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Abstract: Corn is one of the main food crops in China, and its area ranks in the top three in the
world. However, the corn leaf disease has seriously affected the yield and quality of corn. To quickly
and accurately identify corn leaf diseases, taking timely and effective treatment to reduce the loss
of corn yield. We proposed identifying corn leaf diseases using the Mobilenetv3 (CD-Mobilenetv3)
model. Based on the Mobilenetv3 model, we replaced the model’s cross-entropy loss function with a
bias loss function to improve accuracy. Replaced the model’s squeeze and excitation (SE) module
with the efficient channel attention (ECA) module to reduce parameters. Introduced the cross-layer
connections between Mobile modules to utilize features synthetically. Then we Introduced the dilated
convolutions in the model to increase the receptive field. We integrated a hybrid open-source corn leaf
disease dataset (CLDD). The test results on CLDD showed the accuracy reached 98.23%, the precision
reached 98.26%, the recall reached 98.26%, and the F1 score reached 98.26%. The test results are
improved compared to the classic deep learning (DL) models ResNet50, ResNet101, ShuffleNet_x2,
VGG16, SqueezeNet, InceptionNetv3, etc. The loss value was 0.0285, and the parameters were lower
than most contrasting models. The experimental results verified the validity of the CD-Mobilenetv3
model in the identification of corn leaf diseases. It provides adequate technical support for the timely
control of corn leaf diseases.

Keywords: CNN; disease; corn; image processing; identification

1. Introduction

Corn is the most productive grain crop in the world and one of the major grain
crops in China. China’s corn industry is developing rapidly; the sown area reached
41.26 million hm2 in 2020, creating a high yield record of 24,948.75 kg/hm2 [1]. Various leaf
diseases occur in corn during planting, affecting corn’s yield and quality. Therefore, it is
essential to efficiently and accurately identify corn leaf diseases. Solve the following prob-
lems intense subjectivity and low efficiency in traditional manual identification of diseases.
Some researchers, such as Dang [2], Xiong [3], Su [4], Yuan [5], etc., used image processing
technology based on machine learning to diagnose and identify types of crop diseases.
Traditional machine learning [6–10] requires manual extraction of disease features, and it is
not only time-consuming and labor-intensive but also a low generalization. The emergence
of deep learning (DL) [11–15] provides a new method for plant disease identification. DL is
also used in many fields [16–20]. Convolutional neural network(CNN) [21–25] is one of
the most common DL methods. In image classification, due to the large amount of data
to be processed, it isn’t easy to keep the original features of images in digitization. CNN
has the ability of representation learning, which can automatically extract features from
images of different scales. CNN has a strong ability to extract image features and high
accuracy. It has been widely used in agriculture in recent years. For example, In 2020,
Xu et al. [26] proposed a CNN model based on the VGG-16 model to realize the image
recognition of corn diseases under the complex field background of small data samples.
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This model uses transfer learning to recognize corn disease images, which can improve the
model’s convergence speed and recognition ability. The accuracy is 95.33%. Ren et al. [27]
constructed a VGG network model based on deconvolution guidance for plant leaf disease
identification and disease spot segmentation. Anagnostis et al. [28] used a self-built walnut
leaf dataset, they proposed a CNN-based method for identifying anthracnose in walnut
leaves, and the accuracy ranges from 92.4% to 98.7%. Maeda-Gutiérrez et al. [29] used mod-
els such as AlexNet, GoogleNet, and InceptionV3 to identify nine different types of tomato
diseases, and the accuracy is 99.72%. In 2021, Bao et al. [30] proposed an improved CNN
model to identify corn leaf diseases, it improved the model’s stability, and the accuracy
was 95.74%. Hassan et al. [31] proposed two methods, shallow VGG with RF and shallow
VGG with Xgboost, to identify diseases, and the experiments achieved good results on corn,
potato, and tomato. In 2022, Wang et al. [32] proposed a corn disease identification model
(AT-AlexNet) based on AlexNet, constructed a new downsampling attention module, and
introduced the Mish activation function, and the average accuracy was 99.35%. The above
studies have achieved good results, but the model parameters are large, and the running
time is long. These are unsuitable for mobile terminal development and not convenient for
farmers. It isn’t easy to expand other applications.

Some scholars have also proposed lightweight networks to run CNN models on mobile
and embedded devices. It has the advantages of fewer parameters and smaller model sizes,
such as MobileNetv1 [33], MobileNetv2 [34], ShuffleNetv1 [35], and ShuffleNetv2 [36], etc.
In 2020, Mi et al. [37] proposed a new DL network (C-DenseNet) based on the DenseNet
web (C-DenseNet), Embedded the convolutional block attention module (CBAM) into the
densely connected convolutional net DenseNet, and the accuracy is 97.99%. Chao et al. [38]
proposed a DL network model XDNet based on DenseNet and Xception, it identified five
apple leaf diseases, and the accuracy was 98.82%. In 2021, Liu et al. [39] used the PlantVil-
lage public dataset as the experimental data. They studied a lightweight network based
on the improved SqueezeNet model, which identified many leaf diseases. Sun et al. [40]
embedded a lightweight coordinate attention mechanism in the model MobileNetV2; it
reduced the model’s parameters and improved its accuracy. In 2022, Li et al. [41] proposed
a method based on ResNet lightweight residual network (Scale Down ResNet) to identify
plant leaf diseases. It reduced network parameters and computational complexity and
maintained a low identification error rate. Zeng et al. [42] proposed a group multi-scale
attention network to identify rubber leaf disease images (GMA-Net), experiments on the
constructed rubber leaf disease dataset, and the PlantVillage public dataset. The accuracy
of the model is 98.06% and 99.43%, respectively. Eunice et al. [43] used a CNN-based
pre-training model to identify plant diseases effectively. They were fine-tuning the hyperpa-
rameters of the popular pre-training model and conducting experiments on the PlantVillage
data set. Experiments showed that the classification accuracy of DenseNet-121 is 99.81%,
which was superior to the most advanced model. Some researchers began using mobile
phones to identify diseases to make it convenient for farmers. In 2019, Liu et al. [44], based
on MobileNet and Inception V3 network combined with transfer learning, proposed two
crop disease classification models to detect plant leaf disease on mobile phones. In 2020,
Yu et al. [45], based on DL and combined with transfer learning, proposed a CDCNNv2
model based on a residual network(ResNet 50) to detect crop diseases and pests. They
designed an Android-based crop pest identification APP. In 2021, Fan et al. [46] proposed a
detection system for grape leaf disease based on transfer learning and improved VGG16 on
Android mobile phones. It obtained images by taking photos or acquiring the local gallery,
clicking the identification button, and the system output the results of grape diseases.

Based on previous research, to reduce the complexity and parameters of the model
and improve the accuracy of the model. We used Mobilenetv3 as the basic model of our
research, and it is a lightweight CNN. Mobilenetv3 [47] uses the cross-entropy loss function
to measure the difference between two probability distributions and between the learned
and actual distributions. Mobilenetv3 has the squeeze and excitation (SE) [48] module. The
SE module adds an attention mechanism in the channel dimension. The critical operations
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are squeezes and exceptions. It obtains the importance of each channel of the feature map.
It Uses this importance to assign a weight value to each feature, and the neural network
can focus on some feature channels. We have improved the model based on Mobilenetv3.
The main innovations of this paper are as follows:

• In the Mobilenetv3 model, we have replaced the cross-entropy loss function with the
Bias Loss function, which can reduce problems the random predictions can cause
during optimization;

• We have replaced the SE module in the model with the efficient channel attention
(ECA) module, which can reduce the parameters of the model and improve its accuracy
of the model;

• The cross-layer connections are introduced between Mobile modules, introducing the
shallow features into deep layers. It enables effectively comprehensive utilization of
local features and deep features, and the extracted features are more extensive;

• The dilated convolutions are introduced in the first and last convolution of the model,
increasing the receptive field so that convolution can extract more information;

• The experimental results can verify the validity of the improved model, and it can
reduce the model’s parameters and shorten the model’s running time, improving
its accuracy.

2. Materials and Methods
2.1. Data Sources

Our research used mixed open-source corn leaf disease datasets (CLDD). The CLDD
contained different public datasets on the Internet, including PlantVillage [49], AI challenger
2018, PlantifyDr, and PlantDoc [50] datasets, etc. Most of these data were from the research
stations of field trials in many countries. Researchers usually used standard digital cameras
and smartphones to take images of plant leaves. Our research integrated most of the data
related to corn leaf diseases. The CLDD has 25,167 images, including four kinds of corn
leaf diseases (northern leaf blight, dwarf mosaic virus, rust, gray spot) and healthy leaves.
This CLDD contained 6765 images of corn north leaf blight, 931 images of corn dwarf
mosaic virus, 6126 images of corn rust disease, 3588 images of corn grey spot disease, and
7757 images of healthy corn leaves. Figure 1 shows partial examples of the original CLDD.
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Figure 1. Partial examples of different levels of disease in the original dataset. Note: (a–e) Severe
corn leaf disease; (f–j) Mild corn leaf disease; (a,f) Healthy; (b,g) Northern leaf blight; (c,h) Common
rust; (d,i) Dwarf mosaic virus; (e,j) Gray leaf spot.

2.2. Data Preprocessing

Our research set the image size to 448*448*3. To balance the samples and reduce
the overfitting phenomenon of the network. Our research preprocessed the dataset and
enhanced some datasets. The enhancement method used a variety of ways, such as adding
noise, mirror transformation, horizontal flipping, and clipping. The specific operations are
as follows:
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• By flipping, adding noise, rotation, blurring, etc., dwarf mosaic virus image data has
increased six-fold, a total of 5586 images after enhancement;

• By adding noise and flipping, Gray spot image data doubled, totaling 7176 images
after enhancement. A total of 33,409 images of the enhanced corn leaf disease dataset.

Our research randomly selected 80% of the dataset as the training set and 20% of
the dataset used as the test set. The training and test sets are 26,727 and 6682 images,
respectively. Figure 2 shows examples of the augmented datasets, and Table 1 shows the
number of datasets before and after the enhancement process.
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Table 1. Original and enhanced images of corn leaf disease datasets( CLDD).

Disease Class Original Image Enhanced Image Sample Label

Common rust 6125 6125 1
Gray leaf spot 3588 7176 2

Dwarf mosaic virus 931 5586 3
Healthy 7757 7757 4

Northern leaf blight 6765 6765 5
Total 25,166 33,409 5

2.3. Experiment Method
2.3.1. Mobilenetv3 Network

Mobilenetv3 [33,47] obtained parameters by NAS (network architecture search) search.
It has two versions, large and small, suitable for different scenarios. It inherits the depthwise
separable convolution of Mobilenetv1 and the residual structure with the linear bottleneck
of Mobilenetv2. Mobilenetv3 uses the NetAdapt algorithm to obtain the optimal number
of convolution kernels and channels. It introduces the SE channel attention structure based
on MobileNetV2 and modifies the MobileNetV2 back-end output. Mobilenetv3 uses a
new activation function, h-swish (x), instead of Relu6. It uses Relu6 (x + 3)/6 to simulate
sigmoid in the SE module. Figure 3 shows the network model structure of Mobilenetv3,
divided into three parts: The first part consists of 1 convolutional layer, extracting features
by 3 × 3 convolution; the second part has multiple convolutional layers; due to different
levels and parameters, divided into large and small version, the number of small is 13
and large is 15; the third part is to reduce parameters and calculation, it advances the Avg
Pooling, replacing the entire connection with two 1 × 1 convolutional layers, and finally
outputting the category.

Agronomy 2023, 13, x FOR PEER REVIEW 5 of 18 
 

 

advances the Avg Pooling, replacing the entire connection with two 1 × 1 convolutional 

layers, and finally outputting the category. 

 

Figure 3. Structure diagram of Mobilenetv3 network model. Note: “ k” represents the number of 

Mobile modules, “a*b*c” means the channel number and size of the Mobile module, including 16* 

224* 224, 24* 112* 112, 40* 56* 56, 80* 28* 28, 112* 28* 28 and 160* 14* 14. 

2.3.2. Dilated Convolution 

The dilated convolution [51] aims at the problem of image semantic segmentation, 

and it is an idea that downsampling reduces image resolution and misses information. 

The convolution receptive field increases when the parameter quantity is unchanged. Di-

lated convolution introduces a new parameter called “dilation rate” to the convolutional 

layer, which defines the spacing of each value when the convolution kernel processes the 

data. It expands the receptive field by adding holes under the same parameters and cal-

culation. It allows the original 3 × 3 convolution kernel to have a 5 × 5 (dilated rate =2) or 

larger receptive field, so there is no need to downsample. Different receptive fields bring 

multi-scale information when multiple dilated convolution kernels with varying dilation 

rates are stacked. Dilated convolution can expand the receptive field without losing reso-

lution and keep the relative spatial position of the pixels unchanged. 

2.3.3. Bias Loss Function 

Bias Loss [52] is a dynamic scaling cross-entropy loss, and its scale decays as the var-

iance of the data points decreases. The Bias Loss function helps to focus learning on sam-

ples that can provide many unique features. It reduces problems that random prediction 

causes during optimization. Bias Loss defines as： 

( ) ( )i 1 j 1

1
log ;N k

bias i ij j i
L z v y f X

N


= =
= −   , (1) 

( ) ( )v exp v *
i i

z  = − , (2) 

Letting 
C h wX R   be the feature space. c is the several input channels. h, w is the 

height and width of the input data.  1,,,,kY =
 
is the label space. k is the number 

of classes. A standard scenario has a dataset ( )
i 1

,
N

i i
D x y

=
= , each( ),

i i
x y X Y   

neural network ( );f X  . In the formula, α and β are adjustable parameters. v is the 

scaling variance of the convolution layer output. The non-linear scaling function ( )iz v  

generates a bias between low and high-variance data points. 

2.3.4. ECA Module 

ECA module [53] is an efficient channel attention mechanism. This module involves 

a few parameters and brings significant performance gains. The ECA module includes an 

average pooling layer, a 1 * 1 convolution, and a sigmoid activation function. ECA module 

Figure 3. Structure diagram of Mobilenetv3 network model. Note: “k” represents the number of
Mobile modules, “a*b*c” means the channel number and size of the Mobile module, including
16*224*224, 24*112*112, 40*56*56, 80*28*28, 112*28*28 and 160*14*14.
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2.3.2. Dilated Convolution

The dilated convolution [51] aims at the problem of image semantic segmentation,
and it is an idea that downsampling reduces image resolution and misses information. The
convolution receptive field increases when the parameter quantity is unchanged. Dilated
convolution introduces a new parameter called “dilation rate” to the convolutional layer,
which defines the spacing of each value when the convolution kernel processes the data. It
expands the receptive field by adding holes under the same parameters and calculation.
It allows the original 3 × 3 convolution kernel to have a 5 × 5 (dilated rate = 2) or larger
receptive field, so there is no need to downsample. Different receptive fields bring multi-
scale information when multiple dilated convolution kernels with varying dilation rates
are stacked. Dilated convolution can expand the receptive field without losing resolution
and keep the relative spatial position of the pixels unchanged.

2.3.3. Bias Loss Function

Bias Loss [52] is a dynamic scaling cross-entropy loss, and its scale decays as the
variance of the data points decreases. The Bias Loss function helps to focus learning
on samples that can provide many unique features. It reduces problems that random
prediction causes during optimization. Bias Loss defines as:

Lbias = −
1
N ∑N

i=1 ∑k
j=1 z(vi)yij log f j(Xi; θ), (1)

z(vi) = exp(vi ∗ α)− β, (2)

Letting X ∈ RC×h×w be the feature space. c is the several input channels. h, w is the
height and width of the input data. Y = {1, , , , k} is the label space. k is the number of
classes. A standard scenario has a dataset D = (xi, yi)

N
i=1, each (xi, yi) ∈ X × Y neural

network f (X; θ). In the formula, α and β are adjustable parameters. v is the scaling variance
of the convolution layer output. The non-linear scaling function z(vi) generates a bias
between low and high-variance data points.

2.3.4. ECA Module

ECA module [53] is an efficient channel attention mechanism. This module involves
a few parameters and brings significant performance gains. The ECA module includes
an average pooling layer, a 1*1 convolution, and a sigmoid activation function. ECA
module based on the SE module replacing multilayer perceptron (MLP) module with
one-dimensional convolution, avoiding dimension reduction and effectively realizing
cross-channel interaction. ECA module realizes information interaction between channels
through 1 D convolution with a kernel size of k, i.e.,

ω = σ(C1Dk(y)), (3)

where σ is a Sigmoid function, 1 D indicates 1 D convolution. k is kernel size. y is the
aggregated feature without dimension reduction. There may exist a mapping φ between
k and C. Channel dimension C usually is set to a power of 2. However, the relations
characterized by linear function are too limited. Therefore, we introduce a possible solution
by extending the linear function φ(k) = γ ∗ k− b to a non-linear one, i.e.,

C = φ(k) = 2γ∗k−b, (4)

where C is the channel dimension, and b is constant. Then, given channel dimension C,
kernel size k can be adaptively determined by

k = ψ(C) =
∣∣∣∣ log2(C)

γ
+

b
γ

∣∣∣∣
odd

, (5)
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where |t|odd indicates the nearest odd number of t. By mapping ψ, High dimensional chan-
nels have more extended range interactions, while low dimensional channels experience
shorter range interactions using nonlinear mapping.

Our research replaced the cross-entropy loss function in the model with the Bias Loss
function, and it reduced problems caused by random predictions during optimization. In-
troduced dilated convolution increased the receptive field and let convolution extract more
information. Replaced the SE module in the model with the ECA module and effectively
reduced the amount of parameter calculation. Introduced cross-layer connections between
Mobile modules, introduced shallow features into deep layers, and effectively utilized
local and in-depth features. Our research constructed an identification Mobilenetv3 model
of corn leaf diseases (CD-Mobilenetv3). Figure 4 shows the network model structure of
CD-Mobilenetv3. The specific implementation steps are as follows:
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bile modules. It experimented on the CLDD to verify the performance of the CD-Mo-
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Table 2. Ablation test results of CLDD. 

Model LossValue Accuracy(%) Precision(%) Recall(%) F1-Score(%) Params 

Mobilenetv3-large 0.1314 95.54 95.71 95.69 95.61 5.48 M 

Mobilenetv3-large-bia 0.0568 96.72 96.82 96.76 96.78 5.48 M 

” represents Sigmoid
function, “⊗” represents the weighting operation of the matrix, “⊕” represents the addition operation
of the convolutional features vector.

Introduced dilated convolution: we introduced dilated convolution in the 3*3 convo-
lution of the first Mobile module and the 5*5 convolution of the last Mobile module of the
model. Dilated convolution increased the receptive field so that convolution extracted more
information. First, we input a corn leaf disease image with a size of 448*448*3. It acquired
features through a 3*3 dilated convolution. The extracted image size became 16*224*224,
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and its number of channels increased to 16. The picture size became half of the original.
Dilated convolution improved model accuracy and reduced loss value.

Replaced the SE module in the Mobile module with the ECA module: The CD-
Mobilenetv3 replaced the SE module in the Mobile module with the ECA module, improved
the model’s accuracy, and reduced the model’s parameters. The ECA module includes
an average pooling layer, a 1*1 convolution, and a sigmoid activation function. The
process of the improved Mobile module was through a 1*1 convolution, Batch norm, and
ReLU/H_Swish activation function. The Batch norm accelerated the network convergence
speed, and the activation function reduced the amount of calculation. Then it went through
a 3*3/5*5 convolution, Batch norm, and ReLU/H_Swish activation function. It calculates
the feature weight through the ECA module and multiplies the original feature and the
feature weight to obtain a weighted feature set. Then input to 1*1 convolution for channel
dimension reduction, output to the following Mobile module after passing through the
Batch norm.

Introduced cross-layer connections: To reduce the loss of features in the transfer
process, we adopted cross-layer connections between mobile modules to integrate the
characteristics of different layers. When the number of channels and the Mobile module
with the size of 24*112*112 is output, made two cross-layer connections: The first cross-layer
connection went through 1*1 convolution, Batch norm, and ReLU functions. It passed the
5*5 convolution, Batch norm, and ReLU functions, output after 1*1 convolution and Batch
norm. These operations increased the number of channels and reduced dimensions. It
performed a feature sum operation with the Mobile module, which has many channels and
sizes of 40*56*56, and passed the feature result to the following Mobile module. The second
cross-layer connection replaced the 5*5 convolution in the first step with a 3*3 convolution.
The rest of the steps were similar. These operations introduced the features of the shallow
layer into the deep layer, effectively utilized local and in-depth features, and extracted
more comprehensive features.

Feature fusion: Stacking 15 Mobile modules formed a deep network and extracted
more feature information. It underwent 960*1*1 convolutions for dimensionality reduction,
then output a feature set of 960*7*7. It performed its average pooling and feature compres-
sion through a pooling layer. After a fully connected layer with 1280 categories, linearly
fused the features extracted from the convolution were.

Specific classification: To increase the model’s generalization and reduce the model’s
overfitting in the model, we added a random dropout behind a fully connected layer with
1280 categories. Then, we added a fully connected layer with five classes, whose function
is non-linear change and specific classification. Finally, output the identified results.

2.3.5. Evaluation Index

The evaluation index used the accuracy rate to calculate the proportion of correct
classification. However, due to sample imbalance, it combines precision, recall, and F1
score to evaluate the model comprehensively. The higher the precision, the stronger the
model’s ability to distinguish negative samples. The higher the recall, the stronger the
model’s ability to identify positive samples. The higher the F1 score, the more robust the
model. The calculation methods for each indicator are as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
, (6)

Precision =
TP

TP + FP
, (7)

Recall =
TP

TP + FN
, (8)

F1 =
2Precision× Recall
Precision + Recall

, (9)
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In the formula, TP is the number of actual positive images of corn leaf disease; FP
is the number of false positive images of corn leaf disease; TN is the number of actual
negative images of corn leaf disease; FN is the number of false negative images of corn
leaf disease.

3. Results
3.1. Experimental Environment and Parameter Settings

The test environment is Ubuntu 18.04 64-bit operating system, and the python version
is 3.7. The DL framework is Python 1.8.1. Hardware environment: The processor on the
computer is Intel(R) Xeon(R) Gold 6246R CPU @ 3.40 GHz (64 CPUs), ~3.4 GHz. The
running memory is 128 GB, the graphics card is NVIDIA Quadro RTX 8000, and the video
memory (VRAM) is 48 GB.

The input image size was 448*448*3. The number of training iterations epoch was 100.
The batch size when training disease classification was 64. The learning rate of the model
was 0.01. To reduce problems such as overfitting, the training model used the AdamW
optimizer, and weight_decay was a default.

3.2. Ablation Experiment

Based on the Mobilenetv3 model, our research introduced the Bias Loss function,
dilated convolution, and ECA module and introduced cross-layer connections between
Mobile modules. It experimented on the CLDD to verify the performance of the CD-
Mobilenetv3 model. We got the experimental results through the test set. Table 2 shows the
results of the ablation test.

Table 2. Ablation test results of CLDD.

Model LossValue Accuracy (%) Precision (%) Recall (%) F1-Score (%) Params

Mobilenetv3-large 0.1314 95.54 95.71 95.69 95.61 5.48 M
Mobilenetv3-large-bia 0.0568 96.72 96.82 96.76 96.78 5.48 M

Mobilenetv3-large-bia-eca 0.0540 96.38 96.47 96.45 96.45 3.97 M
Mobilenetv3-large-bia-eca-skip 0.0400 97.47 97.51 97.51 97.51 4.36 M

Mobilenetv3-large-bia-eca-skip-digconv
(CD-Mobilenetv3) 0.0285 98.23 98.26 98.26 98.26 4.36 M

Table 2 shows the results of the ablation experiments. The accuracy of the CD-
Mobilenetv3 model on the corn leaf disease dataset reached 98.23%. Based on the Mo-
bilenetv3 model, we replaced the cross-entropy loss function in the model with the Bias Loss
function. Its accuracy was 1.18% higher than the basic model on the data set. It showed that
the Bias Loss function focused the learning of the model on samples that provided a large
number of unique features, so that effectively extracted more features. Then we replaced
the SE module in the model with the ECA module. The accuracy of the experimental results
was 0.84% higher than the basic model and reduced its parameters by 27.56%. It showed
that the ECA module improved the model accuracy and effectively reduced the amount
of parameter calculation. Introduced cross-layer connections, its accuracy rate was 1.93%
higher than Mobilenetv3 and reduced its parameters by 20.44%. It showed that cross-layer
connections effectively integrated local and in-depth features, and the extracted features
were more comprehensive. Introduced dilated convolution in the first and last convolution
of the model, the accuracy of the CD-Mobilenetv3 model on the dataset was 2.69% higher
than the Mobilenetv3. It showed that after dilated convolution expanded the receptive
field, it better extracted the semantic information of leaves and lesions. In terms of the loss
value, the CD-Mobilenetv3 model was 0.1029 lower on the dataset than the basic model. In
terms of precision, the CD-Mobilenetv3 model was 2.55% more promoted than the basic
model. In terms of recall, the CD-Mobilenetv3 model improved by 2.57% on the dataset
compared to the basic model. In the aspect of the F1 score, the CD-Mobilenetv3 model
was 2.65% higher than the basic model in a dataset, and its parameters were reduced by
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20.44%. It showed that the results of the ablation experiment verified the effectiveness of
the CD-Mobilenetv3 model.

Figure 5 shows the convergence of the accuracy and loss value of the improved
network model on the test set within 100 epochs. Figure 5a shows that with the increase
in iteration times, the addition of other improved models gradually slowed to around
20 epochs. It started to converge at about 40 epochs, while the CD-Mobilenetv3 curve
rose the fastest and grew after 20 epochs. It reached the highest point when training to
40 epochs, and the training accuracy of the network remained stable and ranked at the top.
It showed that introducing the ECA module reduced the model’s parameters and improved
computing efficiency. Introduced cross-layer connections and dilated convolution better-
extracted feature information and significantly improved the model’s accuracy. As seen
from Figure 5b, the loss value of the improved network model gradually decreased under
the training of data samples, and the CD-Mobilenetv3 curve decreased the fastest. After
40 epochs of training, the loss value of the network reached the lowest value, which
approached 0.0285. It showed that the model has good robustness, which reflected that the
Bias Loss function reduced the problems caused by random prediction in the optimization
process. Therefore, the improvement effect of the CD-Mobilenetv3 model was ideal, and it
was more suitable for classifying corn leaf diseases.
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3.3. Comparative Experiment

To further verify the effectiveness of the CD-Mobilenetv3 model proposed in this paper.
Compared heavyweight network models ResNet50, ResNet101, VGG16, and lightweight
network models ShuffleNet_x2, SqueezeNet, InceptionNetv3, Mobilenetv3-small and
Mobilenetv3-large for experiments. The comparison models were all tested on the original
framework of the model and parameter settings. The experimental results were all obtained
on the test set. Table 3 shows the comparative test results.

Table 3 shows the results of the comparative experiments. Compared with the heavy-
weight network model and the lightweight network model, the CD-Mobilenetv3 model
has a significant improvement in accuracy. In the experimental CLDD, the accuracy of the
CD-Mobilenetv3 model proposed by the study reached 98.23%. Compared with ResNet50,
ResNet101, ShuffleNet_x2, VGG16, SqueezeNet, InceptionNetv3, Mobilenetv3-small and
Mobilenetv3-large, the improvements were 2.00%, 3.82%, 6.39%, 1.62%, 5.89%, 3.28%, 3.51%
and 2.69% respectively. In terms of loss value, compared with other models, the CD-
Mobilenetv3 model reduced by 0.0203~0.1854. In terms of precision, the CD-Mobilenetv3
model improved by 1.59% to 6.24% compared to other models on the dataset. In terms of
recall, the CD-Mobilenetv3 model improved by 1.61% to 6.42% compared to other models
on the dataset. On the dataset, the F1-score of the CD-Mobilenetv3 model was 1.61%–6.67%
higher than other models, and the parameters were lower than most of the comparison
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models 1.12–134 M. The CD-Mobilenetv3 model was more accurate than the experimental
results, and its various indicators are also more suitable. It has less parameter calculation
and a shorter running time. Therefore, the CD-Mobilenet v3 model was more suitable for
developing and applying mobile software.

Table 3. Comparative experimental results of CLDD.

Model Loss Value Accuracy (%) Precision (%) Recall (%) F1-Score (%) Params

ResNet50 0.1151 96.23 96.38 96.36 96.30 25.56 M
ResNet101 0.1642 94.42 93.99 93.68 93.54 44.55 M

ShuffleNet_x2 0.2139 91.84 92.70 92.19 92.06 7.39 M
VGG16 0.0488 96.61 96.67 96.65 96.65 138.36 M

Mobilenetv3-small 0.1634 94.72 95.00 94.84 94.87 2.54 M
SqueezeNet 0.2129 92.34 92.02 91.84 91.59 1.24 M

Mobilenetv3-large 0.1314 95.54 95.71 95.69 95.61 5.48 M
InceptionNetv3 0.1533 94.96 94.34 94.18 94.02 27.16 M
CD-Mobilenetv3 0.0285 98.23 98.26 98.26 98.26 4.36 M

Figure 6 shows the convergence of the accuracy and loss values of the network models
compared to the test set within 100 epochs. Figure 6a shows that adding other DL models’
accuracy gradually slowed down around 20 epochs with the increase in the number of
iterations. It began to converge around 40 epochs, and the accuracy of the overall network
model was not high. After 20 epochs of training, the accuracy of the CD-Mobilenetv3
model still improved gradually under the training of data samples. The CD-Mobilenetv3
model began to converge after about 40 epochs of training, and the training accuracy
of the network approached 98.23%. Figure 6b shows that with the increase in iteration
times, the loss value of other comparable models decreased slowly. The loss value of the
CD-Mobilenetv3 model dropped fastest and reached a stable point in 40 epochs. The loss
value of the network approached 0.0285. From the perspective of the convergence of the
loss value, the training effect of the CD-Mobilenetv3 model was ideal.

1 
 

  
(a) (b) 

 
Figure 6. Accuracy and loss of comparative network model. (a) Accuracy; (b) Loss value.

3.4. Feature Attention Visualization

Gradient-weighted class activation mapping(Grad-CAM) [54] is a specific positioning
technology category that can generate visual interpretation for any CNN-based network. It
uses the gradient of any target concept flowing into the final convolution layer to generate
a rough location map, highlighting the critical areas in the image used to predict concepts.
After introducing the attention mechanism into the basic model, further verified the impact
of the CD-Mobilenetv3 model on model performance improvement. Our research selected
some examples of the CLDD, then used Grad-CAM to visualize the feature of the CD-
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Mobilenetv3 model. The feature attention visualization heatmap showed that the CD-
Mobilenetv3 model did convolution or other operations. It was the process of extracting
image features. Feature heatmap highlighted its detailed features, and the feature map
output by the network focused more on the feature part of the image.

It can be seen more intuitively from Figure 7, where the corn leaf disease was deep
and bright, and features with different colors showed the attention of different regions.
The redder the color, the higher the attention of the area. It showed that when introduced
the attention mechanism, the CD-Mobilenetv3 model paid more attention to the regions
with more apparent features in the process of classification and identification in feature
extraction and representation. It reduced problems such as background area interference in
the disease identification process to improve the network model’s performance.
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3.5. Confusion Matrix

Analyzing the confusion matrix of recognition results presented in Figure 8 showed
that by using the CD-Mobilenetv3 model, from the error between actual and predicted
labels, labels 2 and 5 have a high misclassification rate. Label 1 was mistakenly divided into
label 2 with thirteen images, label 1 was mistakenly divided into label 3 with five images,
label 1 was mistakenly divided into label 4 with one image, and label 1 was mistakenly
divided into label 5 with seven images. Label 2 was mistakenly divided into label 3
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with three images, label 2 was mistakenly divided into label 4 with 1 image, and label 2
was mistakenly divided into label 5 with forty-six images. Label 3 has no mismarking.
Label 4 was mistakenly divided into label 3, with two images total. Label 5 was mistakenly
divided into label 1 with six images. Label 5 was mistakenly divided into label 2 with
thirty-one images, label 5 was mistakenly divided into label 3 with one image, and label 5
was mistakenly divided into label 4 with two images. These results further verified the
effectiveness of the attention mechanism in improving model recognition performance.
Further analysis of the results showed that the disease features of the misclassified images
were very similar, so the accurate recognition of image features has a certain influence on
the accurate recognition of disease.
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Taking the identification results of CLDD as an example, the misclassification samples
of five types of leaves were sorted out. The visualization confusion matrix of misclas-
sification of CLDD is shown in Figure 9, and the image position in the matrix is the
misclassification samples. In the CLDD, the identification accuracy of label 3 reached 100%
at the highest, and that of label 2 was 96.52% at the lowest, among which the misclassifi-
cation rate of label 2 into label 5 was 3.20%. Combined with the test results in Figure 8, it
was concluded that subjective vision in the process of corn leaf disease recognition that
the disease texture and external morphological features were an essential basis for classifi-
cation. When the disease texture features were relatively simple, and its texture features
were distinguishable from other disease texture features to be identified, the classification
and recognition accuracy of this disease was higher. When the difference in the texture
features of the disease is slight, it is easy to misclassify. In Figure 9, the location samples
corresponding to the visual confusion matrix of label 2 and label 5 showed that the phe-
notypic disease characteristics of label 2 showed irregular gray to long brown spots on
the leaves, most of the leaves turned yellow and scorched, and label 5 had relatively little
difference in the disease texture and external morphological characteristics. Hence, there
were more misclassified samples in these two types of diseases. The test results in Figure 8
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verified this conclusion. Further comparison and analysis of the test results in Table 4 and
Figure 8 showed that the average recognition accuracy of healthy leaves in the CLDD was
the highest. The reason may be that the sample pictures of the corn leaf dataset were single,
primarily leaves, and the background was mostly simple pure color background, so the
color and edge of the scanned leaves were clear.
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Table 4. Each kind of leaf accuracy on the CLDD.

Model 1 2 3 4 5 Accuracy (%)

Mobilenetv3 95.05 93.83 97.50 96.97 94.35 95.54
CD-Mobilenetv3 97.74 96.52 100.00 99.87 97.04 98.23

4. Discussion

The model proposed in our study compared with other DL models to identify plant
diseases. Table 5 shows the performance comparison between the proposed model and
other DL models. From Table 5, our proposed model had higher performance than most
DL models.

Researchers usually collected datasets in the following ways: The first was through
open-source datasets such as PlantVillage and Kaggle. The second was the online collection.
The third was to collect and shoot in the field. Table 5 shows the accuracy of the CD-
Mobilenetv3 model was higher than the improved lightweight models MobileNet-V2,
MobileNet, Inception V3, and the heavyweight models VGG-16 and VGG. The accuracy of
the improved AlexNet model proposed by Wang et al. was higher than the CD-Mobilenetv3
model. However, The CD-Mobilenetv3 model had fewer parameters, ran faster, and
was more suitable for mobile terminal development. Based on the above data, the CD-
Mobilenetv3 model had the best performance and was ideal for mobile devices.

Based on the Mobilenetv3 model, the CD-Mobilenetv3 model introduced the dilated
convolution, Bias Loss function, and ECA module and added cross-layer connection be-
tween Mobile modules. The CD-Mobilenetv3 model not only improved the accuracy of
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disease identification but also reduced the number of model parameters. There are some
limitations in the CLDD, including only four kinds of diseased and healthy leaves. We will
improve this aspect in future research.

Table 5. Performance comparison with other deep learning(DL) models.

Ref Plant Species Dataset Acquired Method Model Accuracy (%)

Sun J. et al. [40] 4 kinds 10,371 Kaggle Improved
MobileNet-V2 92.20

Liu Y. et al. [44] 14 kinds 56,406 PlantVillage MobileNet
Inception V3

95.02
95.62

Xu J. et al. [26] corn 5400 Online + Field collect Improved VGG-16 95.33

Hassan, S.M. et al. [31] 3 kinds 20,020 PlantVillage + Field collect Improved VGG 95.70

Wang, Y. et al. [32] corn 10,785 Field collect Improved AlexNet 99.35

Gao, Y. et al. [55]

wheat
spikes
wheat

diseases

690
3754 Field collect ResNet-50 85.56

99.32

Liu B Y. et al. [56] Apples 5382 Field collect + Lab collect MobileNet
V2VGG

99.15
95.84

Zhang J L, et al. [57] Lettuce 1918 Field collect You Only Look Once v5 97.60

Proposed corn 33,409
PlantVillage +

ai-challenger + PlantifyDr
+ PlantDoc

CD-Mobilenetv3 98.23

5. Conclusions

Various leaf diseases occur in corn during planting, affecting corn’s yield and quality.
Our research proposed a model CD-Mobilenetv3 to identify corn leaf diseases efficiently
and accurately. We experimented on the CLDD. The test results on the CLDD showed
that the accuracy of the CD-Mobilenetv3 model proposed by our research reached 98.23%.
The loss value reached 0.0285. The precision, recall, and F1 scores reached 98.26%, 98.26%,
and 98.26%, respectively. The CD-Mobilenetv3 model compared several classic DL models
ResNet50, ResNet101, ShuffleNet_x2, VGG16, SqueezeNet and InceptionNetv3, etc. On the
CLDD, the accuracy increased by 1.62~6.39%. The loss value decreased by 0.0203~0.1854.
The precision increased by 1.59~6.24%. The recall increased by 1.61~6.42%. The F1-score
was 1.61~6.67% higher than other models. The parameter quantity was 1.12~134 M
lower than most comparable models. All results verified the effectiveness of the CD-
Mobilenetv3 model.

In future work, we will obtain more crop varieties and disease categories and study
disease identification in the field environment. The group crops in the field environment
are more challenging because of the complex environmental background. At the same time,
we will try to apply the model to embedded devices for farmers to use.
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