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Abstract: Reference evapotranspiration (ET0), an essential variable used to estimate crop evapotran-
spiration, is expected to change significantly under climate change. Detecting and attributing the
change trend in ET0 to underlying drivers is therefore important to the adoption of agricultural
water management under climate change. In this study, we focus on a typical agricultural region of
the Fenwei Plain in northern China and use the Mann–Kendall test and contribution rate to detect
the change and trend in ET0 at annual and seasonal scales and determine the major contribution
factors to ET0 change for the baseline period (1985–2015) and the future period (2030–2060) based
on high-resolution gridded data and climatic data from the Coupled Model Intercomparison Project
Phase 6 (CMIP6). The results indicate that the annual ET0 of the Fenwei Plain showed a significant
decreasing trend in the baseline period but insignificant and significant increasing trends in the future
period under the SSP245 and SSP585 scenarios, respectively. The annual ET0 of the plain under the
SSP245 and SSP585 scenarios increase by 4.6% and 3.0%, respectively, compared to the baseline period.
The change and trend in ET0 between the four seasons are different in the baseline and future periods.
Winter and autumn show clear increases in ET0. VPD is the major contribution factor to the ET0

change in the plain. The change in ET0 is mainly driven by the climatic variables that change the most
rather than by the climatic variables that are the most sensitive to the ET0 change. The change and
trend in ET0 in the plain showed clear spatial differences, especially between the eastern and western
area of the plain. To adapt to the impact of climate change on ET0, the irrigation schedule of the crops
cultivated in the plain, the cropping system and management of the irrigation district in the plain
need to be adjusted according to the change characteristics of spatial and temporal ET0 in the future.
These results contribute to understanding the impacts of climate change on evapotranspiration in the
study region and provide spatial and temporal references for adaptation in managing agricultural
water use and crop cultivation under climate change.

Keywords: reference evapotranspiration; climatic variables; contribution rate; spatiotemporal scale;
CMIP6

1. Introduction

Evapotranspiration is the sum of soil evaporation and vegetation transportation. The
method of energy balance is the most used method for calculating the actual evapotran-
spiration because of lower cost with fair accuracy [1] Reference evapotranspiration (ET0)
is a crucial factor used to estimate evapotranspiration in the method of energy balance
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and plays an indispensable role in studies of the atmosphere, the hydrosphere and water
resource management, especially in agricultural water management [2]. Many studies have
shown that the ET0 has been substantially affected by climate change and an increasing in
ET0 will lead to an increasing crop water requirement directly [3,4]. Therefore, clarifying the
increase or decrease in ET0 under climate change would provide important references for
future irrigation scheduling and water resource management [5]. The Penman–Monteith
method developed by FAO is the most reliable standard method for calculating ET0 [6]. The
method involves many climate variables, such as temperature, wind speed, relative humid-
ity and solar radiation [1], and the change in these variables under climate change directly
leads to changes in ET0. Thus, studying the changing attribution of these climate variables
to ET0 can help us to understand the changing mechanism of ET0 under climate change.

Evapotranspiration is generally expected to increase under global warming. However,
some studies showed a decreasing trend in actual evapotranspiration (the evapotranspiration
paradox) in regions of Asia, Europe and North America, which also indicate that evapotranspi-
ration trends may differ between regions under climate change, mainly because of the different
regional land uses and climate [7–10]. Moreover, the agricultural water management is usually
formulated based on an agricultural region or zone with a similar landform and climate [11].
Therefore, studying ET0 at a regional scale under climate change is directly beneficial to support
the regional hydrological assessments and water resource allocation.

Several studies have analyzed the ET0 change and the attribution of climate variables
to the ET0 change trend under climate change in South Korea, Slovenia, Egypt, West
Africa and China [12–17], and different regions showed both increasing or decreasing
change trends of ET0. Many of these studies only analyzed the ET0 for historical climatic
data and lacked analysis for future periods under climate change. Although it is possible to
statistically predict future trends of climatic variables to some extent, based on the analysis
of historical climatic data over a period of time (normally requires more than 30 years of
data), the results of direct analysis for future climatic data, which are produced by various
mechanistic models, show lower uncertainty than the analysis based on historical data [12];
this, of course, brings about extra and heavy work, such as downscaling and bias correction.
Along with the increasing performance of computers, predicting the trend in future climatic
variables should be further analyzed using future climatic data generated by mechanistic
models. The Coupled Model Intercomparison Project (CMIP) provides sets of mechanistic
models and corresponding climatic data and is the most widely used project in the research of
climate change. ET0 exhibits aspects of spatio-temporal variability due to the determining
factors for evapotranspiration [2], and spatial data with a higher resolution (climate variables
and land use) would provide more reliable and accurate results for improving water resource
management. So, the higher spatial resolution of data sources needs to be applied in the
further study of ET0 change [11]. Some studies have pointed out that climate variables show
different change trends at different temporal scales under climate change [12,18], which
could lead to ET0 showing varying change trends at annual and seasonal scales. In addition,
agricultural production is characterized by distinct seasonality also with respect to water use.
Therefore, it is important to understand and assess changes in trends of ET0 at annual and
seasonal scales under current and future climate change.

In summary, this study uses the climatic data from CMIP6, which is the latest project
and performs more accurately than previous projects including CMIP5 and CMIP3 [19],
to evaluate ET0 trends and changes under climate change in the Fenwei Plain in China, a
typical and crucial agricultural region, which is one of seven main agriculture production
areas in China. The specific objectives of this study are to (1) detect the trend and changes
of ET0 at annual and seasonal scales for the historical period (1985–2015) and the future
period (2030–2060) under climate change, (2) analyze the attribution of the relevant climatic
variables to ET0 changes using the sensitivity index and contribution rate and (3) explore
the change mechanisms of ET0 at the regional scale and provide a high accuracy of reference
on temporal and spatial scales to the adaptation and management of water resources under
climate change.
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2. Materials and Methods
2.1. Study Region

The study region is the Fenwei Plain with an acreage of about 70,000 km2 (34–36◦ N
and 107◦0′0′′–111.30◦0′48′′ E). The plain is located in northern China and consumes more
than 30% of the water amount of the Yellow River, which is the most important water
resource in northern China (Figure 1). The climate of the region is semi-arid with a
mean annual precipitation of 550 mm and temperature of 14.4 ◦C. The elevation of the
region varies from 350 to 650 m. The agricultural production in the plain also contributes
significantly to Chinese food security and highly depends on irrigation, but climate change
already has had negative impacts on agriculture production, especially on agriculture water
use of the plain [5]. Therefore, determining the impact of climate change on crop water
requirements and the relevant driven factor are important to the development of regional
and national agriculture.
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Figure 1. Location of the Fenwei Plain in China.

2.2. Spatial and Temporal Analysis for Reference Evapotranspiration
2.2.1. Spatial and Temporal Scales

Compared to station data, interpolated gridded data provide regular and continuous
spatial and temporal features allowing for studies of the spatial variability of climatic
variables [20]. Gridded data are also of potential interest for high-precision simulations
to provide more detailed results, but the computation time increases significantly with
increasing spatial resolution [21]. To balance the spatial resolution and computation time,
a 2×2 km grid resolution was applied in this study, and the spatial data of weather and
land use were interpolated and resampled to this resolution. Considering that the results
of this study can directly benefit the agricultural water management of the Fenwei Plain,
the spatial distribution of the grids in the plain follow the distribution of agricultural land
in the plain, which was collected by the Data Registration and Publication System for
Resources and Environmental Sciences “www.resdc.cn/DOI/doiList.aspx (accessed on
30 January 2023)” and was mainly constructed from the satellite of Landsat 8 (Figure 2).
The study region included 4811 grids after the resampling. The mean value of ET0 and the
climatic variables of the entire Fenwei Plain were calculated as the arithmetic mean of all
grids in the study region.

www.resdc.cn/DOI/doiList.aspx
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Figure 2. Spatial distribution of the grids and irrigation districts (a–q) in the Fenwei Plain.

Over 90% of the agriculture water amount was managed by 17 irrigation districts
in the Fenwei Plain (Figure 3). The water management of these irrigation districts was
usually planned on annual and seasonal time scales [8]. Since ET0 is highly correlated
with climatic variables, ET0 also shows obvious seasonal variations similar to the changes
in climatic variables [19,22]. Therefore, to consider the potential reference of the results
for agriculture water use and agrometeorology, two temporal scales were analyzed in
this study: annual and seasonal. The seasonal scale encompassed spring (March to May),
summer (June to August), autumn (July to November) and winter (December to February),
whereas the annual scale runs from January to December. Spatial analysis and computation
were accomplished using ArcGIS 10.8 and MATLAB 2016a.

Agronomy 2023, 13, x FOR PEER REVIEW 5 of 22 
 

 

 
Figure 3. The distribution of the weather stations in and around the study region. 

2.2.2. Calculation of Reference Evapotranspiration 
ET0 was calculated using the Penman–Monteith method with many meteorological 

variables, which showed wide applicability and high accuracy for estimating evapotran-
spiration [6]. The detailed equation is as follows (Allen, 1998): 𝐸𝑇 = 0.408∆(𝑅 − 𝐺) + 𝛾(𝑒 −𝑒 )𝑢 [900 (𝑇 + 273)⁄ ]∆ + 𝛾(1 + 0.34𝑢 ) , (1)

where Rn is the net radiation (MJ m−2d−1), G is the soil heat flux (MJ m−2d−1), Ta is the mean 
air temperature at 2 m height (°C), u2 is the mean wind speed at 2 m height (m s−1), es is the 
saturation vapor pressure (kPa), ea is the actual vapor pressure (kPa), Δ is the slope of the 
saturation vapor pressure versus the air temperature curve (kPa °C−1) and γ is the psycho-
metric constant (kPa °C−1). 

The term (es − ea) in Formula (1) is the vapor pressure deficit (VPD), which represents 
the dryness of the air and is one of the main drivers of vegetation evapotranspiration. VPD 
is a crucial variable used to understand how hydrology affects ecology and agriculture 
under climate change [23]. VPD was calculated from the maximum air temperature (Tmax), 
minimum air temperature (Tmin) and relative humidity (RH) as 𝑉𝑃𝐷 = (𝑒 − 𝑒 ) (2)

𝑒 = 0.6108 × exp(17.27 × 𝑇  𝑇 + 237.3) + 0.6108 × exp(17.27 × 𝑇  𝑇 + 237.3) /2 (3)

𝑒 = 𝑅𝐻100 × 𝑒  (4)

Δ can be calculated by Ta. The specific calculation formula is as follows [1]: 

∆= 4098 × 0.6018 × (17.27 × 𝑇𝑇 + 237.3)(𝑇 + 237.3)  (5)

γ can be calculated by air pressure (P). The calculation formula is as follows [1]: 

Figure 3. The distribution of the weather stations in and around the study region.



Agronomy 2023, 13, 3036 5 of 21

2.2.2. Calculation of Reference Evapotranspiration

ET0 was calculated using the Penman–Monteith method with many meteorological
variables, which showed wide applicability and high accuracy for estimating evapotranspi-
ration [6]. The detailed equation is as follows (Allen, 1998):

ET0 =
0.408∆(Rn − G) + γ(es−ea)u2[900/(Ta + 273)]

∆ + γ(1 + 0.34u2)
, (1)

where Rn is the net radiation (MJ m−2d−1), G is the soil heat flux (MJ m−2d−1), Ta is the
mean air temperature at 2 m height (◦C), u2 is the mean wind speed at 2 m height (m s−1),
es is the saturation vapor pressure (kPa), ea is the actual vapor pressure (kPa), ∆ is the slope
of the saturation vapor pressure versus the air temperature curve (kPa ◦C−1) and γ is the
psychometric constant (kPa ◦C−1).

The term (es − ea) in Formula (1) is the vapor pressure deficit (VPD), which represents
the dryness of the air and is one of the main drivers of vegetation evapotranspiration. VPD
is a crucial variable used to understand how hydrology affects ecology and agriculture
under climate change [23]. VPD was calculated from the maximum air temperature (Tmax),
minimum air temperature (Tmin) and relative humidity (RH) as

VPD = (es − ea) (2)

es =

[
0.6108× exp

(
17.27× Tmax

Tmax + 237.3

)
+ 0.6108× exp

(
17.27× Tmin
Tmin + 237.3

)]
/2 (3)

ea =
RH
100
× es (4)

∆ can be calculated by Ta. The specific calculation formula is as follows [1]:

∆ =
4098×

[
0.6018×

(
17.27×Ta
Ta+237.3

)]
(Ta + 237.3)2 (5)

γ can be calculated by air pressure (P). The calculation formula is as follows [1]:

γ = 0.665× 10−3 × P (6)

In summary, the terms in Equation (1) were transferred to or involved in five climatic
variables including mean air temperature (Ta), wind speed (u2), air pressure (P), vapor
pressure deficit (VPD) and net radiation (Rn). These five variables were analyzed in the
attribution analysis (Section 2.3) of changes in ET0.

2.2.3. Historical and Future Climatic Data

This study involved monthly historical observed, historical simulated and future sim-
ulated climatic data. The historical observed variables of maximum, minimum and mean
air temperature, wind speed, air pressure, relative humidity and duration of sunshine were
collected from 45 national weather stations located in and around the study region to calculate
observed ET0 (Figure 3). The missing climatic data are generated using the linear interpolation
method. Then, gridded historical observed data with a 2×2 km grid were interpolated using
these weather station data and passed the generalized cross-validation. The software ANUS-
PLIN v4.4 was used for the interpolation, and the independent variables were longitude and
latitude, with elevation as the covariate. More interpolation details are showed in [5]. The
data of 31 years from 1985 to 2015 were collected as the historical period (baseline period).

The historical and future simulated climatic data were collected among the global
climate models (GCM) in CMIP6 “https://esgf-data.dkrz.de/search/cmip6-dkrz/
(accessed on 30 January 2023)”. The periods from 1985 to 2015 and from 2030 to 2060 were
defined as the baseline period and future period, respectively. The simulated monthly
climatic data of maximum, minimum and mean air temperature, wind speed, air pressure,

https://esgf-data.dkrz.de/search/cmip6-dkrz/


Agronomy 2023, 13, 3036 6 of 21

relative humidity and solar radiation were collected from the GCM models to calculate the
simulated ET0. For better simulation of ET0, the net radiation term Rn in Formula (1) was
calculated as follows [24]:

Rn_CMIP6 = (rsds− rsus)− (rlus− rlds), (7)

where Rn_CMIP6 is the net radiation calculated by the data from CMIP6, and rsds, rsus,
rlus and rlds are surface downwelling shortwave radiation, surface upwelling shortwave
radiation, surface upwelling longwave radiation and surface downwelling longwave
radiation, respectively.

As mentioned before, the accuracy of CMIP6 has been further improved compared
with previous projects, for example, the resolution of some GCM models has reduced to
100 km. Therefore, to meet more accurate and detailed needs for water management and to
reduce the downscaling uncertainty, the GCM models possessing the same monthly scale,
variant label (r1i1p1f1), nominal resolution (100 km) and variables (the given climatic vari-
ables) were selected from CMIP6. Thus, four GCM models (MPI-ESM1-2-HR, MRI-ESM2-0,
CMCC-ESM2 and CAS-ESM2-0) were selected. Then, four sets of the simulated climatic
variables were calculated to obtain four sets of the simulated ET0 after the downscaling
and bias correction for the climatic variables (see the next Section 2.2.4). The method of
multi-model ensemble mean (MME) has shown better simulation performance than indi-
vidual GCM in many studies [25]. So, the ensemble prediction of simulated ET0 was used
in this study using the MME with equal weighing, which was calculated by the arithmetic
mean value of the four sets of simulated ET0.

At the current rate of adoption of climate change mitigation measures, global mean
temperature is projected to rise by 3.2 ◦C in 2100 [26]. Therefore, we chose the middle
forcing scenario SSP245 and high forcing scenario SSP585 in this study, which implies a
radiative forcing in 2100 of 4.5 W m−2 and 8.5 W m−2 with a global mean temperature rise
of about 3 ◦C and 5 ◦C, respectively [19].

2.2.4. Downscaling Process and Bias Correction

The output of GCMs is normally large-scale data with the resolution ranging
from 100 km to 500 km and needs downscaling for application at regional scale [19].
Downscaling includes two steps: temporal downscaling and spatial downscaling. Since
this study involved seasonal and annual scales, monthly data were selected from the
CMIP6 without further temporal downscaling. Regarding spatial downscaling, the
method of inverse distance-weighted interpolation was used, which has shown satisfactory
interpolation performance in many downscaling studies [27]. The spatial resolution of
simulated climatic data after downscaling is 2 × 2 km.

The simulated climatic variables from the GCMs need bias correction through com-
parison with the observed climatic variables before the data can be used in further appli-
cations [16]. The bias correction process in this study included creating a q–q function to
calibrate the bias between the observed and simulated data, which were collected from the
same period of 1965 to 1994, and then using the data from the period of 1995 to 2015 to
validate this correction function [28]. Eventually, the simulated climatic data in the future
period were corrected by this function. In consideration of the gridded simulation in this
study, the q–q function was created for each grid.

The performance of downscaling and bias correction was evaluated by the correlation
coefficient (R2) and the root mean square error (RMSE), which were calculated as

R2 =

 ∑
(
Si − S

)(
Oi −O

)√
∑
(
Si − S

)2(Oi −O
)2

2

, (8)
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where Oi and Si are the observed and simulated climatic variables, respectively. O and S
are mean values of the observed and simulated data, respectively. R2 close to 1 indicates a
favorable agreement between the observed and simulated climatic variables.

RMSE =
√

∑ (Oi − Si)
2/n, (9)

where n is the number of observed data. RMSE close to 0 indicates a small deviation
between the observed and simulated climatic variables.

2.2.5. Trend Detection

Detecting the change trend of climatic variables is an essential step in the research
on the impact of climate change. A non-parametric Mann–Kendall method (MMK) was
used for the trend detection, which has shown satisfactory performance in the studies
of long-term trend analysis [29]. The Z statistic in MMK follows the standard normal
distribution with a mean of variance of one under the null hypothesis of no trend in the
detected series. The significant level is 0.05 in this study, and the trend in the series is
significant when |Z| ≥ 1.96 [16]. Positive and negative values of Z indicate an increased
and decreased tendency, respectively. The ET0 trend in each grid was detected by the MMK.

2.3. Methods of Attribution Analysis
2.3.1. Sensitivity Index

The sensitivity index has been frequently used for studying the impact of climatic
variable changes on evapotranspiration changes [30]. In the calculation of the sensitivity
index, the ET0 changes are dimensionless by using the partial derivative for calculation
simplicity. The specific calculation is as follows [31]:

SIx = lim
∆x→0

(
∆ET0/ET0

∆x/x

)
=

∂ET0

∂x
· x
ET0

, (10)

where SIx is the sensitivity index of a climatic variable regarding ET0 changes and x is
the value of the climatic variable. The sensitive degrees are divided by the absolute
value of Sx: |SIx| ≤ 0.05 indicates no sensitivity, 0.05 ≤ |SIx| ≤ 0.2 indicates moderate
sensitivity, 0.2 ≤ |SIx| ≤ 1.0 indicates high sensitivity and |SIx| ≥ 1.0 indicates extreme
sensitivity [32]. The calculation of SIx was accomplished using MATLAB 2016a.

2.3.2. Contribution Rate

A previous study has pointed out that using the sensitivity index alone cannot compre-
hensively analyze the impact of climatic variables on ET0 changes [31]. Thus, a contribution
rate of climatic variables impacting ET0 was defined based on the sensitivity index as [31]:

Conx = SIx·RCx (11)

RCx =
n·Bx

|Mx|
·100%, (12)

where Conx is the contribution rate of a climatic variable regarding ET0 changes, SIx is the
sensitivity index of the climatic variable, RCx is the relative changes of the climatic variable
over the studied period, n is years in the time period of the study, i.e., 31 years in this
study, Mx is the mean value of the climatic variable in the n years and Bx is the annual
(or seasonal) linear rate (least square method) of the climatic variable over the n years.
Negative and positive contribution rates indicate that changes of the climatic variable cause
an increase and decrease in ET0, respectively. The larger the absolute value of Conx, the
greater impact of climatic variable changes on the ET0 change. The climatic variable with
the largest absolute value of Conx is the dominant factor for ET0 change. The actual change
rate of ET0 over n years was calculated by Equation (12) and indicated as RCET0.

The relative change rate of ET0 is the sum of the contribution rate of each climatic
variable, and the specific calculation was as follows:
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ConET0 = ConVPD + ConTa + ConWS + ConRn + ConP, (13)

where ConET0 is the relative change rate of ET0 caused by the combined effect of the
five climatic variables, and ConVPD, ConTa, Conu2, ConRn and ConP are, respectively, the
contribution rate of VPD, Ta, u2, Rn and P regarding change in ET0.

3. Results
3.1. Evaluation of Bias Correction

The performance of the four GCMs in simulating the five climatic variables and ET0
were all improved after downscaling and bias correction (Table 1). The R2 and RMSE of the
variables and ET0 in validation were all, respectively, increased and decreased compared
to the values in calibration. Similarly, the ranges of R2 and RMSE of the variables and
ET0 were narrowed after the correction. The simulation performance of air temperature
and pressure were better than other climatic variables, demonstrated by lower RMSE and
higher R2 ranging from 81.9% to 98.5%. The R2 and RMSE of the ensemble-simulated ET0
were both, respectively, higher and smaller than the values of the individual GCM.

Table 1. Simulation performance of the climatic variables and reference evapotranspiration after
downscaling and bias correction.

GCM Models

Air
Temperature (◦C)

Air Pressure
(k Pa)

Wind Speed
(m s−1)

Solar
Radiation (W m−2)

Vapor Pressure
Deficit (k Pa)

ET0
(mm)

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

MPI-ESM1-2-HR Calibration 71.2% 0.87 83.2% 2.56 56.9% 0.93 53.6% 0.77 74.1% 0.11 55.1% 30.9
Validation 81.9% 0.83 85.7% 1.15 68.7% 0.91 61.8% 0.67 81.5% 0.09 68.3% 26.2

MRI-ESM2-0 Calibration 80.9% 1.44 96.3% 3.61 62.6% 1.71 62.5% 0.81 77.9% 0.12 79.4% 18.1
Validation 92.7% 0.64 98.5% 1.67 76.2% 1.23 69.1% 0.62 82.8% 0.1 88.1% 14.1

CMCC-ESM2 Calibration 79.1% 2.99 80.5% 4.33 55.7% 1.96 73.9% 0.52 72.3% 0.16 65.3% 31.3
Validation 90.2% 2.1 85.2% 2.62 69.1% 1.44 79.2% 0.43 79.3% 0.13 76.7% 27.5

CAS-ESM2-0 Calibration 87.3% 1.94 90.7% 5.79 50.6% 1.55 69.5% 0.23 81.9% 0.19 76.6% 26.3
Validation 95.2% 1.23 93.9% 3.98 64.9% 1.26 76.8% 0.2 86.2% 0.16 85.2% 22.9

Ensemble Calibration 78.9% 17.7
Validation 89.5% 13.9

3.2. Trend Detection and Changes of ET0 under Climate Change
3.2.1. Trend Detection and Relative Changes of ET0 at Annual Scale

The mean annual ET0 of the entire Fenwei Plain showed a significant decreasing trend
in the baseline period from 1985 to 2015 with a rate of −2.4 mm per year (Figure 4). In
the future period from 2030 to 2060, the annual ET0 showed an insignificant increasing
trend under the SSP245 scenario. Under the SSP585 scenario with higher radiative forcing
and temperature compared to the SSP245 scenario, the annual ET0 showed a significant
increasing trend at a rate of 2.3 mm per year.

In the future period, the mean annual ET0 of the entire Fenwei Plain is 954 mm and
939 mm under the SSP245 and SSP585 scenarios, respectively, which increases 4.6% and
3.0%, respectively, compared to 912 mm in the baseline period.

The annual ET0 of all grids in the Fenwei Plain showed significant and insignificant de-
creasing trends in the baseline period (Figure 5a). In the future period under the SSP245 scenario,
about half of the grids in the Fenwei Plain showed significant and insignificant decreasing
trends, and these grids were mostly located in the eastern area of the plain. Accordingly, about
half of the grids in the Fenwei Plain showed insignificant increasing trend, and these grids
were mostly located in the western area of the plain (Figure 5b). In the future period under the
SSP585 scenario, all grids showed significant and insignificant increasing trends (Figure 5c).

The annual ET0 changes between the future period relative to the baseline period were
calculated as the difference between the mean annual ET0 of the future and baseline period
(Figure 6). The ET0 of all grids showed varying increases in the future period. The ET0
under the SSP245 scenario increased from 2.2% to 7.6% compared to the baseline period.
The ET0 under the SSP585 scenario increased from 1.0% to 6.2% compared to the baseline
period. The increases in ET0 become greater from the eastern to western areas of the Fenwei
Plain under both the SSP245 and SSP585 scenarios.
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Figure 6. Spatial distribution of annual ET0 changes under the SSP245 (a) and SSP585 (b) scenarios
for the future period (1985–2015) relative to the baseline period (2030–2060) in the Fenwei Plain.

3.2.2. Trend Detection and Relative Changes of ET0 at Seasonal Scale

The ET0 in the four seasons showed different change trends (Figure 7). In the baseline
period from 1985 to 2015, the ET0 showed a significant decreasing trend in spring with a
decrease rate of 1.1 mm per year. The ET0 in summer and autumn both showed insignificant
decreasing trends. The ET0 in winter showed a slight insignificant increasing trend. In the
future period from 2030 to 2060, the ET0 in the four seasons showed slight insignificant
decreasing or increasing trends under the SSP245 scenario, and the ET0 in the four seasons
all showed insignificant increasing trends under the SSP585 scenario.

Compared to the baseline period, the mean ET0 of the entire Fenwei Plain increased
in all four seasons under the SSP245 scenario, with autumn showing the largest increase
of 8.6% (Table 2). Under the SSP585 scenario, the ET0 in summer, autumn and winter
increased, and autumn showed the largest increase of 11.6%. The mean ET0 in spring
showed a slight decrease of 0.3% under the SSP585 scenario relative to the baseline period.
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Figure 7. The seasonal ET0 changes of the entire Fenwei Plain in the baseline period of 1985–2015
and the future period of 2030–2060 under the SSP245 and SSP585 scenarios.

Table 2. Changes in seasonal mean ET0 (mm) of the entire Fenwei Plain under the SSP245 and SSP585
scenarios for the future period relative to the baseline period.

Seasons ET0 in the
Baseline Period

ET0 under the
SSP245 Scenario

The SSP245
Scenario Relative to
the Baseline Period

ET0 under the
SSP585 Scenario

The SSP585 Scenario
Relative to the

Baseline Period

Spring 270.1 274.5 1.6% 269.3 −0.3%
Summer 386.6 407.0 5.3% 393.1 1.7%
Autumn 158.4 172.1 8.6% 176.7 11.6%
Winter 97.3 100.5 3.3% 101.0 3.9%

Note: ‘The SSP245/585 scenario relative to the baseline period’ indicates the ET0 changes under the SSP245/SSP585
scenarios relative to the baseline period.

All grids for the plain in the baseline period showed insignificant or significant decreas-
ing trends in spring, summer and autumn, and the number of the grids showing significant
decreasing trends was highest in spring (Figure 8a–c). Part of the grids in the plain showed
an insignificant increasing trend in winter (Figure 8d). Under the SSP245 scenario, the grids
showed slight insignificant decreasing, increasing or no trends (Figure 8e–h). Under the
SSP585, all the grids showed significant and insignificant increasing trends in summer and
winter (Figure 8j,l), and the grids showed slight insignificant decreasing, increasing or no
trends in spring and autumn (Figure 8i,k).
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The ET0 of all grids in the Fenwei Plain showed varying increases in spring, summer
and autumn under the SSP245 scenario relative to the baseline period, with an increase in au-
tumn ranging from 5.5% to 11.2%, thereby being higher than for other seasons (Figure 9a–c).
In the winter under the SSP245 scenario, the ET0 increased for most of the grids and de-
creased for a few (Figure 9d). Under the SSP585 scenario, the ET0 increased for all grids in
autumn (Figure 9c), and ET0 increased for most of the grids and decreased for the other
grids in spring, summer and winter (Figure 9e,f,h).
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3.3. Attribution Analysis of Climatic Variables to ET0 Change
3.3.1. Attribution Analysis at Annual Scale

In the baseline period, VPD was the largest contribution factor with a contribution
rate of −6.0% to the decrease in ET0 (Figure 10). The contribution rate is the product of the
sensitivity index (SI) and relative change rate (RC) over the period (Equation (11)), and the
RC of VPD showed the largest decrease of 12.8%, which was the main reason why VPD
showed the largest contribution. Meanwhile, the VPD did not achieve the highest SI, i.e.,
VPD was not the most sensitive climatic variable to ET0 change. The Rn was the second
largest contribution and sensitive factor to ET0 change in the baseline period. For those
climatic variables having a larger contribution rate in the baseline period (Figure 10a), such
as VPD, Rn and u2, the absolute values of RC were far higher than the absolute values of SI.
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Figure 10. Contribution of the five climatic variables to ET0 changes and the changes of ET0 in the
baseline (a) and future period (b,c) at annual scale. VPD, P, Ta, Rn and u2 indicate the vapor pressure
deficit, air pressure, mean air temperature, net radiation and wind speed, respectively. ConET0

indicates the relative change rate of ET0 over the period, which is caused by the combined effect of
the five climatic variables. RCET0 indicates the actual change rate of ET0 over the period.

In the future period, VPD also showed the largest contribution rates with −2.0% and
4.4% to ET0 change under the SSP245 and SSP585 scenarios, respectively. Like for the
baseline period, VPD showed the largest decrease rate over the period under the SSP245
and SSP585 scenarios but was not the most sensitive climatic variable to ET0 change. Ta
was the second largest contribution factor to ET0 change in the future period under the
SSP245 and SSP585 scenarios. Like for the baseline period, the absolute values of RC of
those variables having larger contributions were far higher than the absolute values of SI of
the variables in the future period, such as VPD, Ta and u2 (Figure 10b,c).

3.3.2. Attribution Analysis at Seasonal Scale

In the baseline period, VPD showed the largest contribution to ET0 change in all
four seasons (Figure 11a), as was the case at the annual scale. The large RC was the main
reason for the contribution of VPD to ET0 change, while the second largest contribution to
ET0 change differed in the four seasons; u2 was the second contribution factor in spring
and autumn, Rn was the second contribution factor in summer and Ta was the second
contribution factor in winter.

In the future period under the SSP245 scenario, VPD showed the largest contribution
to ET0 change in spring, summer and autumn, and Ta showed the largest contribution to
ET0 change in winter (Figure 11b). Ta had the second largest contribution in spring, u2
had the second largest contribution in summer and autumn and Rn had the second largest
contribution in winter. The largest RC of VPD in spring and summer and the largest RC
of Ta in winter caused the corresponding climatic variables to be the greatest contribution
factors to ET0 change. In the future period under the SSP585, VPD still showed the largest
contribution to ET0 change in spring, summer and winter, and Ta showed the largest
contribution to ET0 change in autumn (Figure 11c). Ta had the second largest contribution
in spring and summer, and VPD had the second largest contribution in autumn. Similarly,
the largest RC of VPD in spring and summer and the largest RC of Ta in autumn are still
the reason for the corresponding climatic variables being the largest contribution factors to
ET0 change. Like at the annual scale, the absolute values of RC of the most contribution
factors at the seasonal scale are far higher than the absolute values of SI of those factors.



Agronomy 2023, 13, 3036 16 of 21
Agronomy 2023, 13, x FOR PEER REVIEW 17 of 22 
 

 

 

 

 

Figure 11. Contribution of the five climatic variables to ET0 changes and the changes of ET0 in the baseline (a) and future period (b,c) on a seasonal scale. VPD, P, 
Ta, Rn and u2 indicate the vapor pressure deficit, air pressure, mean air temperature, net radiation and wind speed, respectively. ConET0 indicates the relative change 
rate of ET0 over the period, which is caused by the combined effect of the five climatic variables. RCET0 indicates the actual change rate of ET0 over the period. 

Figure 11. Contribution of the five climatic variables to ET0 changes and the changes of ET0 in the baseline (a) and future period (b,c) on a seasonal scale. VPD, P, Ta,
Rn and u2 indicate the vapor pressure deficit, air pressure, mean air temperature, net radiation and wind speed, respectively. ConET0 indicates the relative change
rate of ET0 over the period, which is caused by the combined effect of the five climatic variables. RCET0 indicates the actual change rate of ET0 over the period.



Agronomy 2023, 13, 3036 17 of 21

There was little difference between ConET0 and RCET0 at both the annual and seasonal
scale, which indicates that the relative changes of ET0 caused by the five climatic variables
are very close to the actual changes of ET0.

4. Discussion
4.1. The Simulation Performance of the GCM Models

The simulation performance of the GCM models was improved after downscaling and
bias correction, and the simulated ensemble ET0 showed better simulation performance
than the performance of the individual GCM. The simulation performance of air tempera-
ture and pressure were better than other climatic variables, which may be explained by the
greater stability of air pressure relative to the other variables and the focus on simulation of
temperature in the development of the GCM models [33]; similar results have been reported
in studies simulating with the GCM models [34]. The temperature varies from day to day,
and this variation is not reflected in the monthly temperature used here [35]. Since there
is a non-linear relationship between vapor pressure and temperature, our use of monthly
temperatures to calculate the VPD would lead to a slight underestimation compared with
using daily values. This is reflected in slightly lower ET0 estimates. However, the same
procedure was used across the entire study; thus, it does not affect conclusions of ET0
trends and attribution analysis.

4.2. The Trend and Changes of ET0 at Annual Scale

Evapotranspiration is expected to increase with increasing temperature under climate
change. However, some actual and simulated data have shown a decreasing trend in
ET0 (evaporation paradox) during the 1950s to 2010s [36,37]. Our study showed a sig-
nificant decreasing trend in annual ET0 in the Fenwei Plain during the baseline period
from 1985 to 2015 (Figure 4). The attribution analysis indicates the large RC of VPD and Rn
are the two main reasons for the ET0 decrease in the baseline period. Huang et al. [38] and
Yuan et al. [33] reported similar results of decreased VPD and Rn during the 1980s to 2010s
in northern China. Du et al. [12] detected no significant trend in ET0 for the entire Loess
Plateau (which covers the Fenwei Plain) during 1974–2019, which indicates that different
spatial scales lead to different analytical results, and different research subjects need to be
studied with their appropriate scales [21].

In the future period from 2030 to 2060, the trend in annual ET0 turned to an increasing
trend. Specifically, the annual ET0 under the SSP245 and SSP585 scenarios showed insignif-
icant and significant increasing trends, respectively. The attribution analysis indicates that
the large RC of VPD and Ta are the main reasons for the ET0 increase. The VPD showed
opposite change trends between the baseline and future period, which could be explained
by the fact that an abrupt increasing VPD was detected in the late 2000s in northwest
China, and this change may have been caused by increasing temperature and decreasing
actual vapor pressure [23,39]. Temperature replaced Rn as the second largest contribution
factor in the future period, partly because the relative change amplitude of temperature
in the future period is larger than the other variables in the projected data of CMIP6 [19].
The results showed that the annual ET0 of the Fenwei Plain in the future period is higher
than the ET0 in the baseline period, which is consistent with the increasing trend in the
future period relative to the decreasing trend in the baseline period. The mean annual ET0
under the SSP245 scenario is slightly higher than the ET0 under the SSP585 despite the ET0
showing a significant increasing trend under the SSP585 and an insignificant increasing
trend under the SSP245, respectively. This indicates that the mean value over the period
cannot directly represent the change trend over the period; the existence of fluctuation in
climatic variables and the impact of climate change on ET0 is nonlinear and complex [40].
The spatial variation of the annual ET0 change and trend in the Fenwei Plain is mainly
reflected in the differences between the eastern and western area of the plain.
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4.3. The Trend and Changes of ET0 at Seasonal Scale

The ET0 trends of spring, summer and autumn in the baseline and future periods were
roughly in accordance with the ET0 trend at the annual scale in the corresponding periods.
However, the winter ET0 showed a continuous increasing trend in both the baseline and
future period even though the annual ET0 showed an opposite trend from the baseline
period to the future period (Figures 4 and 7). Feng et al. [41] reported a significant increasing
trend in ET0 for winter in northern China, which is similar to this study. The ET0 change
and trend between the four seasons showed obvious differences since the relevant climatic
variables show distinctly different seasonal characteristics of change and trend [42].

The contribution ranks for the four seasons differed and they further changed from the
baseline period to the future period, although VPD was the major contribution factor to ET0
change in both periods. Like for the annual scale, the contribution of Ta increased from the
baseline period to the future period, which could be caused by the greater relative change
in air temperature in the future. The large RCs of seasonal climatic variables were still the
main reasons for ET0 change. The results at annual and seasonal scales both indicate that
the major contribution factors are mostly the climatic variables with large RCs (relative
changes over the period) instead of the most sensitive variables for affecting change in ET0,
which demonstrates that SI can quantify the impact extent of climatic variable changes on
ET0 change but cannot fully determine the actual contribution of changes in the variables to
ET0 changes, because ET0 change is not only determined by the sensitivity of the variables,
but is also related to the actual changes in the variables.

Like the results at the annual scale, the spatial differences of the seasonal ET0 change
and trend are also mainly reflected in the differences between the eastern and western area
of the Fenwei Plain. Due to the impact of the mountains surrounding the Fenwei Plain, the
eastern area of the plain showed a higher temperature and drier climate compared to the
western area of the plain [43], so these regional climate differences may be the reason for
the spatial differences of ET0 change in the plain.

4.4. Impaction and Adaptation Prospects of Agriculture Water Use and Crop Cultivation

The increasing ET0 would lead to a significant increase in crop evapotranspiration [1],
but would not directly lead to a significant increase in crop yield. The results in this study
showed an increasing annual ET0 in the Fenwei Plain under the two future scenarios.
Therefore, improving the efficiency of crop water use is a crucial adaptation under climate
change for the plain with constraints on the water resources. Adapting the irrigation
schedule is another important adaptation for the impact of climate change on agriculture
water use [4]. The crop evapotranspiration in summer and autumn will increase more in the
future (Table 2), which indicates the crops that critical periods of water requirement are in
summer and autumn need to increase irrigation, such as for the spring and summer maize,
apple and kiwi fruit cultivated in the plain. Similarly, more water needs to be allocated in
summer and autumn for the water management of the irrigation district. The irrigation
in winter also needs to increase appropriately for the crops that have critical periods of
water requirement in the winter, such as increasing irrigation in the seedling stage of winter
wheat. In addition, with the decreasing ET0 of spring under the SSP585 scenario, allocating
the water amount of spring to another season moderately is also a fair adaptation.

A shorter time scale (e.g., daily scale) is more conducive to agricultural practices, but
this also implies a huge computing time. With the improvement of computer performance,
future studies with shorter time scales should be conducted.

The differences in ET0 change between the eastern and western area of the Fenwei Plain
indicate that the western area of the plain will need more water in annual water allocation
to satisfy the relative higher crop evapotranspiration in the future (Figures 5 and 6). Using
the established aqueducts between irrigation districts could balance the water requirement
differences between the eastern and western area of the plain in the future. Improving crop
water use efficiency and increasing irrigation may not be sufficient to address the impact of
climate change in conditions with limited water resources like the Fenwei Plain [5]. The
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adjustment of cropping systems is also a fair adaptation in agronomy. Based on the results
of this study, we suggest enlarging the area of crops with lower water requirement in the
western area of the plain and reducing the area of crops with higher water requirements
in the eastern area, such as, enlarging the planting area of summer maize and jujube in
the corresponding area and reducing the planting area of winter wheat and spring maize
appropriately in the corresponding area. The adaptations under the two scenarios also
need to be differentiated, for instance, the irrigation districts g, i and j require increasing
irrigation under the SSP245 scenario, but the irrigation districts a, b and g require increasing
irrigation under the SSP585 scenario (Figure 6). At the seasonal scale, the adaptation need
to be various due to the different change and trend in ET0 between the seasons, for instance,
the increasing irrigation needs to be allocated more in the eastern area of the plain in winter
under the SSP585 scenario, and the increasing irrigation needs to allocated more in the
middle area of the plain in winter under the SSP245 scenario (Figure 9).

VPD showed a large contribution to ET0 change, and VPD also affected vegetation
transpiration and soil evaporation directly [44,45], although previous studies often ignored
the impact of VPD on agricultural water use under climate change [46]. Therefore, VPD
should be considered directly in water resource management under climate change.

5. Conclusions

The annual ET0 of the Fenwei Plain showed a significant decreasing trend in the
baseline period (1985–2015) but insignificant and significant increasing trends in the future
period (2030–2060) under SSP245 and SSP585 scenarios, respectively. The change and trend
in ET0 between the four seasons were different in the baseline and future periods. Winter
and autumn showed clear increases in ET0. VPD was the main contribution factor to the
change in both annual and seasonal ET0. The change in ET0 was mainly driven by the most
changed climatic variables rather than by the most sensitive variables to the ET0 change.
The change and trend in ET0 in the Fenwei Plain showed clear spatial differences, especially
between the eastern and western area of the plain. The irrigation schedule of the crops
cultivated in the plain needs to be adjusted according to the change characteristics of annual
and seasonal ET0 under climate change. The cropping system and water management of
the irrigation district also need to be adjusted according to the spatial differences in ET0 in
the future. The results of this study provide basis and reference for regional water resource
management under climate change.
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