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Abstract: The introduction of numerous exotic dung beetles across southern Australia in regions
where native dung beetles are not generally efficient in processing livestock dung has resulted in
significant reductions in the quantity of such dung on the soil surface in recent years. However,
the direct impacts of such ecosystem services on pasture quality and soil nutrient mobility have
not yet been investigated in the Riverina region of New South Wales (NSW), an area recognised for
prime cattle and sheep production in Australia. Utilising 48 soil columns for lysimetry, we quantified
the impact of a common introduced dung beetle (Bubas bison) in this region on water quality after
permeation through four different soil types sown to winter annual pastures. Dung beetle treatments
included dung plus dung beetles, dung alone and no dung beetles, and no dung and no beetles as a
control. Dung beetles and soil type impacted on the performance of improved overseeded annual
pastures as measured by biomass accumulation over a four-month growing season. The four soil
types, namely, Chromosol, Kandosol, Rudosol, and Vertosol, differed considerably with respect to
their water-holding capacity and nutrient profiles, as assessed by initial soil testing and soil leachate
evaluation following rainfall plus simulated rainfall events. The concentration of Escherichia coli
resulting from cattle dung, cattle dung plus beetles, and the control soils without dung or beetles was
assessed in collected leachates over a three-month period. E. coli numbers were significantly increased
following B. bison activity, when compared to the dung-only and control treatments. Evaluation of
the soil microbiome, by assessing genomic DNA in soils sampled 10 cm below the soil surface where
dung beetles remained active following tunnelling, revealed significant differences among soil types
with respect to bacterial and fungal communities. Within each soil type, dung beetle activity impacted
the fungal community structure, but not the bacterial community. Pasture performance as assessed
by biomass accumulation was significantly improved following dung beetle activity in later stages of
pasture growth, while E. coli numbers and total coliforms appeared unaffected by beetle presence.

Keywords: lysimeter; annual pasture; dung beetles; livestock dung; Escherichia coli; pollution; soil
microbiome; insect; arthropod; nutrient cycling

1. Introduction

Subsequent to the introduction of domestic livestock to Australia in the late 18th
century, accumulation of livestock dung on grazing lands became prevalent, owing to
the absence of native detritivores capable of processing ruminant dung effectively [1].
This resulted in widespread pasture fouling, slower soil carbon and nutrient turnover,
and increased livestock pest infestation, particularly with respect to flies and nematodes.
As a potential biocontrol solution, exotic dung beetles that feed on livestock dung were
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introduced periodically, from the early 1960s onward [1,2]. Dung beetles are coprophagous
insects of order Coleoptera and are the dominant species in dung-associated communi-
ties, usually showing specificity in preference to dung types and certain environmental
conditions [3,4]. Dung beetles are also considered ecosystem engineers, regulating the
availability of resources to other organisms by altering physical and chemical properties
of the soil environment [1,5,6]. To date, over 60 species of exotic dung beetles originating
from both temperate and tropical climates have been introduced to livestock production
regions in Australia [7,8]. The majority of established exotic dung beetles exhibit tunnelling
behaviour, and are capable of processing herbivore dung, excavating tunnels in soil, and
burying dung deep in the soil profile [7–9].

Although introduced dung beetles have successfully established in Australian grazing
lands over time, their ecosystem services and perceived socioeconomic benefits have not
yet been fully evaluated, due to a lack of consistency in experimental methods and difficulty
in monitoring their impact below ground [1]. However, several studies using different
species and methodologies have highlighted the ability of introduced dung beetles to
deliver several beneficial ecological functions including enhancement of soil fertility and
pasture growth, and suggested a significant reduction in livestock pests in Australian
pastures [1,6,10–12].

In general, dung beetles enhance soil quality in several ways, including increased
aeration through extensive tunnelling, dung shredding, and dung incorporation [13],
which results in improved soil moisture infiltration [14] and nutrient cycling [15], leading
to reduced soil nitrification and, in some cases, improved pasture growth. In the saturated–
unsaturated soil zones, drainage is tied to the textural qualities of the soil, in addition to gas
exchange [16]. Typical soil profiles demonstrate the effect of soil texture on plant available
water content, which is influenced by the water-holding capacity of the soil, water held in
the soil after free drainage, and water remaining in the soil profile after crop uptake [17].
Therefore, understanding soil water-holding capacity and gaseous movement in soils with
contrasting physical properties is key to elucidating the impact of dung beetle activity in
Australian pastoral ecosystems.

The geographical distribution of dung beetle assemblages may be determined by
variations in soil structure and textural properties [18]. Therefore, to further investigate
behaviour and impact of dung beetles, it is necessary to evaluate a variety of soil types, as
the presence of clay in a soil profile may be a significant factor affecting the diversity of dung
beetles [19]. Soil depth and clay content may also influence dung beetle tunnelling as tunnel
depths may exceed one metre [20]. Sandy soils typically encourage tunnelling behaviour as
these soils remain less compacted than other soil types despite livestock movement across
pastures [21]. Australian soil classification separates various soil types based on several
soil properties including texture and structural features [22]. For example, Chromosol is
made up of a duplex soil profile, Kandosol has a mostly uniform clay depth and contains
non-expanding clay, and Vertosol is made up of smectite clay with a predominantly 2:1
layer of silicates [22]. The tunnelling, nesting, and dung burial behaviour of dung beetles
in diverse soil types in Australia has not been studied in detail.

A major concern related to the presence of introduced dung beetles in pastures and
rangelands is associated with their perceived impact on the leaching of microbial contam-
inants from dung deposited on the soil surface into ground water, through tunnelling
and the deep burial of dung within the soil profile [23]. However, dung beetles have
also been shown to reduce microbial pollution of waterways by removal of pathogenic
zoonotic microorganisms from the soil surface by burial of dung over time. For example,
dung burial by dung beetle species Bubas bison during the winter months substantially
reduced the numbers of Cryptosporidium oocysts detected on the soil surface, which would
otherwise be washed into waterways following winter rains [12]. Similarly, Onthophagus
hecate has been shown to contribute to the suppression of pathogenic Escherichia coli strain
O157:H7 in agricultural landscapes [24]. A recent study conducted in New Zealand to
assess the quality of water leaching from soil cores containing dung beetles demonstrated
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that dung beetle tunnelling and burial of dung did not impact the quality of water leaching
through an allophanic soil [23]. In Australia, the impact of dung beetle activity on soil
water contaminants including E. coli in soil leachates is currently unknown.

Although the changes in soil physical and chemical properties due to tunnelling and
burial of dung by dung beetles have been relatively well established for several different
ecosystems around the world [21,25,26], the impact of dung beetles’ activities on the soil
microbiome has yet to be explored. Beetle-related changes in the soil profile could potentially
be expected to influence soil biota dynamics, thus affecting plant–microbial interactions in the
rhizosphere and soil nutrient cycling, which, in turn, impact pasture productivity. Moreover,
the population dynamics of zoonotic pathogens in pasture soils are likely to differ depending
on soil type, thus potentially impacting both herd and human health.

Currently, there exist only a limited number of studies investigating the changes in
soil microbiome in the presence of active dung beetles. Slade et al. [27] demonstrated that
there are significant interactions between dung beetles and soil microorganisms, and the
diversity and composition of microbial communities in both the dung pats and underlying
soils were significantly affected by the presence or absence of dung beetles. More recently,
Kaleri et al. [28] showed that the dung beetle activity increased soil bacterial diversity and
soil enzyme activity contributing to enhanced plant growth. However, the effect of dung
beetle activity on the soil microbiome and its function in diverse soils underlaying pastures
has not yet been reported, specifically in Australia.

The periodic introduction of various exotic dung beetle species to grazing lands in
Australia has been justified by the perceived economic benefits of dung beetle activity
in agricultural soils attributed to the multiple ecosystem services provided including
reduced pasture fouling, loss of nitrogen, and livestock parasites; increased soil moisture
retention and availability; pasture growth plus biomass accumulation [1,6,15,29]. Beynon,
Wainwright, and Christie [5] estimated that the impact of ecosystem services provided
by dung beetles to the UK cattle industry is ~GBP 367 million per year. Although it is
estimated that introduced dung beetles in Australia process about 300 million tons of
livestock dung annually [30], and provide ecosystem services worth ~AUD 1 billion a
year [30], a systematic assessment of the economic impact of the introduced dung beetles
in Australia is yet to be conducted. Therefore, one of the objectives of the Australian dung
beetle project (Dung Beetle Ecosystem Engineers) is the assessment and quantification of
dung beetle ecosystem services with respect to on-farm economic services, and off-farm
environmental and social benefits [30].

The multi-institutionally supported Dung Beetle Ecosystem Engineers (DBEE) project
was launched in Australia in 2018, to assess the impact of both existing and introduced
dung beetles on soil ecosystems. A field mesocosm study conducted at three locations
across NSW on silty clay loam soils showed a significant impact of dung beetles on dung
decomposition resulting in greater pasture growth in contrast to dung alone or soil-only
controls [31]. However, there remain several key aspects related to the environmental
impact of dung beetles on pastoral ecosystems that overlay diverse soil types in Australia,
which have not yet been investigated. We hypothesised that soil type may affect dung
beetle activity and subsequent pasture growth and modulate the associated soil microbiome
over time.

In this study, we employed a lysimeter assembly similar to that of Aislabie, McLeod,
McGill, Rhodes, and Forgie [23], with slight modifications to create structured columns
of four different soil types under simulated field conditions to assess the (i) soil water
movement through the soil profile, (ii) presence and potential leaching of pathogenic E. coli
and coliform bacteria, (iii) differences among the soil microbiome and associated microbial
communities, and (iv) pasture performance, in four diverse soil types from the Riverina
NSW with (i) no treatment, (ii) supplementation with cattle dung, and (iii) supplementation
with both cattle dung and a large local winter-active, tunnelling dung beetle, Bubas bison, on
a pasture mix of grass and legume species grown under natural environmental conditions.
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2. Materials and Methods
2.1. Facility Construction, Preparation of Lysimeter Columns, and Experimental Design

The lysimeter facility was constructed following broadly the design described by
Aislabie, McLeod, McGill, Rhodes, and Forgie [23], on a level site located at the Charles
Sturt University (CSU) livestock research farm in Wagga Wagga, NSW (35◦02′00.5′′ S
147◦21′40.6′′ E). Mean annual precipitation at this site is 571 mm [32] (Supplementary
Table S1). Forty-eight lysimeter columns, each 0.5 m in height and 250 mm in diameter with
a surface area of 0.05 m2, were constructed on a raised platform that was 7.34 m long, 1 m
high, and 1 m wide to accommodate all columns, surrounded by crushed gravel to maintain
soil temperatures similar to field conditions, in a north–south direction (Supplementary
Figure S1).

Soils and treatment combinations of dung and dung beetles were randomly allocated
to the lysimeter columns in a factorial design with four replicates of each soil type and of
each treatment arranged in a randomised complete block design. Each soil type was placed
in three columns in each of the four blocks and then the three treatment combinations were
allocated randomly within each block. Three dung and/or beetle treatments were applied
on each soil type, i.e., Control (soil only), Dung on soil, and Dung on soil with dung beetles.
Altogether, 48 soil lysimeter columns were maintained from June through November 2021
in this experiment.

Each column was filled with approximately 80 L of soil. The four soil types selected for
use were a Red Chromosol, Grey Vertosol, Red Kandosol, and Brown Rudosol [33], which
were collected from field sites within 100 km of the CSU campus. Once collected, soils were
air-dried and maintained in separate containers, and then sieved using a 2 mm sieve and
later repacked in the columns in three distinct layers in the order of their collection, i.e.,
0–15 cm, 15–30 cm, and 30–45 cm, into each lysimeter column at a similar soil bulk density
as those of original field soils. The Red Chromosol and Red Kandosols were collected from
a location close to Charles Sturt University farm (−35.052748, 147.332736) (Supplementary
Figure S2). The New South Wales Department of Primary Industries’ research station at
Yanco NSW provided the Vertosol for this study (−34.604503, 146.358754). The Rudosol
(with a dominant loamy sand) was obtained close to Marrar NSW (−34.867899, 147.354228).
Basic properties of the soils are shown in Table 1.

Table 1. Initial chemical properties of bulked soil types representative of four soils collected from
0–45 cm depths and bulked by field coring at each collection site, prior to column assembly.

Parameter Chromosol Kandosol Rudosol Vertosol

Phosphorus (mg/kg P) 7.22 12.79 11.26 87.03
Nitrate Nitrogen (mg/kg N) 4.35 2.26 0.49 12.74

Ammonium Nitrogen (mg/kg N) 6.64 7.45 5.80 12.05
Sulphur (mg/kg S) 4.64 6.94 4.17 22.29

pH (1:5 water) 6.91 6.80 7.00 7.66
Electrical Conductivity (dS/m) 0.04 0.04 0.03 0.11

Estimated Organic Matter (% OM) 1.33 1.40 0.62 1.61
Effective Cation Exchange Capacity (ECEC) (cmol+/kg) 3.71 6.87 2.97 29.46

Calcium (%) 70.31 62.13 69.61 66.16
Magnesium (%) 14.27 21.73 16.48 28.56
Potassium (%) 13.60 15.09 10.94 4.43

Sodium—ESP (%) 1.63 0.94 2.83 0.82
Aluminium (%) 0.20 0.11 0.13 0.03
Zinc (mg/kg) 0.60 0.65 <0.5 0.82

Manganese (mg/kg) 37.22 27.27 24.17 11.02
Iron (mg/kg) 29.47 38.05 14.57 39.67

Copper (mg/kg) 0.45 1.01 0.31 2.00
Boron (mg/kg) 0.51 0.82 0.33 1.22

Silicon (mg/kg Si) 42.45 74.65 36.98 46.31
Total Carbon (%) 0.76 0.80 0.35 0.92

Total Nitrogen (%) 0.11 0.11 0.07 0.14
Carbon/Nitrogen Ratio 6.86 7.24 4.68 6.54
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After the installation of soil columns, the space between the cores was backfilled with
a washed gravel sand mix to reduce the temperature fluctuation. The entire facility was
covered by a porous shade cloth protection supported by aluminium scaffolding to protect the
experimental site from severe weather conditions including excessive rain, heat, and wind.

2.2. Establishment of Pasture

Upon construction, all lysimeter columns were allowed to settle for 30 days under
field conditions. In early June, a mixture of dual-purpose oats (cv. Mannus) and purple
vetch (cv. Popany) inoculated with a commercially available rhizobia (Type F; New Edge
Microbials, Albury, NSW, Australia) was sown at a rate of 30 kg/ha (equivalent to 30 oat
seeds and 20 vetch seeds per column). At this time, Diammonium Phosphate (DAP)
fertiliser (17.7% nitrogen, 20% phosphorus; Incitec Pivot, Southbank, VIC, Australia) at a
rate of 40 kg/ha or 10 g/m2 was applied to the soil and incorporated at a depth of 2 cm, as
per recommendations [34,35], to provide a starter dose of N and P. Following seeding, 1 L
of reverse osmosis (RO) laboratory water, equivalent to 20 mm of rainfall, was supplied
to each column to promote seed germination and seedling establishment. After 30 days,
seedling stands of oat and vetch were thinned to 10 and 12 plants per column, respectively.
All columns were overseeded with annual ryegrass at the rate of 15 kg/ha and an additional
top dressing of DAP at 20 kg/ha, resulting in approximately 50 ryegrass plants per column.
Post-seeding irrigation was provided as mentioned earlier.

2.3. Introduction of Dung Beetles and Cattle Dung

One hundred healthy and mature matched male and female pairs of Bubas bison were
collected and sorted from the CSU cattle farm for use in the lysimeter experiment. Upon
experimental initiation, 50 kg of fresh dung was collected from undrenched cattle at the
Charles Sturt University commercial cattle farm. Freshly collected and homogenised dung
was applied to lysimeter columns assigned to dung-only, and dung and beetle treatments,
at a rate of 750 mL/column in mid-August 2021. Five pairs of B. bison were then added
to each column assigned to the dung plus beetle treatment. Only sexually mature dung
beetles were sourced for this experiment to achieve maximum tunnelling and dung burial
activity. After beetle addition, each column was covered with muslin cloth secured with
elastic tape to prevent beetle escape. Residual dung left on the soil surface was removed
after 28 days.

2.4. Irrigation of Soil Columns

Throughout the plant growth period, each column was manually supplied with 1 L
of RO water, equivalent to 20 mm of rainfall, applied at weekly intervals. During this
time, each core was exposed to natural rainfall events and, as necessary, soil moisture
was supplemented by application of RO water on a weekly basis when natural rainfall
was not sufficient to maintain soil moisture levels at field capacity. Once the pasture crop
was established, RO water was supplied at varying levels for each soil column following
major rainfall and irrigation events to generate leachate. All rainfall (Supplementary
Table S1) and RO water received were recorded for each soil column individually over
time until experimental termination. Three major rainfall and irrigation events occurred
approximately one month apart in September (22 mm), October (44 mm), and November
(158 mm).

2.5. Collection of Soil Leachates

Leachates from each lysimeter column were collected over 3-month at 30-day intervals
following rainfall or irrigation events in September, October, and November 2021. All
leachates were allowed to leach through soil columns until equal volumes were obtained
from each soil column and were collected in covered 10 L plastic buckets placed under each
lysimeter column. Each sample was mixed by shaking and divided into two subsamples,
for enumeration of total coliform and E. coli bacteria, and for analysis of total N, total P, and
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NOx. Leachate samples for chemical analysis were stored at −20 ◦C until processing, while
leachates for microbial enumeration were processed within four hours of collection.

2.6. Optimisation Protocols for Testing for E. coli and Coliform Bacteria

Prior to establishment of the field lysimeters, four lysimeter columns containing each
of the four different soil types were used in a glasshouse trial as treatments to determine
the water-holding capacity and drainage time and rate required for each soil type, as well
as to determine the dilution factor for leachates from each soil type suitable to obtain an
estimated total coliform and E. coli concentration. RO water was applied manually to
determine the amount of water held at field capacity for each soil type, and to quantify the
water input required for each soil type to result in sufficient leachate for analysis of total
coliform and E. coli concentration in each soil type. RO water and rainwater were used as
treatment controls for enumeration of coliform and E. coli in the water supply. The dilution
factor for each soil type was determined using a commercial testing kit to enumerate
total coliform and E. coli, i.e., IDEXX Colilert testing kit using the Colilert Quanti-tray
technique (IDEXX Laboratories, Inc., Westbrook, ME, USA), following the manufacturer’s
instructions [23].

2.7. Enumeration of Total Coliforms and E. coli in Soil Leachates

Enumeration of total coliforms and E. coli in soil leachates was conducted within 4 h of
collection, using the IDEXX Colilert kit as mentioned previously. A sample of soil leachate
(100 mL) was used to enumerate coliform and E. coli leached out of each lysimeter column,
diluted in sterile RO according to the estimated dilution factor for each soil type.

2.8. Collection of Pasture Biomass

Above-ground pasture biomass was collected at 30-day intervals to simulate livestock
grazing, first in August 2021 at the time dung and dung beetle treatments were introduced,
and then at monthly intervals in September, October, and November 2021, at the same
time leachates were collected, by trimming foliage to 40 mm above the soil surface in all
lysimeter columns. Pasture biomass samples were stored at 4 ◦C until drying at 70 ◦C in a
forced-air-drying oven for 72 h before weighing.

2.9. Analysis of Total N and P in Soil Leachates

Three sets of soil leachate samples collected from lysimeter columns at each sampling
were stored at −20 ◦C prior to total N and P analysis. The first set of leachate samples
collected following the first major rainfall and irrigation event, from the lysimeter columns
with dung-only, and dung and dung beetle treatments, were analysed at the Environmental
and Analytical Laboratories (EAL) in the National Life Sciences Hub at Charles Sturt
University. Total P was analysed using the standard methods APHA 4500-P B5 and 4500-P
E/F, and total N was estimated by combining the results of the total Kjeldahl nitrogen
(TKN) and the NOx-N analyses. The standard TKN methods used were APHA 4500-Norg
B and 4500-NH3 C, and the NOx-N method was APHA 4500-NO3 F.

2.10. Microbial DNA Extraction from Soils and Marker Gene Sequencing

Following the final harvest of the pasture crop, five soil cores were sampled from
each lysimeter column at a depth of 5–10 cm using a handheld soil corer with a core
diameter of 5 cm. A composite soil sample was prepared by combining the soil cores from
within each column. Soil genomic DNA extraction, and subsequent phylogenetic marker
gene sequencing of a 300 bp paired-end run targeting the 16 S V3–V4 and ITS regions for
bacteria and fungi, respectively (Table 2), on an Illumina MiSeq next-generation sequencing
platform (Illumina, Melbourne, VIC, Australia) were performed at the Australian Genome
Research Facility (AGRF, Adelaide, SA, Australia).
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Table 2. Primers used for phylogenetic marker gene sequencing of bacteria and fungi.

Primer Name Primer Sequence

341F—Universal 16S 5′-CCTAYGGGRBGCASCAG-3′

806R—Universal 16S 5′-GGACTACNNGGGTATCTAAT-3′

1F—Universal ITS 5′-CTTGGTCATTTAGAGGAAGTAA-3′

2R—Universal ITS 5′-GCTGCGTTCTTCATCGATGC-3′

2.11. Analysis of Quantitative Data

Irrigation water supplied for each column was measured in litres and converted to
millimetres for data analysis. Total coliform and E. coli counts were obtained as MPN per
100 mL for each leachate sample and were corrected for any dilutions. Total N, total P, and
NOx in leachates were measured as milligrams per millilitre. All data were transformed
for homoscedasticity, and statistically analysed using analysis of variance (ANOVA) and
factorial analysis in R version 4.0.2. Treatment means were compared using the Bonferroni
pair-wise comparison method.

2.12. Analysis of Marker Gene Sequence Data

Data processing and statistical analysis to generate OTU tables were performed by the
Australian Genome Research Facility (AGRF). Briefly, paired-end reads were assembled by
aligning the forward and reverse reads using PEAR (version 0.95, Exelixis Lab, Heidelberg,
Baden-Württemberg, Germany). Primers were identified and trimmed, with the trimmed
sequences then processed using Quantitative Insights into Microbial Ecology (QIIME2) [36],
USEARCH (version 8.0.1623) [37], and UPARSE software [38]. Utilising the tools within
USEARCH, sequences were quality-filtered, and full-length duplicate sequences were
removed and sorted by abundance. Singletons or unique reads in the data set were
discarded. Sequences were clustered followed by chimera filtering using “Unite” as the
reference database. To obtain the number of reads in each OTU, reads were mapped
back to OTUs with a minimum identity of 97%. QIIME2 software was used to assign
taxonomy with UNITE database as the reference database (version 7.2) [39] for subsequent
generation of absolute abundance values for each OTU. All subsequent microbial analyses
were performed using the MicrobiomeAnalyst platform [40]. For data that were used
through this platform, low abundant features were filtered based on mean values, with a
minimum count size of 4, with low-variance features excluded based on the interquartile
range. Following data filtering, features were normalised using the total sum scaling
method prior to further analysis. Alpha diversity was calculated using the Shannon index,
while the PCoA ordination method was used for the beta diversity analysis, with the
Bray–Curtis index used for significance testing.

3. Results
3.1. Soil Water Content

The average quantity of water required to reach field capacity within each soil type
after collection from field sites was estimated to be 41 mm, 39 mm, 33 mm, and 22 mm for
Chromosol, Vertosol, Kandosol, and Rudosol, respectively. Measurements of soil water
content and related soil physical properties are shown in Table 3.

Table 3. Initial soil moisture content of specific soil types at the time of column assembly, included in
lysimetry experimentation performed in Wagga Wagga, NSW, measured as gravimetric water content.

Soil Type Packed Soil Water
Content (L/L)

Gravitational Water
Content w/w

Bulk Density Gcm−3

Chromosol 0.090 0.109 1.187
Kandosol 0.073 0.093 1.165
Rudosol 0.065 0.067 1.142
Vertosol 0.087 0.276 1.337
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3.2. Rainfall

Total rainfall received from May to November 2021 following the establishment of
lysimeters was 462.6 mm, while the total of the long-term average (years 1942–2022)
rainfall during this period was estimated at 358.7 mm [32], suggesting that the overall
rainfall experienced at Wagga Wagga during this period was above average for pasture
establishment and growth (Figure 1).
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pasture growing season of May–November 2021 [32].

Although 2021 experienced ~160 mm rainfall in November due to a La Nina condition
experienced across southern Australia atypical of historic winter rainfall patterns, addi-
tional manual irrigation events (20 mm each) were required between rain events from May
to July 2021 to ensure sufficient soil moisture for pasture growth in lysimeters.

3.3. Irrigation

The average volume of RO water required to irrigate each soil type in order to generate
an equal volume of leachate is presented in Figure 2. We observed significant (p < 0.01)
differences among the four soil types in soil moisture-holding capacity at each of the
three-monthly irrigation events, which could be attributed to inherent differences in water-
holding capacity of each soil type, as well as porosity, and other physical properties of soil
types. Within the soil types, the volume of water applied was similar for each column,
except for Kandosol, requiring 2.8 L of irrigation for individual soil columns in the third
irrigation event, when compared to the previous two irrigation events (1.8 and 1.9 L for
irrigation 1 and irrigation 2, respectively). In general, Rudosol required the least volume of
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applied water (1.25–1.9 L) to generate the required volume of leachate, due to the low soil
water-holding capacity of this sandy soil type [41].
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between treatment means. Bars sharing the same letters are not significantly different within each
soil type at α = 0.05.

3.4. Microbial Contamination in Leachates

Colorimetric determination of the total coliform bacteria from soil leachates was
attempted using a commercially available testing kit, designed for environmental water
testing. The appropriate leachate dilution ranges for each soil type were determined using
leachates collected in the preliminary lysimeter experiment conducted under controlled
environment conditions. However, when translated to the field-based lysimeter setup,
these dilutions were inadequate to generate most probable numbers for total coliform due
to saturation of the spectrophotometer beyond the quantifiable value in all soil types tested
(data not shown). However, the dilution series chosen for each soil type was adequate for
the quantification of E. coli.

There was no significant impact of soil type on E. coli leaching. Therefore, sam-
ple results for each soil type were pooled to assess treatment effects. In isolation, the
soil-only treatment contained <10 MPN/mL of E. coli at the first collection, which is equiv-
alent to numbers expected in water used for agricultural irrigation of non-edible crops
(Figure 3) [42]. Addition of dung at the soil surface increased the leached soil E. coli number
to ~20 MPN/mL but was not significantly greater than the soil-only control. However,
dung beetle activity increased the E. coli number over 10-fold when compared to the
soil-only and dung-only treatments (p < 0.05). Successive leaching events produced less
E. coli MPN/mL potentially through flushing of the soil columns after the first collection
of leachates followed by the removal of residual dung pat at that time, and were typically
below 30% when compared to the number in the previous collection time.
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Figure 3. Cumulative leaching of E. coli bacteria from lysimeter columns measured at each leachate
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3.5. Total N, Total P, and NOx in Soil Leachates

Total N and total P in all leachate samples analysed were negligible, ranging between
zero and 0.1 mg/L (Supplementary Table S2). However, available NOx varied between
zero and 23 mg/L, showing a significant (p < 0.05) difference between the soil types (data
in Supplementary Table S2). Vertosol and Rudosols leached more NOx than Chromosol
and Kandosol, with equal amounts of dung applied to all four soil types in lysimeters,
suggesting more extensive elution in those soil types. There was no significant difference
among the dung-only treatment versus dung plus dung beetle treatment, suggesting that
dung beetle activity did not increase NOx leaching from soil.

3.6. Soil Microbiome Assessment

The bacterial microbiome was mostly dominated by the presence of actinobacteria
in all soil types when assessed at the phylum level (Figure 4A). However, the proportion
of Actinobacteria was less abundant in Vertosol, exhibiting a 10–20% reduction in com-
parison to other soil types. The relative abundance of other phyla including Chloroflexi,
Actinobacteria, and Acidobacteria was higher in Vertosol. Importantly, the alpha diversity
of rhizobacteria was not impacted by the management practices in any of the soil types
assessed (data not shown). However, PERMANOVA analysis revealed that the soil type
significantly impacted the beta diversity as the bacterial community profiles differed be-
tween the soil types assessed (p < 0.001), with those in Vertosol clustering separately to the
other soil types (Figure 4B).
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Figure 4. The rhizobacterial community assembly in the different soil types assessed in response
to the control, dung, and dung plus beetle treatments. (A) The taxonomic distribution of bacterial
communities under different pasture management practices. (B) Principal coordinate analysis of
16 s rRNA diversity in the rhizosphere of the different soils assessed (data from all treatment types
combined due to similarity of the treatment effect).
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The fungal phyla were mostly dominated by the presence of Ascomycota in Vertosol
and Rudosol for all management practices, and for the control and dung plus beetle treat-
ment in Kandosol (Figure 5). In contrast, Chromosol was dominated by Mortierellomycota
for all treatment types, as well as the dung-only treatment for Kandosol. Importantly, the
fungal diversity was not impacted by the management practices at the phylum level for all
soil types except for Vertosols, where the dung plus beetle treatment resulted in a significant
increase in the Shannon index (p < 0.05; Supplementary Figure S2). PERMANOVA revealed
that the soil type impacted the beta diversity most, with the fungal community profiles
differing significantly between the soil types assessed (p < 0.001). Taxa associated with
Vertosol clustered separately to the other soil types.

In soil samples associated with dung beetle activity, we observed an increase in the
bacterial class Clostridiaceae, which contains various genera with known pathogenicity to
humans and animals, as well as potential to fix nitrogen in the soil (Figure 6A) [43]. We
also observed that the fungal class Agaricaceae was associated closely with dung beetle
presence (Figure 6B). Most genera of this class of fungi are saprophytic, decomposing lignin
and cellulose [44]. Collectively, these observations suggest that the burrowing behaviour of
beetles may have enhanced the movement of water along with surface-dwelling exogenous
microorganisms deeper into the soil profile.
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Figure 5. The soil fungal community assembly in the different soil types assessed in response to the
control, dung, and dung plus beetle treatments. (A) The taxonomic distribution of fungal communities
under different pasture management practices at the feature level. (B) Principal coordinate analysis
of 16 s rRNA diversity in the rhizosphere of the different soils assessed (data from all treatment types
combined due to similarity of the treatment effect).
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3.7. Pasture Biomass

Average dry weights of pasture biomass harvested at four consecutive samplings in
30-day intervals are presented in Figure 7A,B, grouped by the soil type and the treatments,
respectively. Significant differences in pasture biomass growth among different soil types
were observed initially, evident at the first and second pasture harvests at 30 days after
planting (30 DAS) and 60 days after planting (60 DAS), respectively, likely to reflect the
inherent nutrient content of different soil types. The effect of dung treatment on pasture
biomass growth was evident from the third pasture harvest at 90 days after planting
(90 DAS) and continued to the fourth pasture harvest at 120 days after planting (120 DAS),
despite the removal of residual dung pat at 60 DAS. A highly significant effect of dung
beetles on pasture biomass growth was observed at the fourth pasture harvest at 120 DAS,
indicating long-term turnover of dung beetle activity on pasture soils, potentially reflecting
the gradual mineralisation of nutrients from dung. Cumulative pasture biomass at 120 days
after planting is presented in Figure 7C,D, grouped by the soil type and the treatments,
respectively. In summary, Vertosol generated the largest pasture biomass, followed by
Chromosol, Rudosol, and Kandosol (p < 0.001). Total pasture biomass generated over time
was significantly (p < 0.01) higher for dung and dung beetle treatments, compared to the
dung-only treatment.
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4. Discussion

Lysimetry-based experimentation enables the collection of soil leachates for the evalu-
ation of soil chemical and biological dynamics in response to changes as impacted by soil
moisture, nutrient application, and crop management [45], and fills the gap between labora-
tory and full-scale field experimentation under controlled conditions [46,47]. The inclusion
of a microbial community profiling approach then enabled the quantification of the impact
of both soil and agronomic treatments on the abundance and diversity of soil bacteria
and fungi. Following on from statistical analysis, we observed that soil type and textural
properties significantly impacted nitrate and total N leaching while dung incorporation by
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dung beetles generally had no effect upon nitrate leaching in collected soil water samples.
The soil type affected nutrient leaching, while dung incorporation by dung beetles did not.
However, the addition of cattle dung and dung beetle activity initially increased soil water
contamination with E. coli, which is a common indicator of groundwater contamination
with faecal coliforms, but was below the hazardous threshold [48]. Clearly, both soil type
and the dung incorporation impacted the diversity of soil microfauna.

The water-holding capacity (WHC) of the four soil types evaluated differed greatly,
as expected, providing the opportunity to study the impact of dung and dung beetle
activity on leachate quality, in representative soils for high and low water-holding scenarios.
We used four different soil types underlying Australian pastures, namely, Vertosol with
generally high water-holding capacity, Chromosol and Kandosol with moderate WHC, and
Rudosol with low WHC [22]. To our knowledge, this is the first study of its kind conducted
in the southern hemisphere to assess the impact of dung beetles on soil leachates over
various soil types.

A previous study conducted in New Zealand using a similar lysimetry setup assessed
leachate properties in allophanic soils, a common soil type encountered in New Zealand
pastoral properties [23]. Soil type and its effect on leaching of pathogenic E. coli were
not addressed in the present study. Instead, pasture management with dung and dung
beetles increased the E. coli concentration in leachates. This is a similar observation to
Aislabie et al. [23] who reported an increase in E. coli by up to 8 MPN 100 mL−1 following
the introduction of dung plus dung beetles. In our study, we observed approximately
2.5 MPN 100 mL−1 of E. coli in leachates, which is similar to values encountered in bore
or rain-fed water tanks in the Riverina region [49]. While the World Health Organisation
considers only 0 MPN 100 mL−1 of E. coli to be safe, a range of 1–10 MPN 100 mL−1

is regarded as low-risk [48]. Overall, our results provide an insight into the relatively
limited potential for soil water contamination following the introduction of dung beetles
on pastoral properties, for the specific soil types evaluated in this study.

Cattle and other livestock dung types are known to improve soil nitrogen levels when
used as manure or fertilisers [50]. In pastoral lands, however, the long-term presence of
dung pats on the soil surface reduces productivity for the underlying pasture while also de-
terring grazing activity of livestock [15]. There is also growing environmental concern with
respect to volatilisation, run-off, and leaching of nutrients present in high concentrations
in dung [51]. Our results demonstrated that nitrate leaching was prevalent in the lower-
clay-containing Rudosol as well as the high-clay-containing Vertosol soils. Vertosols, rich
in layered sheet silicates [52], characteristically contain microcracks, providing channels for
solutes to move through the soil profile [53]. Kandosol and Chromosol in comparison are
less porous and are less prone to cracking [54], thereby reducing the movement of water
and solutes through the soil profile. Importantly, dung beetle activity was not found to
exacerbate nitrate leaching in any of the soil types when compared to the control group.
This observation is in agreement with a similar lysimetry study [23] where dung beetle
activity in volcanic allophanic soils showed no impact on nutrient leaching over time.

The identity of dung beetle species may have an impact on the ecosystem services provided
in an agricultural system. For example, in a recent study conducted by Maldonado et al. [55]
evaluating the nutrient cycling benefits of dung beetles in mid-western Argentina, it
was found that under moisture-controlled conditions in pots, a native-tunnelling beetle
Sulcophanaeus imperator incorporated more organic material, 10–20 cm below the soil surface
when compared to an introduced tunnelling beetle Digitonthophagus gazella, a native lifter
Eucranium arachnoides, and a roller Malagoniella (Megathopomina) puncticollis. However,
no impact was observed for soil nitrate levels to a depth of 20 cm between any of the
species. The present study used the introduced tunnelling dung beetle, Bubas bison, due to
its potential to process livestock dung over autumn, winter, and spring seasons coinciding
with the winter annual pasture growing season [56]. B. bison has also been shown to alleviate
drought stress in a winter Brassica crop through potential soil conditioning achieved by
increasing the permeability of soil to water [6]. It is also very likely that the increase in
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pasture biomass production by the dung + dung beetle treatment at 120 days after sowing
was associated with increased water permeability of the soil following beetle activity over
the drier spring months.

Soil, in the absence of ameliorants and extra nutrients, is considered an oligotrophic
environment, with a small cohort of active microorganisms, in the generally low-nutrient
matrix [57]. However, the modification of this environment by abiotic and biotic factors
may affect the active component of the microbiome [58]. Indeed, in the soil types we
assessed, the abundance of organic carbon, nitrogen, sulphur, and phosphorus levels
differed. Accordingly, these soils were found to have dissimilar microbiomes. As cattle
dung is a source of intestinal microorganisms, and it modulates soil nutrient levels once
incorporated [59], it was expected that the soil microbiome profile may differ following
the addition of dung and following dung beetle activity incorporating dung in the soil.
Our results showed, however, that at the phylum level, the addition of the dung and
dung + dung beetles had no impact on the bacterial microbiomes for each soil type. It
is likely that many of the exogenous bacteria from dung did not survive and colonise
the soil rhizosphere. In a previous study, Semenov et al. [59] demonstrated that 78% of
manure-sourced microbes did not survive over two weeks in soil, with approximately 95%
becoming non-viable over the course of the experiment (44 weeks). Interestingly, members
of the Clostridia class were found to be dominantly represented in the surviving cohort of
dung-sourced bacteria. Similarly, we observed that Clostridia was the most differentially
abundant class of bacteria in dung and dung + beetle treatments.

In contrast to the relative abundance of bacteria, the relative proportions of fungal
phyla differed among soil types and the beetle management strategy applied. Previous
studies demonstrated that the aeration of rhizosphere soils typically increased the diver-
sity and abundance of soil fungal communities [60,61]. Soil fungi are also stratified in
undisturbed cropping soils, with diversity reducing with increasing depth [62]. However,
these layers can be homogenised by soil mixing, including processes such as ploughing of
soil [63]. It is, therefore, likely that the aeration of the deeper soils by dung beetle tunnelling
activity and movement of organic material by the beetles may have altered the fungal
communities in the soil.

Incorporation of manure into the soil substrate generally improves soil organic carbon
content and other macronutrient levels, and increases soil pH over time, while also en-
hancing crop yields when compared to synthetic fertilisers, particularly when used over a
longer time frame [64]. The process of dung incorporation can be further facilitated through
dung beetles, particularly those that tunnel deeply into the soil profile [65]. For example, B.
bison have been shown to bury up to 90% of cattle dung lying on the soil surface within
five days of being introduced to a site [12]. In the absence of dung beetles, the duration
for soil incorporation of dung could exceed four months [66]. It is likely that the later but
positive response in pasture growth at the final pasture evaluation was associated with the
transfer of soil nutrients to the soil following dung incorporation by B. bison; however, this
requires further investigation under field conditions.

5. Conclusions

Dung beetles contribute to various and diverse ecosystem services, positively im-
pacting soil function, fertility, and livestock pest management. Using a soil lysimetry
approach, we demonstrated that soil leachate nutrient quality in terms of soluble nitrogen
was impacted by local soil type, but not initially by dung presence or dung beetle activity
in four representative soils from the Riverina region of Southeastern Australia. Interest-
ingly, leachate quality deteriorated following dung beetle activity in all soils assessed, with
significant increases in E. coli. However, observed levels of E. coli were very similar to those
encountered regionally in local natural groundwater sources. Interestingly, regional soil
type impacted the composition of the soil microbiome found after experimental termination.
The soil community structure was generally not impacted by the presence of surface dung
or dung beetle activity. Our results also demonstrate that the survival of saprophytic fungi
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associated with the degradation of dung is enhanced by dung beetle activity over time.
Accumulation of pasture biomass was initially dependent on soil type, and increased in
association with dung beetle activity, particularly in later stages of pasture growth.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agronomy13020325/s1, Figure S1: Schematic representation of
the general assembly of a lysimeter column and leachate collection system, established in Wagga
Wagga NSW; Figure S2: The impact of soil management strategies on the diversity of (A) bacterial and
(B) fungal phyla; Table S1: Monthly Climate Statistics for ‘WAGGA WAGGA AMO’ [072150], NSW,
Australia; Table S2: Nutrients in leachates collected from water percolating through four different soil
types in lysimetry experimentation performed in Wagga Wagga, NSW during May–November 2021
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