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Abstract: High-precision observations provide an efficient way to calculate greenhouse gas emissions
from agricultural fields and their spatial and temporal distributions. Two high-resolution laser
heterodyne radiometers (LHRs) were deployed in the suburb of Hefei (31.9◦N 117.16◦E) for the
remote sensing of atmospheric CO2, CH4 and N2O above rice paddy fields. The atmospheric
transmittance spectra of CO2, CH4 and N2O were measured simultaneously in real time, and the
atmospheric total column abundance was retrieved from the measured data based on the optimal
estimation algorithm, with errors of 0.7 ppm, 4 ppb and 2 ppb, respectively. From July to October,
the abundance of CO2 in the atmospheric column that was influenced by emissions from rice fields
increased by 0.7 ppm CH4 by 30 ppb, and by 4 ppb N2O. During the rice growth season, rice paddy
fields play a role in carbon sequestration. CH4 and N2O emissions from paddy fields are negatively
correlated. The method of baking rice paddy fields reduces CH4 emissions from rice fields, but N2O
emissions from rice fields are usually subsequently increased. The measurement results showed that
LHRs are highly accurate in monitoring atmospheric concentrations and have promising applications
in monitoring emissions from rice paddy fields. In the observation period, rice paddy fields can
sequester carbon, and CH4 and N2O emissions from rice fields are negatively correlated. The LHRs
have strong application prospects for monitoring emissions from agricultural fields.

Keywords: laser heterodyne radiometer; carbon dioxide; methane; nitrous oxide; field measurement

1. Introduction

Carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) are the three most
important anthropogenic greenhouse gases (GHGs) in the atmosphere and play a role
in global warming [1–3]. CO2 has a lifetime in the atmosphere for several decades to a
century [4]. The concentration of CO2 in the atmosphere has increased from 178 parts per
million (ppm) to 420 ppm since the Industrial Revolution, and has increased by 3 ppm
per year in recent years. CH4 and N2O are classified as important greenhouse gases other
than CO2. The changes in CH4 and N2O concentrations are considered as critical factors
that influence the atmospheric greenhouse effect. The lifetime of CH4 in the atmosphere is
about 12 years, and the global average total column abundance of CH4 in 2020 was 1920
parts per billion (ppb). N2O has a lifetime of 114 years, and the global average total column
abundance of N2O was about 340 ppb in 2020. Within 100 years, the warming potentials of
CH4 and N2O will be 25 and 300 times higher than those of CO2, respectively [5,6]. More-
over, nitric oxide (NO), the product of N2O photolysis which occurs in the stratosphere,
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depletes stratospheric ozone and leads to the destruction of the structure of the ozone layer.
From 1990 to 2019, global agricultural GHG emissions increased by 17%. Agroforestry
sources account for 22% of total global greenhouse gas emissions, whereas agricultural
sources account for 14% of total global greenhouse gas emissions. Rice fields are considered
one of the major sources of greenhouse gas emissions in agroecosystems [7]. Under climate,
vegetation, soil and anthropogenic disturbance, the organic matter of farmland soil is
decomposed by microorganisms into inorganic carbon and nitrogen, and the inorganic
carbon is mostly released into the atmosphere as CO2 under aerobic conditions and as
CH4 under anaerobic conditions. Nitrogen is converted to nitrate nitrogen by nitrifying
bacteria, nitrate nitrogen is converted to various states of nitrogen oxides by denitrifying
bacteria and N2O is produced during both nitrification and denitrification. More than half
of global N2O is the product of nitrification and denitrification in soils [8]. China is a large
rice growing country, with the second largest rice growing area in the world and great
potential to achieve high yields and low emissions. Reducing GHG emissions from rice
fields requires not only innovative rice management practices, but also accurate estimates
of GHG emissions from rice fields and research on the spatial and temporal characteristics
of greenhouse gas emissions. Monitoring the production, emission and transport of GHGs
during rice production can help to assess the effectiveness of interventions to reduce emis-
sions in rice production, and achieve a balance between abundant rice production and GHG
emission reduction. It would provide assistance to promoting the green transformation of
agricultural production as well [7].

The observation of greenhouse gas emissions from agricultural fields is mainly based
on static chamber gas chromatography, which has long measurement intervals and makes
it difficult to achieve real-time continuous measurements. Moreover, the eddy covariance
technique obtains emission fluxes from agricultural fields by measuring the covariance of
temperature, target gas concentration and vertical wind speed, which has the advantages of
wide applicability and high reliability [9]. Gu et al. reported on a sensor based on the eddy
covariance technique, which was designed to measure CO2 and H2O flux emissions at
Jiangdu Agricultural Monitoring Station in Jiangsu Province [10]. In situ field observations
of greenhouse gas emission fluxes from rice fields are scarce, and the simultaneous monitor-
ing of CO2, CH4 and N2O emission fluxes from rice fields is still lagging. Emission flux data
measured in the field in some localized areas cannot be reliably extrapolated to regional
and global scales and are not available for studying the spatial and temporal characteristics
of GHG emissions from agricultural sources. High-precision observations of regional
atmospheric GHG concentrations provide an effective way to calculate greenhouse gas
emissions in large-scale rice paddy fields and their spatial and temporal distribution [11].
The successive measurement of atmospheric GHG column abundances over rice fields
and the calculation of daily average column abundance changes can effectively monitor
emissions of any given size rice field. LHR is a passive atmospheric gas remote sensing
sensor that is portable, compact and has low power consumption and high sensitivity,
which means that LHR could be easily deployed for long-term accurate greenhouse gas
emission monitoring of rice field areas [12]. Since it was first applied to the detection of O3
column concentration in the 1970s, it has been widely used in the measurement of vertical
profiles and column concentrations of atmospheric greenhouse gases [13,14]. In recent
years, LHR system integration has greatly improved with the development of low-cost
lasers, waveguides and fiber technology and its application products. Wilson and co-
workers [15] and Wang et al. [16] developed near infrared (NIR) LHR for the measurements
of atmospheric vertical profiles of CO2 and CH4. Wang used the developed NIR LHR to
measure CO2 and CH4 column concentrations in Hefei over a 6-month period, where the
column abundance variation was mainly due to vehicle emissions. Weidmann et al. [17,18]
and Xue [19] developed mid infrared (MIR) LHR using an inter-band cascade laser (ICL) as
the local oscillator (LO) for the measurements of atmospheric column abundance of CH4,
N2O and H2O.
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In this paper, high-precision and portable greenhouse gas measurement sensors NIR
LHR and MIR LHR were developed in the laboratory and deployed in the suburbs of Hefei
(31.9◦N 117.16◦E) to effectively monitor greenhouse gas emissions during the growth of
rice. In the NIR LHR, two distributed feedback (DFB) lasers centered at 1.603 µm and
1.65 µm were used as LOs for CO2 and CH4 observations. In the two MIR LHR, inter-
band cascade lasers centered at 3.53 µm and 3.93 µm were used as LOs for N2O and CH4
observations. The high-resolution atmospheric transmittance spectra of CO2, CH4 and N2O
were measured simultaneously, and the real-time column abundance was retrieved. The
variation trend of atmospheric column concentration of three gases from July to October of
2022 was analyzed in combination with the planting change in the surrounding farmland.
Based on the long-term real-time observation data, the effectiveness of rice production
emission reduction interventions is evaluated and reported here. The specific experimental
device, measurement and inversion results and data analysis will be presented later.

2. Materials and Methods

LHR, whether near-infrared (NIR) or mid-infrared (MIR) LHR, which extracts atmo-
spheric molecular absorption information from sunlight via beating with a local oscillator
(LO) on a photodetector, has been successfully applied to the remote sensing of the at-
mosphere in recent years [20]. The basic principle of LHR has been explained in detail
in reference [1]. Here, the schematic diagram of LHR is shown in Figure 1a. Sunlight
containing molecular absorption information is captured by a high-precision sun tracker.
Then, almost perfectly aligned chop-modulated sunlight and LO are incident on the pho-
todetector (PD). Molecular absorption information is transferred to the radio frequency (RF)
component of the response current of the photodetector. The mean-square detector (M-S
PD) converts the RF current into low-frequency voltage, and the atmospheric molecular
absorption spectrum is obtained by demodulating the low-frequency voltage signal using a
lock-in amplifier (LIA). It is worth noting that the resolution and the instrument line shape
(ILS) of the LHR are determined by the electrical bandwidth of the filter, which allows
for high spectral resolution. Atmospheric transmission spectra with a high resolution and
signal-to-noise ratio will help with obtaining accurate atmospheric column abundances.
A personal computer (PC) and high sampling rate data acquisition (DAQ) card serve for
instrument control, data acquisition and processing.

The observation equipment used were laboratory-made highly integrated portable
NIR and MIR LHR systems as shown in Figure 1b. The NIR LHR system was mainly
composed of an all-fiber NIR LHR and an optical fiber sun tracker. In the all-fiber NIR LHR,
two distributed feedback (DFB) lasers centered at 1.603 µm and 1.65 µm were used for CO2
detection with a spectral resolution of 0.013 cm−1, and for CH4 detection one with a spectral
resolution of 0.0067 cm−1 was used, respectively. The tracking precision of the fiber-optic
solar tracker was 4 × 10−3 mrad, which is far smaller than the divergence angle of sunlight
(9.6 × 10−3 rad). The alignment between the sunlight and LO was achieved by using the
single-mode fiber coupler. The MIR LHR system was mainly composed of a free space solar
tracker and a micro-electro-mechanical system (MEMS) modulator-based dual-channel
MIR LHR. In this LHR, two inter-band cascade lasers (ICLs) centered at 3.53 µm and 3.93
µm were used as the LOs to probe the absorption lines of CH4 with a resolution of 0.0047
cm−1 and of N2O with a resolution of 0.0053 cm−1, respectively. The two LHRs worked
in the ground-based solar occultation mode. For the purpose of atmospheric molecular
transmission spectrum detection, the laser wavenumber covered the molecular absorption
range of interest by tuning the laser injection current at a fixed operating temperature. Both
LHRs had CH4 detection channels, which allowed for the validation of the accuracy of
inversion results. Moreover, the reliability of the instrument and inversion algorithm have
been effectively evaluated in previous work [16,20].
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Figure 1. (a) Schematic diagram of LHR. LO: local oscillator, PD: photodetector, M-S PD: mean-
square photodetector, LIA: lock-in amplifier, DAQ: data acquisition, PC: personal computer; (b) 
photo of the near-infrared laser heterodyne radiometer (NIR LHR) and mid-infrared laser hetero-
dyne radiometer (MIR LHR). 
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near-infrared laser heterodyne radiometer (NIR LHR) and mid-infrared laser heterodyne radiometer
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The two LHRs were deployed in a suburb of Hefei (31.9◦N 117.16◦E) for atmospheric
total column measurement of GHGs. In this work, the LO center frequency was scanned to
probe the absorption line of (6238.77 cm−1), CH4 (at 6036.65 cm−1 and at 2831.92 cm−1) and
N2O (at 2538.34 cm−1). In order to obtain a high signal-to-noise (SNR) ratio atmospheric
transmittance spectrum, a typical scan time was about 8 min. The observation period was
from 1 July to 15 October 2022, which is basically consistent with the planting time of late
season rice.

3. Results

The examples of atmospheric CO2 (Figure 2a and CH4: Figure 2b) transmittance
spectra measured by NIR LHR are presented, and the SNR of CO2 signal and CH4 signal
are 180 and 200, respectively.

The MIR-LHR measurement results of 3.53 µm (CH4) and 3.93 µm (N2O) detection
channels are shown in Figure 3a (red curve) and Figure 3b (blue curve). The SNR of 3.53 µm
and 3.93 µm detection channels are 70 and 90, respectively. The atmospheric transmittance
spectrum of CH4 is deformed, mainly affected by the water isotope (HDO) absorption. The
measured atmospheric transmittance spectrum of HDO offers an efficient path to research
the atmospheric total column abundance of water vapor, which will be the emphasis of
future work. Compared with NIR LHR, the SNR of the CH4 detection channel signal of the
MIR LHR is significantly lower, which leads to large measurement errors [21–23].
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LHR data retrieval was performed using the optimal estimation method (OEM), which
was proposed by Rodgers for atmospheric remote sensing retrieval. Weidmann et al. gave
a detailed introduction to the application of OEM in LHR data retrieval [24]. Herein, a brief
recall is presented. The radiative transfer forward model (F) based on the reference forward
model (RFM) was used to calculate the atmospheric transmittance spectrum of the solar
radiance, which represents the absorption of solar radiation by greenhouse gases emitted
from rice fields and by greenhouse gases in the atmosphere [25]. The relationship between
the LHR data and the atmospheric state vector is described as:

ym = F(xn) + ε (1)

where ym is the measurement vector, xn is the state vector including the temperature (T),
pressure (P) and volume mixing ratio (VMR) and ε is the error vector. The OEM-based data
retrieval is an iterative process to minimize the cost function ():

χ2 = (ym − F(xn))S−1
ε (ym − F(xn))

T + (xa − xn)S−1
a (xa − xn)

T (2)
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where Sε is the measurement covariance matrix, Sa is the prior covariance matrix and xa
is the prior state. The Levenberg–Marquardt (LM) method was adopted in the iterative
process. The iterative state vector xi + 1 was calculated using Equation (3).

xi+1 = xi +
(
(1 + γ)S−1

a + KT
i S−1

ε Ki

)−1
×
[
KT

i S−1
ε (ym − Fi)− S−1

a (xi − xa)
]

(3)

where K is the weighting function and γ is the LM parameter.
The flow-chart of LHR retrieval is displayed in Figure 4, which consists of a forward

model and an inversion program. In the forward calculation, the atmospheric transmission
spectrum (F (xn)) combined with the corresponding weighting function (K) are calculated
with the input atmospheric parameters (temperature (T), pressure (P) and volume mixing
ratios (VMRs)), ILS, a priori state vector and solar zenith angle. In the inverse program,
the forward model is iteratively called to minimize the cost function (Eq. (2)) following
the LM algorithm (Eq. (3)); finally, the profile of the target gas is obtained. According to
the retrieved profile, the atmospheric total column abundance of CO2 is calculated to be
~428 ppm, the atmospheric total column abundance of CH4 is found to be ~1940 ppb (NIR
LHR) and ~1939 ppb (MIR LHR), and the atmospheric total column abundance of N2O is
found to be ~ 335 ppm, respectively. The detection accuracy of the LHRs is mainly affected
by the error caused by the system noise and the retrieval error. Improving the signal-
to-noise ratio of LHRs’ signal and employing more accurate a priori data will improve
measurement accuracy. In this study, considering the measurement error and retrieval
error, the total errors are calculated to be ∼0.2% (CO2), ~0.23% (NIR LHR, CH4), ~1% (MIR
LHR, CH4) and ~0.8% (N2O), respectively.
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4. Discussion

The farmland in the suburb of Hefei (31.9◦N 117.16◦E) is mainly planted with late
season rice, and the planting period of late season rice is from mid-early June to mid-early
October. Therefore, our observation period was from 1 July to 15 October 2022. It should
be noted that LHRs extract information from solar radiation; therefore, only the results
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measured on a clear, cloudless day were analyzed in this study. In addition, compared to
the conventional indoor gas chromatography and eddy covariance techniques, the LHRs
measure the total column abundance in the atmospheric column; they cannot measure
the flux in the rice field. Since there are no other influential emission sources around the
rice fields, the column abundance variation during the measurement period represents
the total emission of a rice paddy area. A comprehensive understanding of the emission
patterns of CO2, CH4 and N2O and their interrelationships is a prerequisite and plays a
key role in achieving greenhouse gas emission reduction in rice fields. In order to focus
on the relationship between the emission in rice paddy fields and atmospheric column
abundance of CO2, CH4 and N2O, data measured from 1 July to 15 October 2022 are used
to analyze the variation trend of atmospheric CO2, CH4 and N2O column concentrations
above paddy fields.

4.1. Atmospheric CO2

To understand the trend of CO2 emission from rice fields during daytime, we measured
CO2 concentration over rice fields from 10:00 a.m. to 15:00 p.m. on 1 July, 1 September,
and 15 October 2022, and the measurement results are shown in Figure 5a. The high
fluctuations in the total column abundance of CO2 measured at 10:00–11:00 are probably
due to the instability of atmospheric parameters (e.g., temperature and pressure) during
this time period. Therefore, the daily average total column abundance mentioned in this
manuscript was calculated from data measured after 11:00 on the day. During each day of
measurement, the total column abundance of atmospheric CO2 tends to decrease, which
is mainly influenced by the consumption of atmospheric CO2 via the photosynthesis of
plants, such as rice.

The daily average total column abundance of CO2 in the atmosphere above the rice
paddy fields in the suburbs of Hefei from July to mid-October is shown in Figure 5b, where
the gray shaded part indicates that the weather condition was cloudy or rainy on that day.
The average monthly column abundance of CO2 in July, August, September and October
was 427.2, 427.4, 427.8 and 428.1 ppm, respectively. The standard deviations of total column
abundance of CO2 are calculated to be in the range of 0.6–1.4 ppm, which corresponds
to an uncertainty region of 0.21–0.46%. The atmospheric total column abundance of CO2
increased, but the growth rate of CO2 concentration was less than the expectation reported
by IPCC [8]. It can be inferred that the rice paddy field plays a certain role in carbon
sequestration during the rice growing season. An increase in CO2 emission from rice
fields during the baking period and a decrease in soil CO2 emission rate with decreasing
temperature were not observed. The possible reasons for this are the lack of measurement
accuracy of LHRs, the inability of the LHRs to make accurate measurements of the ground
surface and atmospheric circulation.
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4.2. Atmospheric CH4

The average CH4 emission flux of late season rice was much higher than that of early
season rice. Emission fluxes from rice fields with late rice growth were greater than those
with early rice growth. CH4 emissions from rice fields were mainly concentrated in the
tillering stage of rice growth (about late August to September), and decreased in the middle
and late stages of rice growth, especially after baking, and slightly increased after rice
fields were re-watered [26]. After that, the paddy field maintained low emissions until
the rice harvest. The retrieval results of CH4 above rice paddy fields in the suburbs of
Hefei are shown in Figure 6, where the atmospheric column abundance of CH4 increased
from July and its high value appeared at the end of August. The standard deviations
are found to be in the range of 5–12 ppb for the total column abundance of CH4, which
corresponds to an uncertainty region of 0.18–0.5%. During the rice growing season, the
total atmospheric column abundance of CH4 above the rice fields increased by 30 ppb.
From early July to the end of August when rainfall is abundant and rice fields are in a
flooded state, inorganic carbon is released into the atmosphere as CH4 in the absence of
oxygen. In addition, the increase in soil temperature promotes the production and emission
of CH4. Despite the presence of more rainy days in September and October, the methane
concentration decreased significantly due to baked fields and lower temperatures. The
CH4 column concentration decreased from mid-September due to the gradual diffusive
mixing of atmospheric CH4 from the lower to middle layers and the horizontal atmospheric
motion. CH4 emissions from rice fields decline after October as rice has been harvested.
During the non-rice growing season, CH4 column concentrations over rice fields will slowly
increase due to other anthropogenic sources such as fossil fuel and landfill emissions.
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4.3. Atmospheric N2O

The production and emission of N2O in rice paddy fields are affected by soil tem-
perature, humidity and PH. The relevant research shows that rice plants are the main
channel for N2O transmission. The atmospheric total column abundance of N2O with a
wave-like trend from July to mid-October above rice paddy fields around Hefei is displayed
in Figure 7. The standard deviation of the N20 total column is between 2 and 4 ppb with a
corresponding uncertainty range of 0.3–0.8%. The purple shaded part indicates that there
was a thunderstorm shower on that day. The dates were 4, 5, 28, 30 July and 14 Septem-
ber. Affected by paddy irrigation, N2O emissions from paddy fields decreased. The total
column abundance of atmospheric N2O gradually decreased from July. The atmospheric
column abundance of N2O increased from the end of July to early August and in September.
During this period, the paddy field changed from flooding to drying, and the soil redox
potential increased, which was conducive to the conversion of ammonia to N2O and greatly
promoted the emission of N2O. In early October, nitrification was inhibited by strong cold
air and precipitation, which led to a decrease in N2O emissions from paddy fields. As
rice is harvested, although bare farmland is a weak N2O source, it can be predicted that
atmospheric N2O total column abundance will decrease further in late October; after that,
the variation in atmospheric N2O concentration will no longer be dominated by farmland
emissions. It is worth noting that when lightning occurs, nitrogen and oxygen in the air
will form nitric acid through an ionization reaction and chemical reaction, reducing the PH
of the soil, which will improve the efficiency of nitrification and promote the formation
of N2O. However, significant variation in atmospheric N2O column abundance is not
observed in Figure 3. On the one hand, several consecutive days’ precipitation before and
after the thunderstorm (28 July, 30 July) inhibits the nitrification in the soil. On the other
hand, the retrieval results, which are limited by the measurement accuracy of the MIR LHR,
cannot reflect the weak variation in atmospheric N2O column abundance.
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As shown in Figures 5–7, there was no significant correlation between CO2 and CH4
emissions throughout the rice growing season. The emission patterns of CH4 and N2O in
rice fields, especially the peak emission period, were mainly influenced by the moisture
and soil temperature of rice fields, and the emissions of CH4 and N2O in rice fields were
negatively correlated. The relationship between CH4 and N2O emissions in paddy fields
is mainly shown by irrigation management and the amount of nitrogen fertilizer applied.
Field drying and water-saving irrigation are key tools used to reduce CH4 emissions from
rice fields. The mid-term baking of paddy fields decreases CH4 emissions while inevitably
increasing N2O emissions. Therefore, the appropriate timing of field baking is critical
and the reduction effect should be assessed in terms of combined CH4 and N2O warming
potential. The optimization of fertilizer management and the adjustment of the ratio of
fertilizer nitrogen to potassium to phosphorus can help to control N2O emissions from rice
fields. During the rice growing period, a combination of soil properties, tillage practices,
temperature and humidity are considered to maximize the reduction effect. We suggest
that rice varieties with less greenhouse gas emissions should be promoted in rice seed
selection, and rice fields should be kept as dry as possible to reduce CH4 emissions during
the early rice growth period, and shallow irrigation with chemical fertilizers should be used
to suppress N2O emissions during the late rice growth period. Considering the year-round
CH4 and N2O emissions from rice fields, water management of rice fields and emission
monitoring of paddy fields should not be neglected during the non-rice growing period.

5. Conclusions

In this study, NIR LHR and MIR LHR were deployed in the suburb of Hefei (31.9◦N
117.16◦E) for the remote sensing of GHGs above rice paddies from 1 July to 15 October
2022. The atmospheric total column abundance of CO2, CH4 and N2O above rice paddies
was obtained with errors of 0.7 ppm, 4 ppb and 2 ppb, respectively. Based on long-term
measurement results, we found that atmospheric CO2 concentrations were increasing, and
inferred that rice paddy fields can play a role in carbon sequestration and that CH4 and
N2O emissions from rice paddy fields are the main contributors to increasing atmospheric
greenhouse gas concentrations during the rice growing season. With the advantages of
portability and high accuracy, the LHRs can be used to simultaneously measure multiple
GHG emissions above a large area of farmland. However, when using LHRs to detect GHG
concentrations, disadvantages such as the inability to use LHRs at night and the inability
to measure farmland emission fluxes limit the further application of LHRs in farmland
GHG emission monitoring. The inability to monitor GHGs above rice paddy fields in
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real time during thunderstorms and cloudy and rainy days greatly limited our ability to
research the influence of weather on rice field emissions. In future work, we will focus on
the combined use of multiple technologies, including chamber gas chromatography, the
eddy covariance technique and LHRs. We would like to obtain technology to be used in
high-precision flux monitoring of GHGs in small areas of farmland throughout the day
under a variety of weather conditions using chamber gas chromatography and the eddy
covariance technique, while the LHRs will be used for GHG concentration monitoring
over large areas of farmland. Real-time monitoring of rice paddy fields’ GHG emissions
during the rice growing season and non-rice growing season is achieved by establishing a
three-dimensional observation network. The effectiveness of various emission reduction
measures will be verified. Additionally, the relationship between farmland gas emissions
and farmland yield and quality will be further determined.
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