 3 × 3 convolutional layers with the same padding. Despite using tightly
connected patterns, this structure employed fewer parameters than the conventional convo-
lutional networks. In fact, this network architecture decreased the number of feature maps
needed for network layers and did away with the need to learn redundant information.
The parameter efficiency was thereby greatly increased. On the other hand, consecutive
cascades of various layers necessitate access by each layer to the gradients from the initial
input data, as well as the loss function. This quick access enhanced the communication
across layers and lessened the disappearing gradient issue. This strategy of feature reuse
aided in the development of a deeper network architecture and the extraction of deep
semantic relations.

3.5. Channel Attention Mechanism

The attention mechanism was added to concentrate on extracting the target insect
features in the image in the complex environment of the rice field, which was impacted
by the wild biodiversity and diverse backgrounds. In order to boost the efficiency of
the deep convolutional neural networks, the ECA-Net attention module was used here,
which was a lightweight module. More specifically, it concentrated on the extraction of
significant features and suppressed the unimportant features by combining the depth and
spatial information of feature maps with an effective attention module. In challenging
environments, the extraction can effectively increase the field insects’ recognition accuracy.
The ECA-Net diagram is shown in Figure 7. First, the input feature map underwent global
average pooling, whereas each channel’s feature layer was represented by a single value. To
obtain the interdependence between each channel and their relationship, a one-dimensional
convolution with a size of k was used in the second step. A Sigmoid activation function
was then added for normalization, and finally, the weights of each channel were multiplied
with the input feature map to strengthen the extraction of significant features.
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ECA used a one-dimensional convolution of size k to interact across channels instead
of a fully connected layer, which can effectively reduce the amount of computation and
complexity of the fully connected layer, and then generate weights for each channel, namely

ω = δ (CIDk(y)) (4)

In the formula, ω denotes the channel weight, δ is the Sigmoid activation function,
and CID represents a one-dimensional convolution. The existence of more channels of the
input feature map leads to a greater value of local interaction. As a result, the value of k
is proportional to the number of channels, C. The dimension-related function adaptively
determines the value of k, namely

C = 2(γ·k−b) (5)

k =

∣∣∣∣ log2(C)
γ

+
b
γ

∣∣∣∣
odd

(6)

As shown in Figure 8, the new DenseNet network consists of dense block layers,
efficient channel attention layers, averagepool, and a fully connected layer.
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3.6. Lab Environment

The experimental environment is presented in Table 1.
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Table 1. Machine configuration information table.

Projects Content

Central Processing Unit Intel (R) Core (TM) i7-7700K CPU @ 4.20 GHz (Santa Clara, CA, USA)
Memory 32 G

Video card NVIDIA GeForce GTX TITAN Xp (Santa Clara, CA, USA)
Operating System Ubuntu 5.4.0-6ubuntu1~16.04.5

CUDA Cuda 8.0 with cudnn
Data Processing Python 2.7, OpenCV, and TensorFlow

3.7. Evaluation Standard

The following standard metrics were adopted here to measure the performance of the
proposed system at different stages. It was defined as follows:

Dice Similarity Coefficient: This is a similarity measure between ground truth and
predicted results.

DSC =
2TP

FP + 2TP + FN
(7)

Accuracy: This is the proportion of the correctly predicted observations out of the
total observations.

Accuracy =
TP + TN

TP + TN + FP + FN
(8)

where

TP is defined as the positive sample predicted by the model as a positive class.
TN represents the negative samples predicted by the model as negative classes.
FP denotes the negative samples predicted by the model as positive.
FN refers to the positive sample predicted by the model as a negative class.

4. Results and Analysis
4.1. Parameter Settings

In experiments, a batch training approach was used to more effectively assess the dis-
crepancy between the ground truth and the anticipated values. Other parameters include
the following: loss function = cross-entropy loss; weight initialization method = Xavier; ini-
tialization bias = 0; initial learning rate of the model = 0.001; batch size = 16; momentum = 0.9;
stochastic gradient descent (SGD) optimizer; and Softmax classifier. The model was re-
duced by 0.1 every 10 iterations. A total of 51 training epochs were completed, the input
picture size was changed to 224 × 224, and the fused model was then combined with the
final stored model.

4.2. Segmentation Process Method

In this part, the effectiveness of our suggested framework for automated segmentation
and classification was assessed, and the findings are contrasted with the effectiveness of
current approaches. The segmentation unit operates in two stages: only the multi-scale
detection encoder–decoder network’s performance was assessed in the first phase. The
effectiveness was assessed in comparison to the techniques already in use, as indicated in
Table 2. The encoder–decoder network and CRF module were merged in the second step,
after which the performance was once again assessed. Only then were the results compared
to the performance of the encoder–decoder system. Figure 9 compares the outcomes of the
performance measures. The result was subsequently sent to a classification network for
further processing.
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Table 2. Segmentation performance comparison between our model and existing models.

Techniques Accuracy (%) Dice Score (%)

Proposed model 95.50 92.10
FrCN [25] 94.03 87.08

CNN-HRFB [26] 93.80 86.20
FCN [26] 92.70 82.30
iFCN [27] 95.30 88.64

DCL-PSI [28] 94.08 85.66
Agronomy 2023, 13, 410 11 of 15 
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Figure 9. The figure compares the general performance of the encoder-decoder network using
accuracy and Dice-coefficient when used with CRF and when used without CRF.

4.3. The Comparison of Different Classification Models

In order to verify the effectiveness of the model, different recognition models under the
same experimental conditions were selected for comparative experiments. Since the stan-
dard deep convolutional neural network models VGG-16 [29], VGG-19 [29], ResNet50 [30],
and DenseNet have achieved good recognition results in different fields, they were selected
as the comparison model for this experiment. Table 3 shows the comparison results of each
model test. The test accuracy and loss curves of the proposed model and the compared
models are depicted in Figure 10.

Table 3. Classification experiment results of each model.

Techniques Size (MB) Loss (%) Test Accuracy (%) Test Time/Image (ms)

VGG-16 800.33 35.45 81.98 153.30
VGG-19 832.45 33.34 87.94 163.10

ResNet50 95.23 19.33 90.74 104.50
DenseNet 75.43 29.34 91.37 98.80

FCN-ECAD 143.50 6.55 98.28 69.20

As can be seen from Table 3, the test accuracy of the VGG16 model was 81.98%,
which was obviously not suitable for this experiment. The recognition accuracy of the
VGG19 model was higher than that of the VGG16 model, mainly because of the three-layer
convolution added by VGG19 on the basis of VGG16. Hence, it can be inferred that the
performance was improved. However, the amount of calculation and model memory also
increased. Compared with VGG, the ResNet50 model based on different sparse structure
designs reduced a large number of model parameters, and the performance was also
significantly improved. The test accuracy rate reached 90.74%. The improved FCN-ECAD
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model in this work has a test accuracy rate of 98.28%, which was obviously better than
other models, the model size was also small, only 143.5 MB, and the memory usage was
very small.
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Table 3 also lists the detection time of the model in this work and other deep network
models for the recognition of a single insect image. Each deep neural network model
carried out 10 tests on a single image, and finally, the average test time was taken as the test
detection recorded the results. As can be seen from the test results, VGG-19 required the
longest time to detect a single image, with an average detection time of 163.1 ms. ResNet50
and DenseNet single-sheet detection times were 104.5 ms and 98.8 ms, respectively. The
FCN-ECAD model proposed in this work only took an average of 69.2 ms to detect a single
image, which was more suitable for the rapid detection of rice pest images.

According to the above-mentioned table, it can be concluded that under this model,
the classification of rice pest data can obtain a high accuracy rate. As can be observed from
Table 4, three insects, namely HolotrichiadiomphaliaBates, Gryllidae, and mole cricket,
have a higher recognition success rate. This is because compared with other insects, the
characteristics of these three insects are more obvious, and the characteristics can be easily
extracted for recognition. The accuracies of armyworm and cutworm were relatively low.
This is because the data sets of these two insects have similar appearance characteristics in
some body shapes, and it was difficult to extract effective feature points for identification.
The brown rice planthopper had the lowest accuracy rate, because compared to other
insects, the brown rice planthopper was too small in size, the pixels in the original data
were very low, and the feature points were difficult to extract. Therefore, the accuracy of
the developed model was not high. In the future, the detailed extraction of feature points
should be further improved.

Table 4. Classification results of different kinds of pests.

Label FCN-ECAD (%) Vgg16 (%) Vgg19 (%) ResNet50 (%) DenseNet (%)

C. suppressalis 98.89 81.23 86.56 88.97 90.43
N. aenescens 98.99 80.38 87.88 89.99 91.58
C. medinalis 97.28 79.99 87.56 89.69 90.43

N. lugens 96.42 75.25 80.95 85.63 87.63
A. ypsilon 97.33 81.98 86.89 90.45 91.22

G. sp 99.53 85.65 92.33 94.21 94.38
M. separata 97.35 78.65 88.15 91.59 89.92
H. armigera 98.49 82.79 87.68 90.24 90.34
Gryllidae 98.98 86.78 91.58 92.99 93.87

H. diomphalia 99.58 87.11 89.87 93.65 93.99
Average 98.28 81.98 87.94 90.74 91.37
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Insects of the same family tend to have similar morphological characteristics. Hence, it
was difficult to classify them precisely. Compared with other models, as shown in Table 4,
when the model in this work recognized insects with large differences, the model accuracy
can reach about 99%. When identifying insects with inconspicuous characteristics and
small differences, the accuracy of the model can also reach about 98%. The algorithm
in this work had a high recognition accuracy rate in the recognition of similar insects,
which demonstrates that the proposed algorithm has good robustness. It also has high
performance for object classification with similar features.

4.4. Impact of ECA on Model Performance

The improvement of the model can be divided into two cases: ECA with an attention
mechanism and ECA without an attention mechanism. The three aspects of recognition
accuracy, model size, and detection time of a single image were also compared. The results
are shown in Table 5.

Table 5. Model experiment accuracy with or without ECA.

Techniques Test Accuracy (%) Size (MB) Test Time/Image (ms)

Proposed model without ECA 94.34 142.67 68.40
Proposed model with ECA 98.28 143.50 69.20

The improved model had a higher accuracy rate on the training set and test set,
and whether there is an attention mechanism ECA in the model has a greater impact on
the accuracy of the model. After the attention mechanism ECA was added, the model’s
accuracy rate increased from 94.34% to 98.28%, which was a significant improvement.
In addition, the model size only increased by less than 8 MB. This is because, during
the process of feature extraction, the incorporation of the ECA attention mechanism can
effectively strengthen the extraction of complex background insect features, prevent the
occurrence of overfitting phenomenon, ensure that the network learns effective feature
information, and greatly improve the accuracy rate.

5. Conclusions

This research offers some new approaches in segmentation and classification methods
for rice insect pest images by using deep learning techniques. Firstly, we introduced a new
encoder–decoder in the FCN and a series of sub-networks connected by jump paths that
combine long jumps and shortcut connections for accurate and fine-grained insect boundary
detection. Secondly, the network also integrates a CRF module for insect contour refinement
and boundary localization, and finally, a novel DenseNet framework that introduces an ECA
is proposed, focusing on extracting insect edge features for effective rice pest classification.
The proposed model was tested on the data set collected in this paper with a final accuracy
of 98.28%, showing a better performance than existing methods. Moreover, the model in
this paper also maintains high model accuracy with good robustness in the classification
of small target insects and insects with the same physical characteristics, while it can
be demonstrated from our results that effective segmentation of insect images prior to
classification can improve the detection performance of deep-learning-based classification
systems. This paper solves the problem of the rice insect pest classification and provides a
theoretical basis for the subsequent research of agricultural pest identification.
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