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Abstract: Phenols are major compounds produced by plant species as a peripheral stimulus or as
a regulatory defense mechanism under different environmental biotic stresses. These secondary
metabolites are generated from shikimic and acetic acid metabolic pathways. The aromatic benzene
ring compound plays an important role in plant development, especially in the defense forefront.
They provide structural integrity and support to the plants. Phenolic phytoalexins released by
pathogen/arthropod-attacked or wounded plants nullify or repel organisms for the advantage
of the host. The allelopathic potential of phenolic compounds is observed in both natural and
managed ecosystems. The global impacts of climatic variabilities such as drought, increased carbon
dioxide, or greenhouse gas emissions alter the quantitative response of plant phenols. This review
primarily discusses the different aspects of phenolic interactions concerning health, antioxidant
properties, and insect-plant interaction as a nexus of soil and plant relations in response to variable
climatic conditions.

Keywords: secondary metabolites; phenol; allelochemicals; soil interaction; plant-pathogen interaction;
antioxidant; climate change

1. Introduction

Primary plant metabolites, such as carbohydrates, amino and organic acids, and en-
zymes, exhibit essential physiological pathways such as glycolysis, the Krebs cycle, and
the Calvin cycle that are important for plant growth, reproduction, and metabolism [1].
Metabolic pathways are enzyme-mediated chemical reactions and metabolites are organic
compounds synthesized by the host [2]. In contrast, secondary metabolites such as phenols,
alkaloids, flavonoids, and terpenoids play a significant role in stress and the defense mecha-
nism of the plant [3] and are not directly associated with plant growth. They are responsible
for attracting pollinators and seed dispersion [4,5] and are distributed within the taxonomic
groups in the plant kingdom. The functions of secondary metabolites are particular to the
plant species in which they occur [6]. The primary metabolites contribute to the production
of secondary metabolites biosynthetically. Their deficiency does not cause dreadful effects
on the plants [7]. The secondary metabolite content in plants is far less than the primary
metabolites. Most of the facts, questioned by the shared efforts of photochemistry and
plant physio-biology, depicted that secondary metabolite is a way out through which the
plants respond to peripheral stimulus [8,9]. Bioactive compounds collected in plant tissues
through biochemistry mechanisms are encrypted by other mechanisms of regulation. So, it
is assumed that each plant species has progressed up to a remarkable set of machinery for
the biosynthetic regulation of secondary metabolites, from previous generations, which ef-
fectively articulated these strategies [10]. Secondary metabolites provide (i) defense against
other bacteria, fungi, amoebae, plants, insects, and large animals; (ii) metal transporting
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agents; (iii) agents of the relationship between microorganisms and plants, nematodes, in-
sects, and higher animals; (iv) sexual hormones; and (v) differentiation effectors. Although
antibiotics are not compulsory for sporulation, some secondary metabolites (including
antibiotics) stimulate spore formation and inhibit or stimulate germination.

According to the British Nutrition Foundation, secondary metabolites are broadly di-
vided into phenols, terpenoids, alkaloids, and sulphur-containing compounds [11]. Phenol
and polyphenolic compounds are characterized by phenolic ring structure that includes
flavonoids, lignans, and phenolic acids. Huge numbers of plant secondary metabolites
validate the quest for bioactive and defensive compounds, which are elicitors and phy-
toalexins. One of the important compounds in the research area is known as capsidiol,
present in tobacco leaves from Vitis vinifera, which is a terpenic ancestoral, aristolochene. It
is seen in Nicotiana tabacum, among the diverse isoforms of terpene synthase, that the prenyl
phosphate units are cyclized to form the aristolochene carbon form [12]. This bicyclic unit
of alkene is designed as the most central biosynthetic step in the biogenesis of capsidiol. In
this biosynthetic pathway, the terpene synthase transcripts level specifically is influenced
by Manduca sexta infestation of shoots in Nicotiana attenuate leaves [13]. In this review, we
discuss plant phenolics and their importance in soil-plant relations under global climatic
variabilities. The manuscripts describe the need to integrate plant phenolics in agroecologi-
cal systems, the biosynthetic pathways in plant systems, antioxidant properties, allelopathic
interactions and their role in plant systems including the regulatory and inhibitory actions
in the rhizosphere. We have also presented the agro-industrial integration of phenolic
compounds and finally the impact of climate variabilities on the physiological and chemical
fate of phenolics in plants.

2. Bio-Synthesis of Phenolic Compounds in Plant System

In response to several potential enemies in the vicinity, plants often produce secondary
metabolites as their second line of defense, apart from the cuticle or/and the periderm,
which acts as a physical barrier. Secondary metabolites produced by plants are usually
phenolic in nature [14]. The two major metabolic pathways involved in synthesizing
phenols in plants are the shikimate pathway and the malonate acetate pathway [15]. The
seven enzymatic steps in the shikimate pathway (Figure 1) are the primary source of
producing phenolic compounds, related to glycolysis (phenylalanine and tyrosine as end
products; tryptophan as intermediate) in plants [16]. The important amino acids are
produced in the plastid, clearly indicating the absence of such pathways in animal cells.
Some of the steps of the pathway are also performed in the cytosol, where intermediate
proteins and enzymes are also found. Apart from phenolic compounds, indole-3-acetic acid
(IAA), tetrahydrofolate (vitamin B9), salicylic acid, some plant pigments, and quinones
are also producing indole-3-acetic acid (IAA), tetrahydrofolate (vitamin B9), salicylic acid,
and some plant pigments, and quinones other than the phenolic compounds are important
components for transducing energy which is essential for electron transport chains in plant
organs such as thylakoids and mitochondria [14,17]

The malonate acetate pathway is a comparatively less impactful biosynthesis path-
way [18]. Phenylalanine ammonia-lyase (PAL) from the shikimic acid pathway catalyzes
the production of phenolic compounds. Phenylalanine ammonia-lyase is a vital gateway
enzyme in the secondary metabolic pathway, chief to the synthesis of phenolic compounds.
It initiates the formation of cinnamic acid (CIN) from phenylalanine (Phe), important in
regulating the formation of many phenolic acids [19]. The cell walls contain phenolic
acid due to biotic stress, which increases the phenylpropanoid pathway where cinnamic
acid and benzoic acid synthesis [20]. The PAL activity is hindered by 2-aminoindan-2-
phosphonic acid (AIP) and is reported to have stronger inhibition capability in comparison
to 2-aminooxyacetate (AOA) and 2 aminooxy-3-phenylpropanoic acid [21]. Due to the
inhibitory effect of PAL by the enzyme AIP, there resulted in an accumulation of phenolic
compounds in lettuce which limited browning in cut lettuce [22]. Another study reported
a decrease in phenol accumulation in response to the inhibitory effect of PAL by AIP
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treatment [23]. The PAL also plays important role in producing phenol and flavonoids in
response to biotic stresses in the fruiting bodies of the crops [24].
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3. Antioxidant Properties of Phenols

Reactive oxygen species (ROS) are important signaling molecules and free radicals that
respond to cell signaling in plants due to stress [25]. The most popular ROS are superoxide
radical, hydrogen peroxide and hydroxyl radical originating from electron transfers to
dioxygen [26]. Reactive oxygen species (ROS) increases due to an imbalance in cellular
homeostasis to maintain balance [27]. Reactive oxygen species (ROS) and reactive nitrogen
species (RNS) are produced continuously by normal cellular environmental factors and are
extremely responsive to the oxidized molecule. This mode of action in the mitochondrial
respiratory chain and inflammation might lead to damage to other biotic molecules, such
as proteins and DNA [28–30]. To avoid this damage, plants develop enzymatic and non-
enzymatic defense mechanisms in which antioxidant metabolites (and enzymes) neutralize
ROS [31]. A variety of responses were drawn, where some authors found a correlation
between the polyphenol content and the antioxidant activity, while others found no such
relationship [32]. The author [33] mentioned a parallel increase between phenol content
and antioxidant activity during the germination of Pangium edule Reinw, whereas [34] an
increase in the antioxidant activity of lupin seed (Lupinus albus ssp. Graecus), was observed
and phenolic compounds, peptides/amino acids, and phospholipids are responsible for
this increased production [34]

There is an ambiguity in the correlation between the polyphenol content and the
antioxidant activity [26]. In response to plant stress, flavonoid and phenylpropanoid
compounds, present mostly in plant cell vacuoles and apoplast (exterior to plasma cell and
within cell wall), detoxify hydrogen peroxide by donating electrons to guaiacol peroxidases
and forming their respective phenoxyl radicals [35]. Dimers or trimers of flavonoids
are produced due to oxidization (reaction I below) in H2O2-peroxidase (enzyme) system
(Figure 2).
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I 2FlavOH + H2O2 → 2FlavO·+ 2H2O

In this reversible cycle (reaction II below), the phenoxyl radicals (i.e., FlavO·) are con-
verted to their phyto phenols (i.e., flavonols–FlavOH) in enzymatic presence of ascorbate
(asc), delimiting the degradation of products [36] while in absence of (asc) polymerization
products are produced irreversibly.

II 2FlavO + (asc)→ 2FlavOH + 2MDA (monodehydroascorbate radical)

Monodehydroascorbate radical is transported to the cytoplasm and is reduced there
by (Gsh)-dependent glutathione reductase (DHAR) to (asc) and dehydroascorbic acid
(DHA) [37]

III MDA + MDA→ (asc) + DHA

Ascorbate regeneration by cytosolic DHA reductase (cDHAR) and Gsh-DHAR when
coupled the flavonoids peroxidase system act as stress protectants by scavenging hydrogen
peroxide, similar to ascorbate.

IV Summary of the three steps of reaction: H2O2 + (asc)→ 2H2O + DHA

Though phenols show antioxidant properties, the prolonged presence of phenoxyl
radicals can be responsible for cell mortality [38]. Antagonistically, reports have shown
that extracts from berries have shown the presence of anthocyanins, quercetin, esters of
coumaric acid, etc. with anticancer efficacy against different human cell lines [39]. Inhibition
in tumor growth due to the polyphenol content from tea extracts has been noteworthy
while working with rat cell lines, holding epigallocatechin gallate and theaflavin as the
responsible polyphenols [40,41]. Inhibition of tumours is brought about by apoptosis or cell
cycle arrest. The cells usually then undergo DNA fragmentation or chromatin condensation.
Polyphenols such as flavonoids such as quercetin, rutin, and apigenin, phenolics acids such
as gallic acid, tannic acid, caffeic acid, as well as delphinidin, resveratrol, and curcumin
have shown oxidative DNA strand breakage, bringing about apoptosis and with anti-cancer
drug developing properties [39,42].

4. Role of Phenol and Phenolic Compounds in Plant Systems

Secondary metabolites secreted from plants are of great importance in defense growth,
and development. They are associated with various processes together with rhizogene-
sis [43,44], resistance to biotic and abiotic stress, and redox reactions in soils [45]. Also, they
are related to flowering pigments and act as constitutive guards against intruders. They
play an important role as allelopathic compounds and signal molecules. These compounds
have an important role as natural animal toxicants [46] and function as pesticides [47,48].
They are also useful constituents of the rhizosphere. For weed control, the compounds
are recognized as allelochemicals and in animals as phytoestrogens [49]. Effective allelo-
chemicals can be present as volatile terpenoids, contaminated water-soluble hydroquinone,
hydroxycinnamates, and 5-hydroxynapthoquinone. Several simple and complex phenolic
compounds accumulated in plant tissues act as phytoalexins, phytoanticipins, and nemati-
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cides against many pathogens and insects [50]. Phenolic compounds have been used to
serve as a valuable alternative to the chemical control of pathogens in crops.

When infection is caused by micro symbionts such as rhizobium as well as pathogen
attack, then the herbivory phenols are synthesized and released [51]. These metabolites
intra- and extra-cellular to plant tissues are known to function as phytoalexins, phytoan-
ticipins, and node gene inducers. Many studies showed that phenolic metabolites are
toxic to plants and a level determined in a higher range affects soils [52–55]. Phenolic acid
concentrations in soil can range from 2.1% to 4.4% for monocot roots and from 0.1% to
0.6% for dicot roots [56]. The phenolics might have a beneficial or negative impact on
the availability of plant mineral elements in the rhizosphere. Through rainfall leachate of
phenolic as chromogenic acid or through a variety of other methods that alter phenolic
synthesis, green leaves and decomposing plant litter can regulate the rhizosphere and
dynamics [56]. The development of protein complexes delays the decomposition and min-
eralization of organic matter, increases microbial activity when utilized as a carbon source,
results in immobilization, and directly inhibits nitrification [57–61]. The effects of soil-borne
diseases in modern agricultural systems may help varied defense mechanisms used by
rhizosphere-dwelling plants. The effects of soil-borne diseases in modern agricultural
systems may help varied defense mechanisms used by rhizosphere-dwelling plants. The
production, release, and addition of numerous phenolic chemicals serve as the plant’s
defense mechanism against diseases, nematodes, and phytophagous insects [62,63]. The
alfalfa root releases isoflavonoid 2-(35-dihydroxyphenyl)-5, 6-dihydroxybenzofuran which
acts as a phytoalexin to defend against root infections such as Fusarium oxysporum f. sp.
Phaseoli [64]. When released into the soil through seeds, roots, or residue decomposition,
these chemicals play a significant role in defense and protection against soil-borne diseases
and root-feeding insects [18,65]. Due to the ecological potential of these macromolecules
from symbiotic legumes in the rhizosphere as a sustainable method of lowering soil-borne
diseases in the ecosystems, they have attracted more scientific interest [66].

5. Regulatory and Inhibitory Interactions of Phenolic Compounds in the Rhizospheric
Soil Matrix

Phenolic compounds enter the soil systems as exudates from roots or as leachates or
particulate matter from plants [67,68]. The release of phenolic compounds from decompos-
ing leaf litter and roots on upper soil layers of the horizon is mediated by soil microbes.
Phenolic compounds in soils exist in three forms—free or dissolved, absorbed or reversibly
bound by clay minerals or chelated complexes with metals and proteins, and polymer-
ized [67]. In soil formation and pedogenesis, phenolics and other organic molecules from
the root and seed exudates, leaf leachates, and decaying plant residues play a key role. The
degradation of phenols and their reactivity depends on the chemical structure and forms
of phenol [69,70]. Many phenolics such as phenolic acids and tannins are water-soluble.
These forms remain in solution between soil particles leading to reversible sorption through
hydrophobic, hydrogen, and ionic interactions. These microbial condensation and polymer-
ization reactions of phenolic compounds with amino acids and proteins in the soil matrix
release soil organic acids of higher molecular weights such as fulvic acids, humic acids,
and humin [60,71,72]. This process of humification alters the physicochemical processes
in soils based on alterations in soil health and qualitative characteristics. The resulting
humic substances are generated by polymeric combinations of phenolic compounds and
soil organic matter [67]. The recalcitrant structure of phenols makes them resistant to
natural biodegradation and decomposition. However, the phenolic compounds are highly
soluble in water up to 10g L−1 [73]. These properties possess serious risks of environmental
pollution [74–76].

The phenolic compounds are also known for inhibiting the oxidation of ammonia
by nitrifying microorganisms during nitrification [77–79]. Contrastingly, low contents of
phenolic acids in rhizospheric soils have indicated increased nitrogen (N) mineralization
rates, and enhancement in ammonium content, resulting in increased conservation of
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soil N [80]. Contrastingly, phenolic compounds can enhance the mobility of soil phos-
phorus (P) depending on soil properties such as pH and organic chelates. The addition
of phenolic compounds decreases the pH of saturation paste extract of calcareous and
aluminum-dominated soils [81]. Phenols synergized with organic acids (chelates before
biodegradation) alter the stable and sparingly soluble forms of soil phosphorus (P) to easily
dissolvable forms [81]. The abundance of phenols can absorb large quantities of heavy
metals such as cadmium in soils [82].

These abundances can lead to ecological consequences in the growth and development
of plants, mainly impacting the germination stage. In woodland or forestry, regenerative
practices and reforestation problems are attributed to the phenolic compounds polymerized
with high organic matter and deposited in the soils. These depositions can be due to former
tree species [81]. The phenolic compounds also impact other physiological responses
during plant growth such as cellular expansion, membrane permeability, nutrient mobility,
soil-plant relations for respiration, and water uptake [83].

6. Phenolic Compounds in Plant-Pathogen Interaction

Plant phenols constitute one of the common and important groups of defensive
secondary metabolites compounds, that play a vital role against herbivores, including
insects [71,84,85]. Insect attacks or defense mechanisms alter and elevate the qualitative
and quantitative measures and elevation in activities of the oxidative enzyme [84]. For
example, lignin is a phenolic heteropolymer and plays a significant role in plant defense
against insects and pathogens [86] by physically blocking or increasing the leaf toughness,
diminishing the nutritional content of the leaf, and restricting the entry of pathogens and
feeding behaviour of herbivores (Figure 3) [87]. Lignin synthesis is induced by herbivore
or pathogen attack and the rapid deposition reduces further growth of the pathogen or
herbivore productivity. Some genes involved in lignin expression, such as (CAD/CAD-like
genes) at times, are noted to increase in amount when studied on plants infected with pests
and pathogens [86]. Due to the phenolic oxidation catalyzed by polyphenol oxidase (PPO)
and peroxidase (POD), there is a potential defense mechanism in plants. To leaf proteins,
the quinones are formed due to the oxidation of phenols binding covalently, and also hinder
protein digestion in herbivores [88]. Also, quinones show direct toxicity to insects [88,89].
The nutritional value of plant proteins for insects is reduced due to the alkylation of amino
acids, which in turn adversely affects insect growth and development [88]. Other than the
mentioned roles there is evidence showing the role of phenols in the cyclic reduction in ROS
such as superoxide anion and hydroxyl radicals, H2O2, and singlet oxygen, which activate a
cascade of reactions leading to the activation of defensive enzymes [8]. Operophtera brumata
(L.) in Salix leaves, the simple phenolics (salicylates) act as an antifeedant, and there is an
adverse correlation between the salicylate levels and the larval growth; still, salicylic acid
(SA) is much more important as phytohormone than as deterrent [90].

Some phenolic compounds are soluble in organic solvents, whereas some are soluble
in water, such as carboxylic acid and glycosides [91]. Phenolics also play important by
attracting pollinators and fruit dispersers, absorbing harmful ultraviolet radiation as a
mechanical support in the plant, and limiting the growth of nearby competing plants [92].
There are a wide number of examples of phenolics used in defense against insect herbivores.
Wheat cultivars which contain phenolic compounds are much less attractive to Rhopalosi-
phum padi (Cereal aphid) [93]. Catechol-based phenolics present in the leaves of Fragaria
(strawberry) provide resistance to Tetranychus urticae (two-spotted spider mite) [94]. It is
noticed that the cotton phenolic pigment gossypol has repellent effects against abundant
insects and is lethal to Heliothis virescens (tobacco bollworm), Heliothis zea (bollworm), and
quite a few other insects [95].
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7. Allelopathic Interactions

Allelochemicals mostly spread via the roots and soil of plants many biotic and abiotic
factors contribute to the allelopathic interactions among organisms. Phosphorus, nitrogen
content, water stress, temperature, and microbes and their metabolites play a role of high
significance [96,97]. Soil fatigue is a phenomenon in agriculture where the accumulation of
fungi secreting mycotoxins in the soil hinders the productivity of plants [98]. Such toxins
have an upper hand in the soil-microbes-plant interaction and have survived or endured
in the community interaction with a myriad of biological effects [99]. These mycotoxins
vary in their potential impact on plants and/or animals, belonging to various groups of
cyclic terpenoids, polyketides, and cyclic polypeptides [100]. Polyketides include many
potent mycotoxins with not only zootoxic but also phytotoxic properties: alternariol from
Alternaria spp., aflatoxin from Aspergillus spp., fumigatin and zearalenone from Fusarium
spp., trichodermin from Trichoderma spp., patulin, citrinin, rubratoxin from Penicillium
spp. [98]. Microorganisms in interaction with plant and soil secrete a large number of
allelochemicals (lytic enzymes such as glucanases, chitinases, etc.) and influence and causes
several plant diseases. β-1,3-glucanase among many other cell wall degrading enzymes
(CWDEs), destroys the cell walls causing the root rot Pythium aphanidermatum and the
fusarial rot Fusarium oxysporum [99,101].

Among various metabolic compounds secreted by plants in response to interaction,
phenols play a major role and constitute a major group of plant allelochemicals in the
ecosystem (Figure 4) [102]. Phenolic allelochemicals play a role in root elongation, observed
in Lactuca sativa L. [103] by cell division, and interfering with the development of the
plant [104] growth of wheat (Triticum aestivum var. PBW) has been significantly reduced
when their seeds were soaked in root leachates or root and leaf extract of various weeds
such as Parthenium hysterophorus, Asphodelus tenuifolius, and Pluchea lanceolata, revealing a
high phenolic content [105].

The phenolic allelochemicals based on their structure can be broadly divided into the
following categories [107] (Table 1).
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Table 1. Cont.

Phenolic Compounds Some Examples with Their Structure Function or Mechanism of Action Reference

C6-Cn compounds
n = 1

1. Shikimic acid
2. Benzoic acid and

derivatives
3. Phenolic aldehydes
4. Phenolic glycosides

n = 2

1. Phenylacetic acids
2. Acetophenones
3. Styrenes
4. Phenethylamines

n = 3

1. Cinnamic acid and
derivatives

2. Phenolic glycosides
3. Phenolic propanoids
4. Coumarins
5. Furanocoumarins
6. Aromatic amino acids

n = 4

1. Naphthoquinone
2. Phenylbutyric acids
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Table 1. Cont.

Phenolic Compounds Some Examples with Their Structure Function or Mechanism of Action Reference

Phenolic dimers
(C6-C3)2 Compounds

1. Coumaric acids and
derivatives

(C6-C3-C6)2 compounds

1. Biflavonoids and poly
flavonoids

Phenolic hybrids(C6-C1)10
Compounds

1. Tannins
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8. Phenolic Compounds from Agro-Industrial Byproducts

From agricultural and industrial residues, the abundance of phenolic compounds
and their extraction and antioxidant activity has been widely researched [110]. Several
agricultural byproducts have been identified which contain phenolic compounds with
antioxidant activity such as rice hulls, [111] buckwheat hulls, [112] and almond hulls [113].
The total cinnamic acid content of the hulls of Swedish oats (Avena sativa L.) [114] was found
higher than that of the groats (23.6 compared to 3.6 mg kg−1 dry matter) [115]. Another
source of phenolic antioxidants is pistachio hulls, which may contain up to 34 mg tannic
acid equivalents phenolics/g dry weight [115].

Citrus industry byproducts, if utilized, could be key sources of phenolic compounds,
as the peels in particular have been found to contain advanced amounts of total phenolics
in comparison to the edible portions [116]. Phenolic compounds, various phenolic acids,
and flavonoids are present in tomato waste [117]. There are reports that dry onion skin
waste is one of the agro-industrial wastes which is high in flavonoids and phenolic acids
and has a role in antioxidant activity [118]. Similarly, potato, which is one of the most
widely used vegetables around the world, has been reported to have peel waste that has
glycoalkaloids [119].

Another important source of phenolic compounds is the byproducts of the olive in-
dustry, with much attention focused on olive mill wastes. In the olive fruits, the phenolic
compounds are distributed into the olive oil or may be present in the aqueous phase
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wastewater or the solid phase pomace, with nearly 1–2% partitioning into the former [120].
Therefore, a major potential source of phenolics, particularly in consideration that annual
production exceeds 7 million tons, is the olive mill wastes [121]. The phenolic content of the
olive mill wastewater (OMWW) is reported to vary between 1.0% and 1.8% depending on
varietal factors and processing effects. Hydroxytyrosol, tyrosol, oleuropein, and a variety
of hydroxycinnamic acids are major components of OMWW [122]. Olive leaves are another
byproduct of the olive industry and can be also referred to as a source of phenolics, though
to a lesser extent [123] there are some reports where it is mentioned that wines made from
blueberries have higher total phenolic content (600–1860 mg Gallic acid equivalents L−1)
than white wines (191–306 mg Gallic acid equivalents L−1) [124]. Collectively, the infor-
mation provided gives an outline idea about phenols and phenolic compounds related to
agro-waste and its impact.

9. Phenol as Contaminants

Phenols are organic contaminants present and regarded as one of the most toxic
pollutants in wastewater; they are harmful to organisms at low concentrations and many
of them have been classified as hazardous pollutants with direct harmful effects on human
health at low concentrations [125,126]. Oil refineries and the petrochemical industry,
tanneries, olive mills, cork-producing industry, and pulp and paper mills, contribute to
the use and disinfectants of the pesticide [127–130]. Phenols are extensively distributed
as environmental pollutants. From many industrial processes, including synthetic rubber,
plastics, paper, oil refineries, petrochemical, ceramic, steel, conversion processes, and
phenolic resin industries, the concentration of phenolic compounds varies widely. Natural
forest fires are also a source of phenol contamination [131]. Phenol’s presence in water and
wastewater could be toxic to plants if this water is reused for irrigation, while it may also be
toxic for bacteria as well [126,132]. There is a serious discharge problem due to their poor
biodegradability, high toxicity, and ecological aspects when wastewater containing phenolic
compounds is discharged [133]. Industrial use is gradually avoided due to the high toxicity
of phenols; they are subjected to specific regulations by substituting them with harmless
compounds [134]. A crucial step is taken by the Environmental Protection Agency (EPA)
which calls for lowering the phenol content in the wastewater to less than 1mg L−1 [134].
Wastewaters containing phenols and other toxic compounds need careful treatment before
discharge into the receiving bodies of water. Additionally, biological treatment, activated
carbon adsorption, solvent extraction, chemical oxidation, and electrochemical methods
are the most widely used methods for removing phenol and phenolic compounds from
wastewater [135–137].

10. Response of Phenolics to Climate Change

Plant growth and physiological functions are globally impacted by climate change. Ele-
vated levels of CO2, temperature together with phytopathogenic infection or arthropod her-
bivory significantly modify plant biochemistry and likewise their defense responses. By the year
2100, the global mean surface temperature is predicted to increase by at least 1.5 degrees Celsius
compared to that in 1850–1900 [138]. Plant phenolics play an important role in plant protection
against abiotic stressors due to climatic variabilities such as drought, salinity, and ultraviolet
(UV) radiations [139,140]. These stressors increase the expression of phenolic compounds and
impact decomposition and nutrient cycling [140,141]. Plants originating from a cold climate,
higher altitude, or semi-arid environment have been reported to have the highest phenolic
compound contents in their organs [142]. The strong oxidant property of phenolic compounds
protects the cellular structure by increasing ROS production and avoiding cell damage [143,144].
Increased production of polyphenols by many plant species is indicative of protection against
oxidative damage by drought [145]. Depending on the plant genotype and water deficit con-
ditions, phenolic compounds such as tannins and flavonoids are synthesized to protect the
cell membrane and photosynthesis mechanism, protein denaturation, and plant growth in-
hibition [146,147]. The study by Varela and colleagues measured polyphenols in shrublands
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and detected variability in concentrations of phenolic compounds among different species of
Patagonian shrublands [145]. In Larrea divaricata production of phenolic compound, synthesis
increased during the season of greatest drought, while Larrea chilense has lower production of
phenolic compounds without variation between seasons. Similarly, another group of scientists
experimented on five different genotypes of peanuts to study the impact of drought on phenolic
compounds where drought significantly increased the phenolic content in leaves and stems at
midseason [148].

Globally, climatic variabilities particularly increased temperature, are strongly cor-
related to increased carbon dioxide in the atmosphere [149]. In plant systems, increased
temperature and elevated carbon dioxide levels increase phenolic compounds in foliar tis-
sues and decrease concentrations in woody parts of the plants. Drought and UV radiations
influence the accumulation of phenolic compounds in some cultivars of Solanaceous and
leafy vegetables [150–152]. Salt stress in soils is also a major environmental stressor due
to climate change. The salinity stress can significantly reduce the photosynthetic electron
chain reaction and can promote ROS leading to oxidative stress in plants [153]. The phenolic
compounds such as flavonoids and pro-anthocyanidins play an important role by acting
as free radical scavengers [154]. The flavonoid accumulation induced by UV-B radiations
protects the cellular system by potentially acting as a ROS scavenger [143,154,155].

Climate plays a key role in the biochemical contents of fruits and plants, leading to
variation in the phenolic content of the same species of different regions [156]. Besides the
climate impacts on the plant, the field performance of any microbial herbicide in terms of
virulence and host range depends on several biological traits of the organisms and their
environmental conditions, which directly and indirectly can leave ecological and economic
consequences on the mutually interacting species [157].

11. Conclusions

Secondary metabolites such as phenols and polyphenolic compounds are regulatory
and have inhibitory effects on plants in response to abiotic stresses or external stimuli. It
generates defense mechanisms against harmful microbiota, chelating transport agents, sex-
ual hormones, and differentiation effectors. These compounds provide significant benefits
for human health and therefore the manuscript provides a forum to understand the nexus
benefits of plant phenols as an integrative balance of soil, rhizosphere, plant, and climate
change. The redoximorphic features of phenolic hormones concerning plant hormones
(such as resveratrol (which improves impaired glucose) and streptozotocin (beneficial
impacts on β-cells)) play a vital role in chronic metabolic disorders in humans. Therefore,
understanding the biosynthetic pathway and the mechanism of phenolic compounds in
agroecological systems is important for further research and development in this area.

The two major biosynthetic pathways—shikimic acid and malonic acetate pathways—
are primary sources of producing phenolic compounds, followed by the glycolytic pathway
and cinnamic acid which are the intermediate product. The polyphenolic compounds
enhance vegetable products’ nutritional and functional values and further evolve into
strong complexation with digestive enzymes when consumed. The presence in plants
makes phenolic compounds as precursors during the decomposition of soil organic matter
specifically for humic acid in soils.

This leads to the synergistic impact of these secondary metabolites as functions of
pedogenetic processes in soil. The defense mechanism against feeding herbivores and al-
lelopathic interaction is majorly in response to the release of phenolic compounds. Phenolic
compounds are impacted by variable climate and inductive or natural stresses such as
drought and salinity. These stresses impact the physicochemical mechanisms of phenols,
primarily increasing the reactive oxygen species. Therefore, the beneficial impacts of phe-
nolic compounds as integrative balance in soil and plant systems, presented in this study
concerning global climatic changes, aim to advance further research of these compounds
under external environmental stimuli or abiotic stresses.
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154. Sztatelman, O.; Grzyb, J.; Gabryś, H.; Banaś, A.K. The Effect of UV-B on Arabidopsis Leaves Depends on Light Conditions after
Treatment. BMC Plant. Biol. 2015, 15, 281. [CrossRef]

155. Kusano, M.; Tohge, T.; Fukushima, A.; Kobayashi, M.; Hayashi, N.; Otsuki, H.; Kondou, Y.; Goto, H.; Kawashima, M.;
Matsuda, F.; et al. Metabolomics Reveals Comprehensive Reprogramming Involving Two Independent Metabolic Responses of
Arabidopsis to UV-B Light. Plant. J. 2011, 67, 354–369. [CrossRef]

156. Eseberri, I.; Trepiana, J.; Léniz, A.; Gómez-García, I.; Carr-Ugarte, H.; González, M.; Portillo, M.P. Variability in the Beneficial
Effects of Phenolic Compounds: A Review. Nutrients 2022, 14, 1925. [CrossRef]

157. Classen, A.E.T.; Sundqvist, M.K.; Henning, J.A.; Newman, G.S.; Moore, J.A.M.; Cregger, M.A.; Moorhead, L.C.; Patterson, C.M.;
Sundqvist, M.K.; Henning, J.A.; et al. Direct and Indirect Effects of Climate Change on Soil Microbial and Soil Microbial-Plant
Interactions: What Lies Ahead? Ecosphere 2015, 6, 1–21. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1038/s41598-020-71782-5
http://www.ncbi.nlm.nih.gov/pubmed/32901084
http://doi.org/10.1016/j.foodchem.2016.07.172
http://doi.org/10.1038/s41598-019-52605-8
http://www.ncbi.nlm.nih.gov/pubmed/31690810
http://doi.org/10.1111/j.1469-8137.2010.03269.x
http://www.ncbi.nlm.nih.gov/pubmed/20569414
http://doi.org/10.1016/j.jtbi.2008.04.018
http://doi.org/10.1016/j.plaphy.2016.03.014
http://doi.org/10.1104/pp.105.061192
http://doi.org/10.1016/j.indcrop.2015.07.008
http://doi.org/10.1016/j.foodchem.2015.09.022
http://doi.org/10.2134/ASASPECPUB53.C8
http://doi.org/10.3390/foods6080056
http://www.ncbi.nlm.nih.gov/pubmed/28757563
http://doi.org/10.5073/JABFQ.2013.086.026
http://doi.org/10.3906/tar-1612-56
http://doi.org/10.1186/s12870-015-0667-2
http://doi.org/10.1111/j.1365-313X.2011.04599.x
http://doi.org/10.3390/nu14091925
http://doi.org/10.1890/ES15-00217.1

	Introduction 
	Bio-Synthesis of Phenolic Compounds in Plant System 
	Antioxidant Properties of Phenols 
	Role of Phenol and Phenolic Compounds in Plant Systems 
	Regulatory and Inhibitory Interactions of Phenolic Compounds in the Rhizospheric Soil Matrix 
	Phenolic Compounds in Plant-Pathogen Interaction 
	Allelopathic Interactions 
	Phenolic Compounds from Agro-Industrial Byproducts 
	Phenol as Contaminants 
	Response of Phenolics to Climate Change 
	Conclusions 
	References

